
Matching with don’t cares & few erros

Pattern matching with don’t cares and few errors

Raphaël Clifford, Klim Efremenko, Ely Porat, Amir Rothschild

Journal of Computer and System Sciences 76 (2010) 115–124.

Speaker: Joseph Chuang-Chieh Lin

Genomics Research Center, Academia Sinica
Taiwan

23 May 2014

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 1 / 16

Matching with don’t cares & few erros

Introduction

Pattern matching

Σ: alphabet
t = t1t2 . . . tn ∈ Σn: text
p = p1p2 . . . pm ∈ Σm: pattern

Exact pattern matching

Given: a pattern p ∈ Σn, a text t ∈ Σm.
Goal: find all the places that p matches t.

O(n) time [Boyer & Moore 1977; Knuth, Morris & Pratt 1977]

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 2 / 16

Matching with don’t cares & few erros

Introduction

Pattern matching

Pattern matching with don’t cares

Given: a pattern p ∈ Σn, a text t ∈ Σm, where p, t may contain ‘φ’s.
Goal: find all the places that p matches t.

Θ(n log m) [Cole& Hariharan 2002; Clifford×2 & 2007].

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 3 / 16

Matching with don’t cares & few erros

Introduction

Pattern matching (k-mismatch)

k-mismatch WITHOUT don’t cares

Given: a pattern p ∈ Σn, a text t ∈ Σm and an integer k ≥ 0.
Goal: find all the places that p matches t with ≤ k mismatches.

Θ(n
√

m log m) time [Abrahamson 1987; Kosaraju 1987].

Θ(n
√

k log k) [Amir, Lewenstein & Porat 2004].

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 4 / 16

Matching with don’t cares & few erros

Introduction

Pattern matching (k-mismatch)

k-mismatch with don’t cares

Given: a pattern p ∈ Σn, a text t ∈ Σm and an integer k ≥ 0, where p, t
may contain ‘φ’s.
Goal: find all the places that p matches t with ≤ k mismatches.

O(nm1/3k1/3 log2/3 m) time [Clifford & Porat 2007].

’φ’s: permitted in either the pattern or text, but not both.

Extend Kosaraju & Abrahamson’s work with little extra work:
Θ(n
√

m log m) time.

No other previous efficient algorithm for this problem.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 5 / 16

Matching with don’t cares & few erros

Introduction

Contribution of this paper

k-mismatch with don’t cares

Given: a pattern p ∈ Σn, a text t ∈ Σm and an integer k ≥ 0, where p, t
may contain ‘φ’s.
Goal: find all the places that p matches t with ≤ k mismatches.

This paper:

Two randomized Θ̃(nk) time algorithms.

A randomized Θ(nk logm log n) time algorithm.
Further improved → Θ(n(k + log m log k) log n) time.

A deterministic Θ(nk2 log2 m) time algorithm (group testing).

Θ(nk polylogm) time using k-selectors.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 6 / 16

Matching with don’t cares & few erros

Introduction

Contribution of this paper

k-mismatch with don’t cares

Given: a pattern p ∈ Σn, a text t ∈ Σm and an integer k ≥ 0, where p, t
may contain ‘φ’s.
Goal: find all the places that p matches t with ≤ k mismatches.

This paper:

Two randomized Θ̃(nk) time algorithms.

A randomized Θ(nk logm log n) time algorithm.
Further improved → Θ(n(k + log m log k) log n) time.

A deterministic Θ(nk2 log2 m) time algorithm (group testing).

Θ(nk polylogm) time using k-selectors.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 6 / 16

Matching with don’t cares & few erros

Preliminaries

k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i , . . . , i + m − 1].

⋆ φ matches any symbol in Σ.

HDk(i) =

{

HD(i) if HD(i) ≤ k

⊥ otherwise.

HDk(i) 6=⊥
⇒ There is a k-mismatch between p and t at alignment i .

For example, HD2(1) = 2, HD2(5) =⊥.

i : 1 2 3 4 5 6 7 8 9 10

t: A A C φ G A φ T T G
p: A φ G G A φ G G A

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7 / 16

Matching with don’t cares & few erros

Preliminaries

k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i , . . . , i + m − 1].

⋆ φ matches any symbol in Σ.

HDk(i) =

{

HD(i) if HD(i) ≤ k

⊥ otherwise.

HDk(i) 6=⊥
⇒ There is a k-mismatch between p and t at alignment i .

For example, HD2(1) = 2, HD2(5) =⊥.

i : 1 2 3 4 5 6 7 8 9 10

t: A A C φ G A φ T T G
p: A φ G G A φ G G A

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7 / 16

Matching with don’t cares & few erros

Preliminaries

k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i , . . . , i + m − 1].

⋆ φ matches any symbol in Σ.

HDk(i) =

{

HD(i) if HD(i) ≤ k

⊥ otherwise.

HDk(i) 6=⊥
⇒ There is a k-mismatch between p and t at alignment i .

For example, HD2(1) = 2, HD2(5) =⊥.

i : 1 2 3 4 5 6 7 8 9 10

t: A A C φ G A φ T T G
p: A φ G G A φ G G A

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7 / 16

Matching with don’t cares & few erros

Preliminaries

k-mismatch & Hamming distance

HD(i): the Hamming distance between p and t[i , . . . , i + m − 1].

⋆ φ matches any symbol in Σ.

HDk(i) =

{

HD(i) if HD(i) ≤ k

⊥ otherwise.

HDk(i) 6=⊥
⇒ There is a k-mismatch between p and t at alignment i .

For example, HD2(1) = 2, HD2(5) =⊥.

i : 1 2 3 4 5 6 7 8 9 10

t: A A C φ G A φ T T G
p: A φ G G A φ G G A

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7 / 16

Matching with don’t cares & few erros

Preliminaries

Transformation from matching to coding...

The key observation by [Clifford×2 2007]:

m
∑

j=1

(pj − ti+j−1)
2 =

m
∑

j=1

(p2
j − 2pj ti+j−1 + t2

i+j−1).

m
∑

j=1

p′

j t
′

i+j−1(pj − ti+j−1)
2.

where

p′

j =

{

0 if pj = ‘φ’
1 otherwise;

t ′i =

{

0 if ti = ‘φ’
1 otherwise.

The sum equals 0 iff there is an exact match with don’t cares.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 8 / 16

Matching with don’t cares & few erros

Preliminaries

Transformation from matching to coding...

The key observation by [Clifford×2 2007]:

m
∑

j=1

(pj − ti+j−1)
2 =

m
∑

j=1

(p2
j − 2pj ti+j−1 + t2

i+j−1).

m
∑

j=1

p′

j t
′

i+j−1(pj − ti+j−1)
2.

where

p′

j =

{

0 if pj = ‘φ’
1 otherwise;

t ′i =

{

0 if ti = ‘φ’
1 otherwise.

The sum equals 0 iff there is an exact match with don’t cares.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 8 / 16

Matching with don’t cares & few erros

Preliminaries

The cross-correlation

(t ⊗ p)[i] :=

m
∑

j=1

pj ti+j−1, 0 ≤ i ≤ n −m + 1.

The above cross-correlation (convolution) can be calculated
in Θ(n log m) time.

Fast Fourier Transform (FFT).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 9 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Starting by 1-mismatch...

The 1-mismatch problem

To determine where p and t have EXACTLY ONE mismatch.

Masking out a number of positions in p with φ’s at random (each of
prob. (k − 1)/k).

The resulting pattern: subpattern.
⋆ It is likely that exactly one mismatch can be found.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 10 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Starting by 1-mismatch...

The 1-mismatch problem

To determine where p and t have EXACTLY ONE mismatch.

Masking out a number of positions in p with φ’s at random (each of
prob. (k − 1)/k).

The resulting pattern: subpattern.
⋆ It is likely that exactly one mismatch can be found.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 10 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Algorithm 1-mismatch Θ(n log m)

Input: Pattern p, text t.
Output: B [i]: mismatch location in t for each aligment where HD(i) = 1.

1 Compute A0[i] =
∑

j(pj − ti+j−1)
2p′

j t
′

i+j−1;

2 Compute A1[i] =
∑

j(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1;

3 for each i ∈ {0, 1, . . . , n} do
a. if A0[i] 6= 0 then

B[i]← A1[i]/A0[i]; ← DECODING

b. else

B[i]← No Mismatch;

4 for each i ∈ {0, 1, . . . , n} s.t. B [i] 6= No Mismatch do

if (p[B[i]− i + 1]− t[B[i]])2 6= A0[i] then
B[i]← More Than 1 Mismatch;

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 11 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Algorithm 1-mismatch Θ(n log m)

Input: Pattern p, text t.
Output: B [i]: mismatch location in t for each aligment where HD(i) = 1.

1 Compute A0[i] =
∑

j(pj − ti+j−1)
2p′

j t
′

i+j−1;

2 Compute A1[i] =
∑

j(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1;

3 for each i ∈ {0, 1, . . . , n} do
a. if A0[i] 6= 0 then

B[i]← A1[i]/A0[i]; ← DECODING

b. else

B[i]← No Mismatch;

4 for each i ∈ {0, 1, . . . , n} s.t. B [i] 6= No Mismatch do

if (p[B[i]− i + 1]− t[B[i]])2 6= A0[i] then
B[i]← More Than 1 Mismatch;

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 11 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

Running 1-mismatch for Θ(k log n) times.

Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Similar to the concept of solving the Coupon Collector’s problem.

Yet, the last coupon is always the most difficult to get!

Time complexity: Θ(nk log n log m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 12 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

Running 1-mismatch for Θ(k log n) times.

Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Similar to the concept of solving the Coupon Collector’s problem.

Yet, the last coupon is always the most difficult to get!

Time complexity: Θ(nk log n log m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 12 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

Running 1-mismatch for Θ(k log n) times.

Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Similar to the concept of solving the Coupon Collector’s problem.

Yet, the last coupon is always the most difficult to get!

Time complexity: Θ(nk log n log m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 12 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

Running 1-mismatch for Θ(k log n) times.

Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Similar to the concept of solving the Coupon Collector’s problem.

Yet, the last coupon is always the most difficult to get!

Time complexity: Θ(nk log n log m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 12 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

Running 1-mismatch for Θ(k log n) times.

Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Similar to the concept of solving the Coupon Collector’s problem.

Yet, the last coupon is always the most difficult to get!

Time complexity: Θ(nk log n log m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 12 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Correctness of the first randomized algorithm

For HD(i) ≤ k:

One fixed single mismatch is found in one iteration with prob.

≥
(

k−1
k

)k−1 · 1
k

> 1
ek

.

This one is not found after Θ(k log n) iterations with prob.
≤ (1− 1/ek)Θ(k log n)

≤ n−c for some constant c.

Applying union bound to derive the overall error prob.

For HD(i) > k:

Extra checking stage by computing

C [i] =

m
∑

j=1

(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1, for each i .

“Correct” C [i] for each distinct 1-mismatch using the found A0[i].

Keep track of found mismatches (using a binary search tree).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Correctness of the first randomized algorithm

For HD(i) ≤ k:

One fixed single mismatch is found in one iteration with prob.

≥
(

k−1
k

)k−1 · 1
k

> 1
ek

.

This one is not found after Θ(k log n) iterations with prob.
≤ (1− 1/ek)Θ(k log n)

≤ n−c for some constant c.

Applying union bound to derive the overall error prob.

For HD(i) > k:

Extra checking stage by computing

C [i] =

m
∑

j=1

(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1, for each i .

“Correct” C [i] for each distinct 1-mismatch using the found A0[i].

Keep track of found mismatches (using a binary search tree).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Correctness of the first randomized algorithm

For HD(i) ≤ k:

One fixed single mismatch is found in one iteration with prob.

≥
(

k−1
k

)k−1 · 1
k

> 1
ek

.

This one is not found after Θ(k log n) iterations with prob.
≤ (1− 1/ek)Θ(k log n)

≤ n−c for some constant c.

Applying union bound to derive the overall error prob.

For HD(i) > k:

Extra checking stage by computing

C [i] =

m
∑

j=1

(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1, for each i .

“Correct” C [i] for each distinct 1-mismatch using the found A0[i].

Keep track of found mismatches (using a binary search tree).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 / 16

Matching with don’t cares & few erros

The randomized Θ(nk log m log n) algorithm

Correctness of the first randomized algorithm

For HD(i) ≤ k:

One fixed single mismatch is found in one iteration with prob.

≥
(

k−1
k

)k−1 · 1
k

> 1
ek

.

This one is not found after Θ(k log n) iterations with prob.
≤ (1− 1/ek)Θ(k log n)

≤ n−c for some constant c.

Applying union bound to derive the overall error prob.

For HD(i) > k:

Extra checking stage by computing

C [i] =

m
∑

j=1

(i + j − 1)(pj − ti+j−1)
2p′

j t
′

i+j−1, for each i .

“Correct” C [i] for each distinct 1-mismatch using the found A0[i].

Keep track of found mismatches (using a binary search tree).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

The clever ideas

Instead of finding ALL mismatches at once, find HALF of them!

Efficient & with high prob. of success.

Save the effort in dealing with previous found mismatches.

Correct the sums in A0 and A1 prior to their being used.

The left mismatches to be found → increase the sampling rate!

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 14 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

The clever ideas

Instead of finding ALL mismatches at once, find HALF of them!

Efficient & with high prob. of success.

Save the effort in dealing with previous found mismatches.

Correct the sums in A0 and A1 prior to their being used.

The left mismatches to be found → increase the sampling rate!

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 14 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

The clever ideas

Instead of finding ALL mismatches at once, find HALF of them!

Efficient & with high prob. of success.

Save the effort in dealing with previous found mismatches.

Correct the sums in A0 and A1 prior to their being used.

The left mismatches to be found → increase the sampling rate!

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 14 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k ≥ 0.
Output: Array O[i] = HDk(p, t[i , . . . , i + m − 1]).

1 Initialize E and set k0 ← k;
2 for s ← 0 to ⌊log k⌋ do

a. for times ← 1 to Θ(ks + log n) do /* Sample and Match stage */

I. Sample subpattern p∗ with sample rate 1/ks ;
II. self-correcting-1-mismatch(p∗ , t, E);

b. Update E according to the mismatches found in the iterations;
c. ks+1 ← ks/2;

3 L[i]← total number of distinct mismatches found at alignment i ;

4 Check at each position i in t that all mismatches were found;

5 O[i]← L[i], if all mismatches were found, otherwise O[i]←⊥.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k ≥ 0.
Output: Array O[i] = HDk(p, t[i , . . . , i + m − 1]).

1 Initialize E and set k0 ← k;
2 for s ← 0 to ⌊log k⌋ do

a. for times ← 1 to Θ(ks + log n) do /* Sample and Match stage */

I. Sample subpattern p∗ with sample rate 1/ks ;
II. self-correcting-1-mismatch(p∗ , t, E);

b. Update E according to the mismatches found in the iterations;
c. ks+1 ← ks/2;

3 L[i]← total number of distinct mismatches found at alignment i ;

4 Check at each position i in t that all mismatches were found;

5 O[i]← L[i], if all mismatches were found, otherwise O[i]←⊥.

O(nk/ks) times that a previously discovered mismatch is found whp.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k ≥ 0.
Output: Array O[i] = HDk(p, t[i , . . . , i + m − 1]).

1 Initialize E and set k0 ← k;
2 for s ← 0 to ⌊log k⌋ do

a. for times ← 1 to Θ(ks + log n) do /* Sample and Match stage */

I. Sample subpattern p∗ with sample rate 1/ks ;
II. self-correcting-1-mismatch(p∗ , t, E);

b. Update E according to the mismatches found in the iterations;
c. ks+1 ← ks/2;

3 L[i]← total number of distinct mismatches found at alignment i ;

4 Check at each position i in t that all mismatches were found;

5 O[i]← L[i], if all mismatches were found, otherwise O[i]←⊥.

O(nk/ks) times that a previously discovered mismatch is found whp.

≤ ks/2 different mismatches will remain to be found whp.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don’t cares & few erros

The randomized Θ(n(k + log m log k) log n) algorithm

A faster recursive randomized algorithm Θ(n(k + log m log k) log n)

Input: Pattern p, text t, and an integer k ≥ 0.
Output: Array O[i] = HDk(p, t[i , . . . , i + m − 1]).

1 Initialize E and set k0 ← k;
2 for s ← 0 to ⌊log k⌋ do

a. for times ← 1 to Θ(ks + log n) do /* Sample and Match stage */

I. Sample subpattern p∗ with sample rate 1/ks ;
II. self-correcting-1-mismatch(p∗ , t, E);

b. Update E according to the mismatches found in the iterations;
c. ks+1 ← ks/2;

3 L[i]← total number of distinct mismatches found at alignment i ;

4 Check at each position i in t that all mismatches were found;

5 O[i]← L[i], if all mismatches were found, otherwise O[i]←⊥.

O(nk/ks) times that a previously discovered mismatch is found whp.

≤ ks/2 different mismatches will remain to be found whp.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don’t cares & few erros

Thanks for your attention.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don’t cares & few erros

Appendix

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don’t cares & few erros

Half different mismatches can be found whp in each stage

ks = k/2s

Lemma 4.5

After Θ(ks + log n) iterations of the sample and match stage, the locations
and values of ≤ ks/2 different mismatches will remain to be found whp.

Xi : 1 if a mismatch at the ith stage is found, 0 otherwise.

E (
∑ω

i=1 Xi) ≥ ω/e, for ω = Θ(ks + log n).

⋆ Sum of random variables → using Chernoff bounds.
≥ ω/2e mismatches can be found whp.

Found mismatches are entirely contained in any size-(ks/2) set with
prob. ≤ 2ω/2e

(

ks

ks/2

)

.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don’t cares & few erros

The number of times to handling previously found mismatches

Lemma 4.7

If the sample and match stage is run r = Θ(ks + log n) times, # times a
previously discovered mismatch is found is O(nk(ks + log n)/ks) whp.

Xi ,j : whether pi was replaced with φ in iteration j .

Pr(Xi ,j = 1) = 1/ks .

ai : # mismatches previously found at pi in all alignments.

X =
∑

i∈[m],j∈[r] aiXi ,j is O(nk(ks + log n)/ks) whp.

Using Chernoff bound once again (though a different formula).

⋆ The overall time complexity can be derived easily.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don’t cares & few erros

The Chernoff-Hoeffding bounds

Theorem 4.4

Assume that X1, . . . ,Xm are i.i.d. random variables, Xi ∈ {0, 1}. Let
µi = E (Xi). Then

Pr

(

m
∑

i=1

Xi ≤ (1− δ)mµ

)

< e−mµδ2/2.

Theorem 4.6

Let X1, . . . ,Xm be discrete, independent random variables s.t. E (Xi) = 0
and |Xi | ≤ 1 for all i . Let X =

∑m
i=1 Xi . Then

Pr(X ≥ λ
√

Var(X)) ≤ e−λ2/4.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don’t cares & few erros

In the proof of Theorem 4.9

Let us concentrate on the ith stage of the recursion. At this

stage, we need to solve the k/2i -mismatch problem, by running

the self-correcting 1-mismatch algorithm Θ(2i + log n) times. . . .

Shouldn’t it be Θ(k/2i + log n) times?

Though it doesn’t affect the result.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

