### Pattern matching with don't cares and few errors

Raphaël Clifford, Klim Efremenko, Ely Porat, Amir Rothschild

Journal of Computer and System Sciences 76 (2010) 115–124.

Speaker: Joseph Chuang-Chieh Lin

Genomics Research Center, Academia Sinica Taiwan

23 May 2014

Matching with don't cares & few erros Introduction

### Pattern matching

$$\begin{split} &\Sigma: \text{ alphabet } \\ &t = t_1 t_2 \dots t_n \in \Sigma^n: \text{ text } \\ &p = p_1 p_2 \dots p_m \in \Sigma^m: \text{ pattern } \end{split}$$

#### Exact pattern matching

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$ .

**Goal:** find all the places that *p* matches *t*.

• O(n) time [Boyer & Moore 1977; Knuth, Morris & Pratt 1977]



Matching with don't cares & few erros Introduction

### Pattern matching

#### Pattern matching with don't cares

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$ , where p, t may contain ' $\phi$ 's. **Goal:** find all the places that p matches t.

#### • $\Theta(n \log m)$ [Cole& Hariharan 2002; Clifford $\times 2$ & 2007].



Matching with don't cares & few erros Introduction

## Pattern matching (k-mismatch)

#### k-mismatch WITHOUT don't cares

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$  and an integer  $k \ge 0$ . **Goal:** find all the places that p matches t with  $\le k$  mismatches.

- $\Theta(n\sqrt{m\log m})$  time [Abrahamson 1987; Kosaraju 1987].
- $\Theta(n\sqrt{k \log k})$  [Amir, Lewenstein & Porat 2004].



# Pattern matching (k-mismatch)

#### k-mismatch with don't cares

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$  and an integer  $k \ge 0$ , where p, t may contain ' $\phi$ 's.

**Goal:** find all the places that p matches t with  $\leq k$  mismatches.

- $O(nm^{1/3}k^{1/3}\log^{2/3}m)$  time [Clifford & Porat 2007].
  - ' $\phi$ 's: permitted in either the pattern or text, but not both.
- Extend Kosaraju & Abrahamson's work with little extra work:  $\Theta(n\sqrt{m\log m})$  time.
- No other previous efficient algorithm for this problem.



### Contribution of this paper

#### *k*-mismatch with don't cares

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$  and an integer  $k \ge 0$ , where p, t may contain ' $\phi$ 's. **Goal:** find all the places that p matches t with < k mismatches.

This paper:

- Two randomized  $\tilde{\Theta}(nk)$  time algorithms.
  - A randomized  $\Theta(nk \log m \log n)$  time algorithm.
  - Further improved  $\rightarrow \Theta(n(k + \log m \log k) \log n)$  time.
- A deterministic  $\Theta(nk^2 \log^2 m)$  time algorithm (group testing).
- $\Theta(nk \operatorname{polylog} m)$  time using k-selectors.



### Contribution of this paper

#### *k*-mismatch with don't cares

**Given:** a pattern  $p \in \Sigma^n$ , a text  $t \in \Sigma^m$  and an integer  $k \ge 0$ , where p, t may contain ' $\phi$ 's. **Goal:** find all the places that p matches t with < k mismatches.

This paper:

- Two randomized  $\tilde{\Theta}(nk)$  time algorithms.
  - A randomized  $\Theta(nk \log m \log n)$  time algorithm.
  - Further improved  $\rightarrow \Theta(n(k + \log m \log k) \log n)$  time.
- A deterministic  $\Theta(nk^2 \log^2 m)$  time algorithm (group testing).
- $\Theta(nk \operatorname{polylog} m)$  time using k-selectors.

### k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i,...,i+m-1].
 \* φ matches any symbol in Σ.

$$HD_k(i) = \begin{cases} HD(i) & \text{if } HD(i) \le k \\ \bot & \text{otherwise.} \end{cases}$$

- HD<sub>k</sub>(i) ≠⊥
   ⇒ There is a k-mismatch between p and t at alignment i.
- For example,  $HD_2(1) = 2$ ,  $HD_2(5) = 1$

*i*: 1 2 3 4 5 6 7 8 9 10 *t*: A A C φ G A φ T T G *p*: A φ G G A 

### k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i,...,i+m-1].
 \* φ matches any symbol in Σ.

$$HD_k(i) = \begin{cases} HD(i) & \text{if } HD(i) \le k \\ \bot & \text{otherwise.} \end{cases}$$

- HD<sub>k</sub>(i) ≠⊥
   ⇒ There is a k-mismatch between p and t at alignment i.
- For example,  $HD_2(1) = 2$ ,  $HD_2(5) = \bot$ .
  - *i*: 1 2 3 4 5 6 7 8 9 10
  - $t: A A C \phi G A \phi T T G$
  - p: A  $\phi$  G G A



7 / 16

23 May 2014

### k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i,...,i+m-1].
 \* φ matches any symbol in Σ.

$$HD_k(i) = \begin{cases} HD(i) & \text{if } HD(i) \le k \\ \bot & \text{otherwise.} \end{cases}$$

- HD<sub>k</sub>(i) ≠⊥
   ⇒ There is a k-mismatch between p and t at alignment i.
- For example,  $HD_2(1) = 2$ ,  $HD_2(5) = \bot$ .

*i*: 1 2 3 4 5 6 7 8 9 10  
*t*: A A C 
$$\phi$$
 G A  $\phi$  T T G

*p*: A φ G G A



### k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i,...,i+m-1].
 \* φ matches any symbol in Σ.

$$HD_k(i) = \begin{cases} HD(i) & \text{if } HD(i) \le k \\ \bot & \text{otherwise.} \end{cases}$$

- HD<sub>k</sub>(i) ≠⊥
   ⇒ There is a k-mismatch between p and t at alignment i.
- For example,  $HD_2(1) = 2$ ,  $HD_2(5) = \perp$ . *i*: 1 2 3 4 5 6 7 8 9 10 *t*: A A C  $\phi$  G A  $\phi$  T T G *p*: A  $\phi$  G G A



### Transformation from matching to coding...

• The key observation by [Clifford×2 2007]:

$$\sum_{j=1}^{m} (p_j - t_{i+j-1})^2 = \sum_{j=1}^{m} (p_j^2 - 2p_j t_{i+j-1} + t_{i+j-1}^2).$$

$$\sum_{j=1}^m p_j' t_{i+j-1}' (p_j - t_{i+j-1})^2.$$

where

$$p_j' = \left\{ egin{array}{ccc} 0 & ext{if } p_j = `\phi' & t_i' = \left\{ egin{array}{ccc} 0 & ext{if } t_i = `\phi' & 1 & 0 & ext{therwise.} \end{array} 
ight.$$

• The sum equals 0 iff there is an exact match with don't cares.



### Transformation from matching to coding...

• The key observation by [Clifford × 2 2007]:

$$\sum_{j=1}^{m} (p_j - t_{i+j-1})^2 = \sum_{j=1}^{m} (p_j^2 - \frac{2p_j t_{i+j-1}}{t_{i+j-1}} + t_{i+j-1}^2).$$

$$\sum_{j=1}^m p_j' t_{i+j-1}' (p_j - t_{i+j-1})^2.$$

where

$$p'_{j} = \begin{cases} 0 & \text{if } p_{j} = `\phi' \\ 1 & \text{otherwise;} \end{cases} \quad t'_{i} = \begin{cases} 0 & \text{if } t_{i} = `\phi' \\ 1 & \text{otherwise.} \end{cases}$$

• The sum equals 0 iff there is an exact match with don't cares.



Matching with don't cares & few erros Preliminaries

#### The cross-correlation

$$(t \otimes p)[i] := \sum_{j=1}^{m} p_j t_{i+j-1}, \quad 0 \le i \le n-m+1.$$

- The above cross-correlation (convolution) can be calculated in Θ(n log m) time.
  - Fast Fourier Transform (FFT).



9 / 16

23 May 2014

Starting by 1-mismatch...

#### The 1-mismatch problem

To determine where p and t have EXACTLY ONE mismatch.

Masking out a number of positions in p with \u03c6's at random (each of prob. (k - 1)/k).

- The resulting pattern: *subpattern*.
- \* It is likely that exactly one mismatch can be found.



Starting by 1-mismatch...

#### The 1-mismatch problem

To determine where p and t have EXACTLY ONE mismatch.

- Masking out a number of positions in p with \u03c6's at random (each of prob. (k 1)/k).
  - The resulting pattern: subpattern.
  - $\star$  It is likely that exactly one mismatch can be found.



# Algorithm 1-mismatch $\Theta(n \log m)$

**Input:** Pattern *p*, text *t*.

**Output:** B[i]: mismatch location in t for each alignment where HD(i) = 1.

- Compute  $A_0[i] = \sum_j (p_j t_{i+j-1})^2 p'_j t'_{i+j-1};$
- 2 Compute  $A_1[i] = \sum_j (i+j-1)(p_j t_{i+j-1})^2 p'_j t'_{i+j-1};$
- (a) for each  $i \in \{0, 1, \dots, n\}$  do
  - a. if  $A_0[i] \neq 0$  then
    - $B[i] \leftarrow A_1[i]/A_0[i];$

b. else

•  $B[i] \leftarrow No\_Mismatch;$ 

• for each  $i \in \{0, 1, \dots, n\}$  s.t.  $B[i] \neq \texttt{No\_Mismatch}$  do

• if 
$$(p[B[i] - i + 1] - t[B[i]])^2 \neq A_0[i]$$
 then   
 $B[i] \leftarrow \text{More_Than_1_Mismatch};$ 



# Algorithm 1-mismatch $\Theta(n \log m)$

**Input:** Pattern *p*, text *t*.

**Output:** B[i]: mismatch location in t for each alignment where HD(i) = 1.

- Compute  $A_0[i] = \sum_j (p_j t_{i+j-1})^2 p'_j t'_{i+j-1};$
- **2** Compute  $A_1[i] = \sum_j (i+j-1)(p_j t_{i+j-1})^2 p'_j t'_{i+j-1};$

• for each 
$$i \in \{0, 1, \ldots, n\}$$
 do

a. if 
$$A_0[i] \neq 0$$
 then

• 
$$B[i] \leftarrow A_1[i]/A_0[i]; \leftarrow \mathsf{DECODING}$$

b. else

•  $B[i] \leftarrow No\_Mismatch;$ 

() for each  $i \in \{0, 1, \dots, n\}$  s.t.  $B[i] \neq \texttt{No\_Mismatch}$  do

• if 
$$(p[B[i] - i + 1] - t[B[i]])^2 \neq A_0[i]$$
 then   
 $B[i] \leftarrow \text{More_Than_1_Mismatch};$ 

11 / 16

23 May 2014

- Running 1-mismatch for  $\Theta(k \log n)$  times.
- Each time we get the location of a mismatch (with the subpattern) if one occurs.
- Similar to the concept of solving the Coupon Collector's problem.
- Yet, the last coupon is always the most difficult to get!



- Running 1-mismatch for  $\Theta(k \log n)$  times.
- Each time we get the location of a mismatch (with the subpattern) if one occurs.
- Similar to the concept of solving the Coupon Collector's problem.
- Yet, the last coupon is always the most difficult to get!



- Running 1-mismatch for  $\Theta(k \log n)$  times.
- Each time we get the location of a mismatch (with the subpattern) if one occurs.
- Similar to the concept of solving the Coupon Collector's problem.
- Yet, the last coupon is always the most difficult to get!



- Running 1-mismatch for  $\Theta(k \log n)$  times.
- Each time we get the location of a mismatch (with the subpattern) if one occurs.
- Similar to the concept of solving the Coupon Collector's problem.
- Yet, the last coupon is always the most difficult to get!

Time complexity:  $\Theta(nk \log n \log m)$ .



- Running 1-mismatch for  $\Theta(k \log n)$  times.
- Each time we get the location of a mismatch (with the subpattern) if one occurs.
- Similar to the concept of solving the Coupon Collector's problem.
- Yet, the last coupon is always the most difficult to get!

```
Time complexity: \Theta(nk \log n \log m).
Correctness?
```



### Correctness of the first randomized algorithm

#### • For $HD(i) \leq k$ :

- One fixed single mismatch is found in one iteration with prob.  $\geq \left(\frac{k-1}{k}\right)^{k-1} \cdot \frac{1}{k} > \frac{1}{e^k}.$ 
  - This one is not found after Θ(k log n) iterations with prob.
     ≤ (1 − 1/ek)<sup>Θ(k log n)</sup> ≤ n<sup>-c</sup> for some constant c.
- Applying union bound to derive the overall error prob.
- For HD(i) > k:
  - Extra checking stage by computing

$$C[i] = \sum_{j=1}^m (i+j-1)(p_j-t_{i+j-1})^2 p_j' t_{i+j-1}', ext{ for each } i.$$

"Correct" C[i] for each distinct 1-mismatch using the found A<sub>0</sub>[i
 Keep track of found mismatches (using a binary search tree).



### Correctness of the first randomized algorithm

- For  $HD(i) \leq k$ :
  - One fixed single mismatch is found in one iteration with prob.  $\geq \left(\frac{k-1}{k}\right)^{k-1} \cdot \frac{1}{k} > \frac{1}{e^k}.$ 
    - This one is not found after  $\Theta(k \log n)$  iterations with prob.  $\leq (1 - 1/ek)^{\Theta(k \log n)} \leq n^{-c}$  for some constant c.
  - Applying union bound to derive the overall error prob.
- For HD(i) > k:
  - Extra checking stage by computing

$$C[i] = \sum_{j=1}^m (i+j-1)(p_j-t_{i+j-1})^2 p_j' t_{i+j-1}', ext{ for each } i.$$

"Correct" C[i] for each distinct 1-mismatch using the found A<sub>0</sub>[i]
 Keep track of found mismatches (using a binary search tree).



### Correctness of the first randomized algorithm

- For  $HD(i) \leq k$ :
  - One fixed single mismatch is found in one iteration with prob.  $\geq \left(\frac{k-1}{k}\right)^{k-1} \cdot \frac{1}{k} > \frac{1}{e^k}.$ 
    - This one is not found after  $\Theta(k \log n)$  iterations with prob.  $\leq (1 - 1/ek)^{\Theta(k \log n)} \leq n^{-c}$  for some constant c.
  - Applying union bound to derive the overall error prob.
- For HD(i) > k:
  - Extra checking stage by computing

$$C[i] = \sum_{j=1}^{m} (i+j-1)(p_j - t_{i+j-1})^2 p'_j t'_{i+j-1},$$
 for each  $i$ .

"Correct" C[i] for each distinct 1-mismatch using the found A<sub>0</sub>[i].
Keep track of found mismatches (using a binary search tree).



23 May 2014 13 / 16

### Correctness of the first randomized algorithm

- For  $HD(i) \leq k$ :
  - One fixed single mismatch is found in one iteration with prob.  $\geq \left(\frac{k-1}{k}\right)^{k-1} \cdot \frac{1}{k} > \frac{1}{e^k}.$ 
    - This one is not found after  $\Theta(k \log n)$  iterations with prob.  $\leq (1 - 1/ek)^{\Theta(k \log n)} \leq n^{-c}$  for some constant c.
  - Applying union bound to derive the overall error prob.
- For HD(i) > k:

(

• Extra checking stage by computing

$$C[i] = \sum_{j=1}^{m} (i+j-1)(p_j - t_{i+j-1})^2 p'_j t'_{i+j-1}, \text{ for each } i.$$

"Correct" C[i] for each distinct 1-mismatch using the found A<sub>0</sub>[i].
Keep track of found mismatches (using a binary search tree).



23 May 2014 13 / 16

### The clever ideas

# Instead of finding ALL mismatches at once, find HALF of them! Efficient & with high prob. of success.

- Save the effort in dealing with previous found mismatches.
  Correct the sums in A<sub>0</sub> and A<sub>1</sub> prior to their being used.
- The left mismatches to be found → increase the sampling rate!



#### The clever ideas

- Instead of finding ALL mismatches at once, find HALF of them!
   Efficient & with high prob. of success.
- Save the effort in dealing with previous found mismatches.
  Correct the sums in A<sub>0</sub> and A<sub>1</sub> prior to their being used.
- The left mismatches to be found  $\rightarrow$  increase the sampling rate!



### The clever ideas

- Instead of finding ALL mismatches at once, find HALF of them!
   Efficient & with high prob. of success.
- Save the effort in dealing with previous found mismatches.
  - Correct the sums in  $A_0$  and  $A_1$  prior to their being used.
- $\bullet\,$  The left mismatches to be found  $\rightarrow$  increase the sampling rate!



#### A faster recursive randomized algorithm

**Input:** Pattern p, text t, and an integer  $k \ge 0$ . **Output:** Array  $O[i] = HD_k(p, t[i, ..., i + m - 1]).$ 

- 1 Initialize *E* and set  $k_0 \leftarrow k$ ;
- ② for  $s \leftarrow 0$  to  $\lfloor \log k \rfloor$  do
  - a. for times  $\leftarrow 1$  to  $\Theta(k_s + \log n)$  do /\* Sample and Match stage \*/

I. Sample subpattern  $p^*$  with sample rate  $1/k_s$ ;

II. self-correcting-1-mismatch( $p^*, t, E$ );

- b. Update *E* according to the mismatches found in the iterations; c.  $k_{s+1} \leftarrow k_s/2$ ;
- $L[i] \leftarrow$  total number of distinct mismatches found at alignment *i*;
- Check at each position i in t that all mismatches were found;
- **③**  $O[i] \leftarrow L[i]$ , if all mismatches were found, otherwise  $O[i] \leftarrow \bot$ .



#### A faster recursive randomized algorithm

**Input:** Pattern p, text t, and an integer  $k \ge 0$ . **Output:** Array  $O[i] = HD_k(p, t[i, ..., i + m - 1])$ .

1 Initialize *E* and set  $k_0 \leftarrow k$ ;

2 for 
$$s \leftarrow 0$$
 to  $\lfloor \log k \rfloor$  do

a. for times  $\leftarrow 1$  to  $\Theta(k_s + \log n)$  do /\* Sample and Match stage \*/

I. Sample subnattern  $n^*$  with sample rate  $1/k_{-}$ :

II. self  $O(nk/k_s)$  times that a previously discovered mismatch is found whp.

- b. Update *E* according to the mismatches round in the iterations; c.  $k_{s+1} \leftarrow k_s/2$ ;
- $L[i] \leftarrow$  total number of distinct mismatches found at alignment *i*;
- Check at each position i in t that all mismatches were found;
- **③**  $O[i] \leftarrow L[i]$ , if all mismatches were found, otherwise  $O[i] \leftarrow \bot$ .



#### A faster recursive randomized algorithm

**Input:** Pattern p, text t, and an integer  $k \ge 0$ . **Output:** Array  $O[i] = HD_k(p, t[i, ..., i + m - 1]).$ **1** Initialize *E* and set  $k_0 \leftarrow k$ ; 2 for  $s \leftarrow 0$  to  $|\log k|$  do a. for times  $\leftarrow 1$  to  $\Theta(k_s + \log n)$  do /\* Sample and Match stage \*/ Sample subpattern  $p^*$  with sample rate  $1/k_{e^*}$ II. self  $O(nk/k_s)$  times that a previously discovered mismatch is found whp. b. Update E according  $\leq k_s/2$  different mismatches will remain to be found whp. §  $L[i] \leftarrow$  total number of distinct mismatches found at alignment *i*; Check at each position i in t that all mismatches were found; **o**  $O[i] \leftarrow L[i]$ , if all mismatches were found, otherwise  $O[i] \leftarrow \bot$ .



23 May 2014 15

15 / 16

#### A faster recursive randomized algorithm $\Theta(n(k + \log m \log k) \log n)$

**Input:** Pattern p, text t, and an integer  $k \ge 0$ . **Output:** Array  $O[i] = HD_k(p, t[i, ..., i + m - 1]).$ **1** Initialize *E* and set  $k_0 \leftarrow k$ ; 2 for  $s \leftarrow 0$  to  $|\log k|$  do a. for times  $\leftarrow 1$  to  $\Theta(k_s + \log n)$  do /\* Sample and Match stage \*/ Sample subpattern  $p^*$  with sample rate  $1/k_{e^*}$ II. self  $O(nk/k_s)$  times that a previously discovered mismatch is found whp. b. Update E according  $\leq k_s/2$  different mismatches will remain to be found whp. §  $L[i] \leftarrow$  total number of distinct mismatches found at alignment *i*; Check at each position i in t that all mismatches were found; **○**  $O[i] \leftarrow L[i]$ , if all mismatches were found, otherwise  $O[i] \leftarrow \bot$ .



# Thanks for your attention.



Joseph C.-C. Lin (Academia Sinica, TW) Matching with don't cares & few erros

23 May 2014 16 / 16

Matching with don't cares & few erros

# Appendix



Joseph C.-C. Lin (Academia Sinica, TW) Matching with don't cares & few erros

23 May 2014 16 / 16

E

#### Half different mismatches can be found whp in each stage

• 
$$k_s = k/2^s$$

#### Lemma 4.5

After  $\Theta(k_s + \log n)$  iterations of the sample and match stage, the locations and values of  $\leq k_s/2$  different mismatches will remain to be found whp.

- X<sub>i</sub>: 1 if a mismatch at the *i*th stage is found, 0 otherwise.
- $E(\sum_{i=1}^{\omega} X_i) \ge \omega/e$ , for  $\omega = \Theta(k_s + \log n)$ .
  - $\star\,$  Sum of random variables  $\rightarrow$  using Chernoff bounds.
  - $\geq \omega/2e$  mismatches can be found whp.
- Found mismatches are entirely contained in any size-(k<sub>s</sub>/2) set with prob. ≤ 2<sup>ω/2e</sup> (k<sub>s</sub>/2).



#### The number of times to handling previously found mismatches

#### Lemma 4.7

If the sample and match stage is run  $r = \Theta(k_s + \log n)$  times, # times a previously discovered mismatch is found is  $O(nk(k_s + \log n)/k_s)$  whp.

•  $X_{i,j}$ : whether  $p_i$  was replaced with  $\phi$  in iteration j.

• 
$$\Pr(X_{i,j} = 1) = 1/k_s$$
.

- $a_i$ : # mismatches previously found at  $p_i$  in all alignments.
- $X = \sum_{i \in [m], j \in [r]} a_i X_{i,j}$  is  $O(nk(k_s + \log n)/k_s)$  whp.
  - Using Chernoff bound once again (though a different formula).
- \* The overall time complexity can be derived easily.



### The Chernoff-Hoeffding bounds

#### Theorem 4.4

Assume that  $X_1, \ldots, X_m$  are i.i.d. random variables,  $X_i \in \{0, 1\}$ . Let  $\mu_i = E(X_i)$ . Then

$$Pr\left(\sum_{i=1}^m X_i \leq (1-\delta)m\mu\right) < e^{-m\mu\delta^2/2}.$$

#### Theorem 4.6

Let  $X_1, \ldots, X_m$  be discrete, independent random variables s.t.  $E(X_i) = 0$ and  $|X_i| \le 1$  for all *i*. Let  $X = \sum_{i=1}^m X_i$ . Then

$$Pr(X \ge \lambda \sqrt{\operatorname{Var}(X)}) \le e^{-\lambda^2/4}.$$

### In the proof of Theorem 4.9

Let us concentrate on the *i*th stage of the recursion. At this stage, we need to solve the  $k/2^i$ -mismatch problem, by running the self-correcting 1-mismatch algorithm  $\Theta(2^i + \log n)$  times. ...

- Shouldn't it be  $\Theta(k/2^i + \log n)$  times?
  - Though it doesn't affect the result.

