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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the monograph by Prof. Francesco Orabona:
https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 2 / 77

https://lucatrevisan.github.io/40391/index.html
https://ieor8100.github.io/mab/
https://arxiv.org/abs/1912.13213


No-Regret Online Learning

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 3 / 77



No-Regret Online Learning

Introduction

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 4 / 77



No-Regret Online Learning

Introduction

Online Convex Optimization

Goal: Design an algorithm such that

At discrete time steps t = 1, 2, . . ., output xt ∈ K, for each t.

K: a convex set of feasible solutions.

After xt is generated, a convex cost function ft : K 7→ R is revealed.

Then the algorithm suffers the loss ft(xt).

And we want to minimize the cost.
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Introduction

The difficulty

The cost functions ft is unknown before t.

f1, f2, . . . , ft , . . . are not necessarily fixed.

Can be generated dynamically by an adversary.
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Introduction

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T ). ⇒ No-Regret in average when
T →∞.

For example, regretT/T =
√
T
T → 0 when T →∞.
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Introduction

Prerequisites (1/5)

Diameter

Let K ⊆ Rd be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of K:

∀x , y ∈ K, ‖x − y‖ ≤ D.

Convex set

A set K is convex if for any x , y ∈ K, we have

∀α ∈ [0, 1], αx + (1− α)y ∈ K.
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Introduction

Prerequisites (2/5)

Convex function

A function f : K 7→ R is convex if for any x , y ∈ K,

∀α ∈ [0, 1], f ((1− α)x + αy) ≤ (1− α)f (x) + αf (y).

Equivalently, if f is differentiable (i.e., ∇f (x) exists for all x ∈ K), then f
is convex if and only if for all x , y ∈ K,

f (y) ≥ f (x) +∇f (x)>(y − x).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 9 / 77



No-Regret Online Learning

Introduction

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that f : K 7→ R is a convex function and let x ∈ int dom(f ). If f
is differentiable at x , then for all y ∈ Rd ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉.

Subgradient

For a function f : Rd 7→ R, g ∈ Rd is a subgradient of f at x ∈ Rd if for
all y ∈ Rd ,

f (y) ≥ f (x) + 〈g , y − x〉.
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Introduction

Prerequisites (4/5)

Projection

The closest point of y in a convex set K in terms of norm ‖·‖:

ΠK(y) := arg min
x∈K
‖x − y‖.

Pythagoras Theorem

Let K ⊆ Rd be a convex set, y ∈ Rd and x = ΠK(y). Then for any
z ∈ K, we have

‖y − z‖ ≥ ‖x − z‖.
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Introduction

Prerequisites (5/5)

Minimum vs. zero gradient

∇f (x) = 0 iff x ∈ arg min
x∈Rd
{f (x)}.

First-order optimality condition (FOO)

Let K ⊆ Rd be a convex set, x∗ ∈ arg minx∈K f (x). Then for any y ∈ K
we have

∇f (x∗)>(y − x∗) ≥ 0.
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Introduction

Convex losses to linear losses

We have the convex loss function ft(xt) at time t.

Say we have subgradients gt for each xt .
f (xt)− f (u) ≤ 〈g , xt − u〉 for each u ∈ Rd .

Hence, if we define f̃t(x) := 〈gt , x〉, then for any u ∈ Rd ,

T∑
t=1

ft(xt)− f (u) ≤
T∑
t=1

〈g , xt − u〉 =
T∑
t=1

f̃t(xt)− f̃ (u).

OCO → OLO.
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Gradient Descent for Online Convex Optimization (GD)

Online Gradient Descent (GD)

1 Input: convex set K, T , x1 ∈ K, step size {ηt}.
2 for t ← 1 to T do:

1 Play xt and observe cost ft(xt).
2 Update and Project:

yt+1 = xt − ηt∇ft(xt)
xt+1 = ΠK(yt+1)

3 end for
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Gradient Descent for Online Convex Optimization (GD)

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size {ηt = D
G
√
t
, t ∈ [T ]} guarantees the

following for all T ≥ 1:

regretT =
T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x∗) ≤
3

2
GD
√
T .
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (1/3)

Let x∗ ∈ arg minx∈K
∑T

t=1 ft(x).

Since ft is convex, we have

ft(xt)− ft(x∗) ≤ (∇ft(xt))>(xt − x∗).

By the updating rule for xt+1 and the Pythagorean theorem, we have

‖xt+1−x∗‖2 = ‖ΠK(xt−ηt∇ft(xt))−x∗‖2 ≤ ‖xt−ηt∇ft(xt)−x∗‖2.
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (2/3)

Hence

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t ‖∇ft(xt)‖2 − 2ηt(∇ft(xt))>(xt − x∗)

2(∇ft(xt))>(xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2.

Summing above inequality from t = 1 to T and setting ηt = D
G
√
t

and
1
η0

:= 0 we have :
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (3/3)

2

(
T∑
t=1

ft(xt)− ft(x∗)

)
≤ 2

T∑
t=1

(∇ft(xt))>(xt − x∗)

≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ G 2

T∑
t=1

ηt

≤
T∑
t=1

‖xt − x∗‖2

(
1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2
T∑
t=1

(
1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2 1

ηT
+ G 2

T∑
t=1

ηt

≤ 3DG
√
T .
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Gradient Descent for Online Convex Optimization (GD)

The Lower Bound

Theorem B

Let K = {x ∈ Rd : ‖x‖∞ ≤ r} be a convex subset of Rd . Let A be any
algorithm for Online Convex Optimization on K. Then for any T ≥ 1,
there exists a sequence of vectors g1, . . . , gT with ‖gt‖2 ≤ L and u ∈ K
such that the regret of A satisfies

regretT (u) =
T∑
t=1

〈gt , xt〉 −
T∑
t=1

〈gt ,u〉 ≥
√

2LD
√
T

4
.

The diameter D of K is at most
√∑d

i=1(2r)2 ≤ 2r
√
d .

‖x‖∞ ≤ r ⇔ |x(i)| ≤ r for each i ∈ [n].
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Multiplicative Weight Update (MWU)

Listen to the experts?

Let’s say we have n experts.

We want to make best use of the advices coming from the experts.

The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

xt = (xt(1), xt(2), . . . , xt(n)), where xt(i) ∈ [0, 1] and
∑

i xt(i) = 1.

The loss of following expert i at time t: `t(i).

The expected loss of the algorithm at time t:

〈xt , `t〉 =
n∑

i=1

xt(i)`t(i).
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Multiplicative Weight Update (MWU)

MWU in Portfolio Rebalancing
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Multiplicative Weight Update (MWU)

The regret of listening to the experts...

regret∗T =
T∑
t=1

〈xt , `t〉 −min
i

T∑
t=1

`t(i).

The set of feasible solutions K = ∆ ⊆ Rn, probability distributions
over {1, . . . , n}.
ft(x) =

∑
i x(i)`t(i): linear function.

? Assume that |`t(i)| ≤ 1 for all t and i .
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Multiplicative Weight Update (MWU)

The MWU Algorithm

The spirit: “Hedge”.

Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

Maintain a vector of weights wt = (wt(1), . . . ,wt(n)) where
w1 := (1, 1, . . . , 1).

Update the weights at time t by

wt(i) := wt−1(i) · e−β`t−1(i).

xt :=
wt(i)∑n
j=1 wt(j)

.

β: a parameter which will be optimized later.

The weight of expert i at time t: e−β
∑t−1

k=1 `k (i).
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Multiplicative Weight Update (MWU)

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that |`t(i)| ≤ 1 for all t and i . For β ∈ (0, 1/2), the regret of
MWU after T steps is bounded as

regret∗T ≤ β
T∑
t=1

n∑
i=1

xt(i)`2
t (i) +

ln n

β
≤ βT +

ln n

β
.

In particular, if T > 4 ln n, then

regret∗T ≤ 2
√
T ln n

by setting β =

√
ln n

T
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 26 / 77



No-Regret Online Learning

Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt :=
∑n

i=1 wt(i).

The idea:

If the algorithm incurs a large loss after T steps, then WT+1 is small.

And, if WT+1 is small, then even the best expert performs quite badly.

Let L∗ := mini
∑T

t=1 `t(i).
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Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 1 (WT+1 is SMALL ⇒ L∗ is LARGE)

WT+1 ≥ e−βL
∗
.

Proof.

Let j = arg min L∗ = arg mini
∑T

t=1 `t(i).

WT+1 =
n∑

i=1

e−β
∑T

t=1 `t(i) ≥ e−β
∑T

t=1 `t(j) = e−βL
∗
.
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Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt

=
n∑

i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.
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Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt
=

n∑
i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.
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Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77



No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77



No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77



No-Regret Online Learning

Follow The Leader (FTL)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)
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FTRL with 2-norm regularizer
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Greedy Algorithms
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Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1

2 3 4 5 . . .

xt : (0.5, 0.5)

(1, 0) (0, 1) (1, 0) (0, 1) . . .

`t : (0, 0.5)

(1, 0) (0, 1) (1, 0) (0, 1) . . .

ft(xt): 0.25

1 1 1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0)

(0, 1) (1, 0) (0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).
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Follow The Leader (FTL)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f1, . . . , ft and any number of time steps
T , the FTL algorithm satisfies

regretT ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

Implication: If ft(·) is Lipschitz w.r.t. to some distance function ‖·‖,
then xt and xt+1 are close ⇒ ‖ft(xt)− ft(xt+1)‖ can’t be too large.

Modify FTL: xt ’s shouldn’t change too much from step by step.
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).
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Follow The Regularized Leader (FTRL)
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Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

You might have already been using regularization for quite a long
time.
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Follow The Regularized Leader (FTRL)

The regularizer

At each step, we compute the solution

xt := arg min
x∈K

(
R(x) +

t−1∑
k=1

fk(x)

)
.

This is called Follow the Regularized Leader (FTRL).

In short,

FTRL = FTL + Regularizer.
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Follow The Regularized Leader (FTRL)

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

every sequence of cost function {ft(·)}t≥1 and

every regularizer function R(·),

for every x , the regret with respect to x after T steps of the FTRL
algorithm is bounded as

regretT (x) ≤

(
T∑
t=1

ft(xt)− ft(xt+1)

)
+ R(x)− R(x1),

where regretT (x) :=
∑T

t=1(ft(xt)− ft(x)).
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Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTL at t + 1
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The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x))

≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTL at t + 1
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MWU Revisited

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy
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MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.
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Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative entropy regularization

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

The constraint x ∈ ∆ ⇒
∑

i xi = 1.

So we use Lagrange multiplier to solve

L =

(
t−1∑
k=1

〈`k , x〉

)
+ c ·

(
n∑

i=1

x(i) ln x(i)

)
+ λ · (〈x , 1〉 − 1).

The partial derivative ∂L
∂x(i) :(

t−1∑
k=1

`k(i)

)
+ c · (1 + ln xi ) + λ
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MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

`k(i)

)

Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 `k(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 `k(j)

) .
Exactly the solution of MWU if we take c = 1/β!
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Outline

1 Introduction
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

L2 Regularization

Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

Consider also linear cost functions but K = Rn first.

What kind of problem we might encounter?

The offline optimum could be −∞.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c‖x‖2.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.
convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77



No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regret of FTRL with 2-norm regularization

First, we have

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 =

〈
`t ,

1

2c
`t

〉
=

1

2c
‖`t‖2.

So, with respect to a solution x ,

regretT (x) ≤ R(x)− R(x1) +
T∑
t=1

ft(xt)− ft(xt+1)

= c‖x‖2 +
1

2c

T∑
t=1

‖`t‖2.

Suppose that ‖`t‖ ≤ L for each t and ‖x‖ ≤ D. Then by optimizing

c =
√

T
2D2L2 , we have

regretT (x) ≤ DL
√

2T .
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FTRL with 2-norm regularizer

Dealing with constraints

Let’s deal with the constraint that K is an arbitrary convex set
instead of Rn.

Using the same regularizer, we have our FTRL which gives

x1 = arg min
x∈K

c‖x‖2,

xt+1 = arg min
x∈K

c‖x‖2 +
t∑

k=1

〈`t , x〉.

The idea: First solve the unconstrained optimization and then
project the solution on K .
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FTRL with 2-norm regularizer

Unconstrained optimization + projection

yt+1 = arg min
y∈Rn

c‖y‖2 +
t∑

k=1

〈`t , y〉.

x ′t+1 = ΠK(yt+1) = arg min
x∈K
‖x − yt+1‖.

Claim: x ′t+1 = xt+1.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Proof of the claim: x ′t+1 = xt+1

First, we already have that yt+1 = − 1
2c

∑t
k=1 `t .

Then,

x ′t+1 = arg min
x∈K
‖x − yt+1‖ = arg min

x∈K
‖x − yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉+ ‖yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉

= arg min
x∈K
‖x‖2 − 2

〈
x ,− 1

2c

t∑
k=1

`t

〉

= arg min
x∈K

c‖x‖2 +

〈
x ,

t∑
k=1

`t

〉
= xt+1.
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FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 ≤ ‖`t‖ · ‖xt − xt+1‖

≤ ‖`t‖ · ‖yt − yt+1‖.
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≤ ‖`t‖ · ‖yt − yt+1‖

≤ 1

2c
‖`t‖2.

So, assume maxx∈K‖x‖ ≤ D and ‖`t‖ ≤ L for all t, we have

regretT ≤ c‖x∗‖2 − c‖x1‖2 +
1

2c

T∑
t=1

‖`t‖2

≤ cD2 +
1

2c
TL2

≤ DL
√

2T .
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Multi-Armed Bandit (MAB)

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research
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Multi-Armed Bandit (MAB)

The setting

We can see N arms as N experts.

Arms give are independent.

We can only pull an arm and observe the reward of it.

It’s NOT possible to observe the reward of pulling the other arms...

Each arm i has its own reward ri ∈ [0, 1].

µi : the mean of reward of arm i

µ̂i : the empirical mean of reward of arm i

µ∗: the mean of reward of the BEST arm.
∆i : µ∗ − µi .
Index of the best arm: I ∗ := arg maxi∈{1,...,N}µi .
The associated highest expected reward: µ∗ = µI∗ .
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µi : the mean of reward of arm i

µ̂i : the empirical mean of reward of arm i

µ∗: the mean of reward of the BEST arm.
∆i : µ∗ − µi .
Index of the best arm: I ∗ := arg maxi∈{1,...,N}µi .
The associated highest expected reward: µ∗ = µI∗ .
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Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt )

=
N∑
i=1

∑
t:It=i

(µ∗ − µi )

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .
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Multi-Armed Bandit (MAB)

Greedy Algorithms

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer
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Multi-Armed Bandit (MAB)

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := arg maxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .
If this is the case, the algorithm will keep pulling arm 2 and will never
change!
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Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.
Hence the (expected) regret will be at least εT

N

∑
i :µi<µ∗ ∆i .
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

The upper confidence bound algorithm (UCB)

At each time step (round), we simply pull the arm with the highest
“empirical reward estimate + high-confidence interval size”.

The empirical reward estimate of arm i at time t:

µ̂i ,t =

∑t
s=1 Is,i · rs
ni ,t

.

ni ,t : the number of times arm i is played.
Is,i : 1 if the choice of arm is i at time s and 0 otherwise.

Reward estimate + confidence interval:

UCBi ,t := µ̂i ,t +

√
ln t

ni ,t
.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that T ≥ N.

1 For t = 1, . . . ,N, play arm t.

2 For t = N + 1, . . . ,T , play arm

At = arg maxi∈{1,...,N}UCBi ,t−1.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

(after more time steps...)
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

|µ̂i ,t − µi | <

√
ln t

ni ,t

with probability ≥ 1− 2/t2.

Immediately, we know that

with prob. ≥ 1− 2/t2, UCBi ,t := µ̂i ,t +
√

ln t
ni,t

> µi .

with prob. ≥ 1− 2/t2, µ̂i ,t < µi + ∆i
2 when ni ,t ≥ 4 ln t

∆2
i

.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples
x1, . . . , xn ∈ [0, 1] with E[xi ] = µ, we have

Pr

[∣∣∣∣∑n
i=1 xi
n

− µ
∣∣∣∣ ≥ δ] ≤ 2e−2nδ2

.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., µi < µ∗) has been played
for ni ,t ≥ 4 ln t

∆2
i

times, then UCBi ,t < UCBI∗,t with probability ≥ 1− 4/t2.

Therefore, for any t,

Pr

[
It+1,i = 1

∣∣∣∣ ni ,t ≥ 4 ln t

∆2
i

]
≤ 4

t2
.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 3

With probability < 2/t2 + 2/t2 (union bound) that

UCBi ,t = µ̂i ,t +

√
ln t

ni ,t
≤ µ̂i ,t +

∆i

2

<

(
µi +

∆i

2

)
+

∆i

2

= µ∗ < UCBi∗,t

does NOT hold.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm i with µi < µ∗,

E[ni ,T ] ≤ 4 lnT

∆2
i

+ 8.

E[ni,T ] = 1 + E

[
T∑

t=N

1 {It+1,i = 1}

]

= 1 + E

[
T∑

t=N

1

{
It+1,i = 1, ni,t <

4 ln t

∆2
i

}]

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 71 / 77



No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

E[ni,T ] ≤ 4 lnT

∆2
i

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1

∣∣∣∣ ni,t ≥ 4 ln t

∆2
i

]
· Pr

[
ni,t ≥

4 ln t

∆2
i

]

≤ 4 lnT

∆2
i

+
T∑

t=N

4

t2

≤ 4 lnT

∆2
i

+ 8

(since
∞∑
t=1

1/t2 = π2/6).
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Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)
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∆2
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+ E
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1

{
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i
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∆2
i
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[
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i
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· Pr

[
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4 ln t
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i
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i
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4

t2
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i
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all T ≥ N, the (expected) regret by the UCB algorithm in round T is

E[regretT ] ≤ 5
√
NT lnT + 8N.
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Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Theorem 4

Divide the arms into two groups:

1 Group ONE (G1): “almost optimal arms” with ∆i <
√

N
T lnT .

2 Group TWO (G2): “bad” arms with ∆i ≥
√

N
T lnT .

∑
i∈G1

ni,T∆i ≤

(√
N

T
lnT

)∑
i∈G1

ni,T ≤ T ·
√

N

T
lnT =

√
NT lnT .

By Lemma 4,

∑
i∈G2

E[ni,T ]∆i ≤
∑
i∈G2

4 lnT

∆i
+ 8∆i ≤

∑
i∈G2

4

√
T lnT

N
+ 8

≤ 4
√
NT lnT + 8N.
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Multi-Armed Bandit (MAB)

Time-Decay ε-Greedy
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Multi-Armed Bandit (MAB)

Time-Decay ε-Greedy

Time Decaying ε-Greedy Algorithm

What if the horizon T is known in advance when we run ε-Greedy?

Time-Decaying ε-Greedy Algorithm

For all t = 1, 2, . . . ,N, set ε := N1/3/T 1/3:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

Theorem

Time-Decaying ε-Greedy Algorithm gets roughly O(N1/3T 2/3) regret.
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Thank you.
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