Pattern matching with don't cares and few errors

Raphaél Clifford, Klim Efremenko, Ely Porat, Amir Rothschild

Journal of Computer and System Sciences 76 (2010) 115-124.

Speaker: Joseph Chuang-Chieh Lin

Genomics Research Center, Academia Sinica
Taiwan

23 May 2014

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 1/16

Matching with don't cares & few erros

Introduction

Pattern matching

> : alphabet
t=titr...t, € Z": text
p=pip2...pm € X™: pattern

Exact pattern matching

Given: a pattern pe X", atext t € .
Goal: find all the places that p matches t.

@ O(n) time [Boyer & Moore 1977; Knuth, Morris & Pratt 1977]

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 2/ 16

Matching with don't cares & few erros
Introduction

Pattern matching

Pattern matching with don't cares

Given: a pattern p € X", a text t € X, where p, t may contain ‘¢'s.
Goal: find all the places that p matches t.

@ O(nlog m) [Cole& Hariharan 2002; Cliffordx2 & 2007].

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 3/16

Matching with don't cares & few erros
Introduction

Pattern matching (k-mismatch)

k-mismatch WITHOUT don't cares

Given: a pattern p € X", atext t € X™ and an integer k > 0.
Goal: find all the places that p matches t with < k mismatches.

@ O(ny/mlog m) time [Abrahamson 1987; Kosaraju 1987].
@ O(ny/klog k) [Amir, Lewenstein & Porat 2004].

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 4/ 16

Matching with don't cares & few erros
Introduction

Pattern matching (k-mismatch)

k-mismatch with don't cares

Given: a pattern p € X", atext t € ™ and an integer k > 0, where p, t
may contain ‘¢’s.

Goal: find all the places that p matches t with < k mismatches.

o O(nm'/3k/310g?/3 m) time [Clifford & Porat 2007].
@ '¢'s: permitted in either the pattern or text, but not both.
@ Extend Kosaraju & Abrahamson’s work with little extra work:
©(ny/mlog m) time.

@ No other previous efficient algorithm for this problem.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 5/ 16

Matching with don't cares & few erros
Introduction

Contribution of this paper

k-mismatch with don't cares

Given: a pattern p € X", atext t € £ and an integer k > 0, where p, t
may contain ‘¢’s.

Goal: find all the places that p matches t with < k mismatches.

This paper:
@ Two randomized ©(nk) time algorithms.

o A randomized ©(nk log mlog n) time algorithm.
o Further improved — ©(n(k + log mlog k) log n) time.

@ A deterministic ©(nk? log? m) time algorithm (group testing).

@ O(nk polylogm) time using k-selectors.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 6 /16

Matching with don't cares & few erros
Introduction

Contribution of this paper

k-mismatch with don't cares

Given: a pattern p € X", atext t € £ and an integer k > 0, where p, t
may contain ‘¢’s.

Goal: find all the places that p matches t with < k mismatches.

This paper:
@ Two randomized ©(nk) time algorithms.

o A randomized ©(nk log mlog n) time algorithm.
o Further improved — ©(n(k + log mlog k) log n) time.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 6 /16

Matching with don't cares & few erros
Preliminaries

k-mismatch & Hamming distance

@ HD(i): the Hamming distance between p and t[i,...,i + m—1].
* ¢ matches any symbol in X.

[HD(i) if HD(i) < k
HDk(I)_{ 1 otherwise.

) HDk(i) 75_]_
= There is a k-mismatch between p and t at alignment /.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7/ 16

Matching with don't cares & few erros
Preliminaries

k-mismatch & Hamming distance

@ HD(i): the Hamming distance between p and t[i,...,i + m—1].
* ¢ matches any symbol in X.

[HD(i) if HD(i) < k
HDk(I)_{ 1 otherwise.

) HDk(i) 75_]_
= There is a k-mismatch between p and t at alignment /.

@ For example,

it 12345678910
t: AACoPGASTTG
p: ApGGA

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7/ 16

Matching with don't cares & few erros
Preliminaries

k-mismatch & Hamming distance

@ HD(i): the Hamming distance between p and t[i,...,i + m—1].
* ¢ matches any symbol in X.

[HD(i) if HD(i) < k
HDW(i) = { 1 otherwise.

) HDk(i) 75_]_
= There is a k-mismatch between p and t at alignment /.

@ For example, HD>(1) =2,
ir12345678910

tt AACHGAGTTG
p:AdGGA

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
Preliminaries

k-mismatch & Hamming distance

@ HD(i): the Hamming distance between p and t[i,...,i + m—1].
* ¢ matches any symbol in X.

[HD(i) if HD(i) < k
HDk(I)_{ 1 otherwise.

) HDk(i) 75_]_
= There is a k-mismatch between p and t at alignment /.

@ For example, HD>(1) =2, HD»(5) =L.

i: 12345678910
tt AACPGAPTTG
p: A¢pGGA

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 7/ 16

Matching with don't cares & few erros
Preliminaries

Transformation from matching to coding...

@ The key observation by [Cliffordx2 2007]:

m
(b = titj—1)* = D _(pf = 2pjtisjon + £ 1)-
1 J=1

J:
D pPitha(p — tisj1)
=1

where

/_{ 0 ifp="¢ t’—{ 0 ifti="¢

1 otherwise: ' | 1 otherwise.

@ The sum equals 0 iff there is an exact match with don’t cares.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
Preliminaries

Transformation from matching to coding...

@ The key observation by [Cliffordx2 2007]:

m
(pj — tiyj1)* = Z(PJZ —2pjtiyj-1 + t"2+f—1)'
1 j=1

J:
> Pitha(p — tisj1)
=1

where

/_{ 0 ifp="¢ t’—{ 0 ifti="¢

1 otherwise: ' | 1 otherwise.

@ The sum equals 0 iff there is an exact match with don’t cares.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
Preliminaries

The cross-correlation

m
(t®p)]i] = ijt;+j_1, 0<i<n—m+1.
j=1

@ The above cross-correlation (convolution) can be calculated
in ©(nlog m) time.
o Fast Fourier Transform (FFT).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 9 /16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Starting by 1-mismatch...

The 1-mismatch problem
To determine where p and t have EXACTLY ONE mismatch.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 10 / 16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Starting by 1-mismatch...

The 1-mismatch problem
To determine where p and t have EXACTLY ONE mismatch.

@ Masking out a number of positions in p with ¢'s at random (each of
prob. (k —1)/k).
@ The resulting pattern: subpattern.
* It is likely that exactly one mismatch can be found.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 10 / 16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Algorithm 1-mismatch ©(nlog m)

Input: Pattern p, text t.
Output: B[i]: mismatch location in t for each aligment where HD(i) = 1.
© Compute Aofi] = 35;(pj — tirj—1)’Pjtls;1;
@ Compute Ai[i] = 37,(i +j — 1)(pj — tivj-1)*Pjti, ;1
© foreach i€ {0,1,...,n} do
a. if Ao[i] # 0 then
o B[] — Ai[i]/Ad[i];
b. else
@ BJ[i] < No_Mismatch;
@ foreach i€ {0,1,...,n} s.t. B[i] # No_Mismatch do

o if (p[B[i] — i + 1] — t[B]i]])? # Aoli] then
BJi] < More_Than_1 _Mismatch;

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros

23 May 2014 11 /16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Algorithm 1-mismatch ©(nlog m)

Input: Pattern p, text t.
Output: B[i]: mismatch location in t for each aligment where HD(i) = 1.
© Compute Aofi] = 35;(pj — tirj—1)’Pjtls;1;
@ Compute A[i] = 35;(i +j — 1)(pj — tinj—1)*Pitly; 1
© foreach i€ {0,1,...,n} do
a. if Ao[i] # 0 then

o Bli] « Au[i]/Ao[i]; — DECODING
b. else

@ BJ[i] < No_Mismatch;
@ for each i € {0,1,...,n} s.t. B[i] # No_Mismatch do

o if (p[B[i] — i + 1] — t[B]i]])? # Aoli] then
BJi] < More_Than_1 _Mismatch;

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros

23 May 2014 11 /16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

@ Running 1-mismatch for ©(k log n) times.

@ Each time we get the location of a mismatch (with the subpattern) if
one occurs.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

@ Running 1-mismatch for ©(k log n) times.

@ Each time we get the location of a mismatch (with the subpattern) if
one occurs.

@ Similar to the concept of solving the Coupon Collector’'s problem.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

@ Running 1-mismatch for ©(k log n) times.

@ Each time we get the location of a mismatch (with the subpattern) if
one occurs.

@ Similar to the concept of solving the Coupon Collector’'s problem.

® Yet, the last coupon is always the most difficult to get!

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

@ Running 1-mismatch for ©(k log n) times.

@ Each time we get the location of a mismatch (with the subpattern) if
one occurs.

@ Similar to the concept of solving the Coupon Collector’'s problem.

® Yet, the last coupon is always the most difficult to get!

Time complexity: ©(nk log nlog m).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

The overall strategy of the first randomized algorithm

@ Running 1-mismatch for ©(k log n) times.

@ Each time we get the location of a mismatch (with the subpattern) if
one occurs.

@ Similar to the concept of solving the Coupon Collector’'s problem.

® Yet, the last coupon is always the most difficult to get!

Time complexity: ©(nk log nlog m).

Correctness?

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Correctness of the first randomized algorithm

e For HD(i) < k:

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 /16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Correctness of the first randomized algorithm

e For HD(i) < k:

@ One fixed single mismatch is found in one iteration with prob.

iy k-1
= (%) k>

@ This one is not found after ©(k log n) iterations with prob.
<(1- 1/ek)e(k'°g ") < n~° for some constant c.

@ Applying union bound to derive the overall error prob.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 /16

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Correctness of the first randomized algorithm

e For HD(i) < k:
@ One fixed single mismatch is found in one iteration with prob.
k—1\k=1 1 1
> (%) i a@
@ This one is not found after ©(k log n) iterations with prob.
<(1- 1/ek)e(k'°g ") < n~° for some constant c.

@ Applying union bound to derive the overall error prob.

e For HD(i) > k:

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(nk log m log n) algorithm

Correctness of the first randomized algorithm

e For HD(i) < k:
@ One fixed single mismatch is found in one iteration with prob.
k—1\k=1 1 1
> (%) i a@
@ This one is not found after ©(k log n) iterations with prob.
<(1- 1/ek)e(k'°g ") < n~° for some constant c.

@ Applying union bound to derive the overall error prob.

e For HD(i) > k:
o Extra checking stage by computing

m

Cli]= Z(’ +j = 1)(pj — ti+j—1)Pjt/;_1, for each i.
=1

o “Correct” C[i] for each distinct 1-mismatch using the found Ag[i].
@ Keep track of found mismatches (using a binary search tree).

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 13 /16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

The clever ideas

@ Instead of finding ALL mismatches at once, find HALF of them!
o Efficient & with high prob. of success.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

The clever ideas

@ Instead of finding ALL mismatches at once, find HALF of them!
o Efficient & with high prob. of success.

@ Save the effort in dealing with previous found mismatches.
o Correct the sums in Ay and A; prior to their being used.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 14 / 16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

The clever ideas

@ Instead of finding ALL mismatches at once, find HALF of them!
o Efficient & with high prob. of success.

@ Save the effort in dealing with previous found mismatches.
o Correct the sums in Ay and A; prior to their being used.

@ The left mismatches to be found — increase the sampling rate!

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 14 / 16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k > 0.
Output: Array O[i] = HDk(p, t[i,...,i + m —1]).
© Initialize E and set kg < k;
© for s — 0 to |log k| do
a. for times «— 1 to ©(ks + log n) do /* Sample and Match stage */

I. Sample subpattern p* with sample rate 1/ks;
Il. self-correcting-1-mismatch(p”,t, E);

b. Update E according to the mismatches found in the iterations;
C. ksy1 ks/2;

© L[] « total number of distinct mismatches found at alignment /;
© Check at each position i in t that all mismatches were found;
© O[i] < L[i], if all mismatches were found, otherwise O[i] «.L.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k > 0.
Output: Array O[i] = HDk(p, t[i,...,i +m—1]).
O Initialize E and set kg < k;
@ for s — 0 to |log k| do
a. for times < 1 to ©(ks + log n) do /* Sample and Match stage */

|. Sample cithnattern n* with camnle rate 1/k_-
II. self O(nk/ks) times that a previously discovered mismatch is found whp.J

b. Update E accoraing to tne mismatcnes rouna in tne Ierations,

C. ki1 ks/2;
@ L[i] < total number of distinct mismatches found at alignment i;
© Check at each position / in t that all mismatches were found;
© OJi] < L[i], if all mismatches were found, otherwise O[i] < L.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

A faster recursive randomized algorithm

Input: Pattern p, text t, and an integer k > 0.
Output: Array O[i] = HDk(p, t[i,...,i + m —1]).
© Initialize E and set kg < k;
@ for s — 0 to |logk| do
a. for times < 1 to ©(ks + log n) do /* Sample and Match stage */

I. Sample sithnattern n* with camnle rate 1/k.-
II. self O(nk/ks) times that a previously discovered mismatch is found whp.J

b. Update E accoraing
C. k5+1 — ks/2,

© L[i] < total number of distinct mismatches found at alignment i;

< ks/2 different mismatches will remain to be found whp.J

© Check at each position 7 in t that all mismatches were found;

© O[i] < L[i], if all mismatches were found, otherwise O[i] «.L.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don't cares & few erros
The randomized ©(n(k + log mlog k) log n) algorithm

A faster recursive randomized algorithm ©(n(k + log mlog k) log n)

Input: Pattern p, text t, and an integer k > 0.
Output: Array O[i] = HDk(p, t[i,...,i + m —1]).
© Initialize E and set kg < k;
@ for s — 0 to |logk| do
a. for times < 1 to ©(ks + log n) do /* Sample and Match stage */

I. Sample sithnattern n* with camnle rate 1/k.-
II. self O(nk/ks) times that a previously discovered mismatch is found whp.J

b. Update E accoraing
C. k5+1 — ks/2,

© L[i] < total number of distinct mismatches found at alignment i;

< ks/2 different mismatches will remain to be found whp.J

© Check at each position 7 in t that all mismatches were found;

© O[i] < L[i], if all mismatches were found, otherwise O[i] «.L.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 15 / 16

Matching with don't cares & few erros

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros

Matching with don't cares & few erros

Appendix

. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don't cares & few erros

Half different mismatches can be found whp in each stage

o ks = k/2°

After ©(ks + log n) iterations of the sample and match stage, the locations
and values of < kg/2 different mismatches will remain to be found whp.

@ X;: 1if a mismatch at the ith stage is found, 0 otherwise.
o E(3°1, Xi) > w/e, for w = O(ks + log n).

* Sum of random variables — using Chernoff bounds.

@ > w/2e mismatches can be found whp.

@ Found mismatches are entirely contained in any size-(ks/2) set with

prob. < 2w/2e (kfj2)

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don't cares & few erros

The number of times to handling previously found mismatches

If the sample and match stage is run r = ©(ks + log n) times, # times a
previously discovered mismatch is found is O(nk(ks + log n)/ks) whp.

@ X;;: whether p; was replaced with ¢ in iteration j.
o Pr(Xij=1)=1/k,.
@ a;: # mismatches previously found at p; in all alignments.
© X =2 icimljer] @Xij is O(nk(ks + logn)/ks) whp.
@ Using Chernoff bound once again (though a different formula).

* The overall time complexity can be derived easily.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don't cares & few erros

The Chernoff-Hoeffding bounds

Theorem 4.4

Assume that Xi,..., X, are i.i.d. random variables, X; € {0,1}. Let
M = E(X,'). Then

Pr (z Xi<(1-— (5)mp) & T,

i=1

Theorem 4.6

Let Xi,..., Xy be discrete, independent random variables s.t. E(X;) =0
and |[Xj| <1 foralli. Let X =3 ", X;. Then

Pr(X > Ay/Var(X)) < e /4.

A\,

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

Matching with don't cares & few erros

In the proof of Theorem 4.9

Let us concentrate on the ith stage of the recursion. At this
stage, we need to solve the k/2'-mismatch problem, by running
the self-correcting 1-mismatch algorithm ©(2' + log n) times. ...

@ Shouldn't it be ©(k/2" + log n) times?
o Though it doesn't affect the result.

Joseph C.-C. Lin (Academia Sinica, TW) Matching with don’t cares & few erros 23 May 2014 16 / 16

