
No-Regret Online Learning

No-Regret Online Learning Algorithms

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering,
National Taiwan Ocean University

Invited Talk @NUU DEE

5th March 2025

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 1 / 77

No-Regret Online Learning

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the monograph by Prof. Francesco Orabona:
https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 2 / 77

https://lucatrevisan.github.io/40391/index.html
https://ieor8100.github.io/mab/
https://arxiv.org/abs/1912.13213

No-Regret Online Learning

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 3 / 77

No-Regret Online Learning

Introduction

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 4 / 77

No-Regret Online Learning

Introduction

Online Convex Optimization

Goal: Design an algorithm such that

At discrete time steps t = 1, 2, . . ., output xt ∈ K, for each t.

K: a convex set of feasible solutions.

After xt is generated, a convex cost function ft : K 7→ R is revealed.

Then the algorithm suffers the loss ft(xt).

And we want to minimize the cost.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 5 / 77

No-Regret Online Learning

Introduction

The difficulty

The cost functions ft is unknown before t.

f1, f2, . . . , ft , . . . are not necessarily fixed.

Can be generated dynamically by an adversary.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 6 / 77

No-Regret Online Learning

Introduction

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T). ⇒ No-Regret in average when
T →∞.

For example, regretT/T =
√
T
T → 0 when T →∞.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 7 / 77

No-Regret Online Learning

Introduction

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T).

⇒ No-Regret in average when
T →∞.

For example, regretT/T =
√
T
T → 0 when T →∞.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 7 / 77

No-Regret Online Learning

Introduction

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T). ⇒ No-Regret in average when
T →∞.

For example, regretT/T =
√
T
T → 0 when T →∞.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 7 / 77

No-Regret Online Learning

Introduction

Prerequisites (1/5)

Diameter

Let K ⊆ Rd be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of K:

∀x , y ∈ K, ‖x − y‖ ≤ D.

Convex set

A set K is convex if for any x , y ∈ K, we have

∀α ∈ [0, 1], αx + (1− α)y ∈ K.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 8 / 77

No-Regret Online Learning

Introduction

Prerequisites (2/5)

Convex function

A function f : K 7→ R is convex if for any x , y ∈ K,

∀α ∈ [0, 1], f ((1− α)x + αy) ≤ (1− α)f (x) + αf (y).

Equivalently, if f is differentiable (i.e., ∇f (x) exists for all x ∈ K), then f
is convex if and only if for all x , y ∈ K,

f (y) ≥ f (x) +∇f (x)>(y − x).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 9 / 77

No-Regret Online Learning

Introduction

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that f : K 7→ R is a convex function and let x ∈ int dom(f). If f
is differentiable at x , then for all y ∈ Rd ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉.

Subgradient

For a function f : Rd 7→ R, g ∈ Rd is a subgradient of f at x ∈ Rd if for
all y ∈ Rd ,

f (y) ≥ f (x) + 〈g , y − x〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 10 / 77

https://en.wikipedia.org/wiki/Subderivative

No-Regret Online Learning

Introduction

Prerequisites (4/5)

Projection

The closest point of y in a convex set K in terms of norm ‖·‖:

ΠK(y) := arg min
x∈K
‖x − y‖.

Pythagoras Theorem

Let K ⊆ Rd be a convex set, y ∈ Rd and x = ΠK(y). Then for any
z ∈ K, we have

‖y − z‖ ≥ ‖x − z‖.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 11 / 77

No-Regret Online Learning

Introduction

Prerequisites (5/5)

Minimum vs. zero gradient

∇f (x) = 0 iff x ∈ arg min
x∈Rd
{f (x)}.

First-order optimality condition (FOO)

Let K ⊆ Rd be a convex set, x∗ ∈ arg minx∈K f (x). Then for any y ∈ K
we have

∇f (x∗)>(y − x∗) ≥ 0.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 12 / 77

No-Regret Online Learning

Introduction

Convex losses to linear losses

We have the convex loss function ft(xt) at time t.

Say we have subgradients gt for each xt .
f (xt)− f (u) ≤ 〈g , xt − u〉 for each u ∈ Rd .

Hence, if we define f̃t(x) := 〈gt , x〉, then for any u ∈ Rd ,

T∑
t=1

ft(xt)− f (u) ≤
T∑
t=1

〈g , xt − u〉 =
T∑
t=1

f̃t(xt)− f̃ (u).

OCO → OLO.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 13 / 77

No-Regret Online Learning

Introduction

Convex losses to linear losses

We have the convex loss function ft(xt) at time t.

Say we have subgradients gt for each xt .
f (xt)− f (u) ≤ 〈g , xt − u〉 for each u ∈ Rd .

Hence, if we define f̃t(x) := 〈gt , x〉, then for any u ∈ Rd ,

T∑
t=1

ft(xt)− f (u) ≤
T∑
t=1

〈g , xt − u〉 =
T∑
t=1

f̃t(xt)− f̃ (u).

OCO → OLO.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 13 / 77

No-Regret Online Learning

Introduction

Convex losses to linear losses

We have the convex loss function ft(xt) at time t.

Say we have subgradients gt for each xt .
f (xt)− f (u) ≤ 〈g , xt − u〉 for each u ∈ Rd .

Hence, if we define f̃t(x) := 〈gt , x〉, then for any u ∈ Rd ,

T∑
t=1

ft(xt)− f (u) ≤
T∑
t=1

〈g , xt − u〉 =
T∑
t=1

f̃t(xt)− f̃ (u).

OCO → OLO.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 13 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 14 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

Online Gradient Descent (GD)

1 Input: convex set K, T , x1 ∈ K, step size {ηt}.
2 for t ← 1 to T do:

1 Play xt and observe cost ft(xt).
2 Update and Project:

yt+1 = xt − ηt∇ft(xt)
xt+1 = ΠK(yt+1)

3 end for

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 15 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size {ηt = D
G
√
t
, t ∈ [T]} guarantees the

following for all T ≥ 1:

regretT =
T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x∗) ≤
3

2
GD
√
T .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 16 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (1/3)

Let x∗ ∈ arg minx∈K
∑T

t=1 ft(x).

Since ft is convex, we have

ft(xt)− ft(x∗) ≤ (∇ft(xt))>(xt − x∗).

By the updating rule for xt+1 and the Pythagorean theorem, we have

‖xt+1−x∗‖2 = ‖ΠK(xt−ηt∇ft(xt))−x∗‖2 ≤ ‖xt−ηt∇ft(xt)−x∗‖2.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 17 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (2/3)

Hence

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t ‖∇ft(xt)‖2 − 2ηt(∇ft(xt))>(xt − x∗)

2(∇ft(xt))>(xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2.

Summing above inequality from t = 1 to T and setting ηt = D
G
√
t

and
1
η0

:= 0 we have :

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 18 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (3/3)

2

(
T∑
t=1

ft(xt)− ft(x∗)

)
≤ 2

T∑
t=1

(∇ft(xt))>(xt − x∗)

≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ G 2

T∑
t=1

ηt

≤
T∑
t=1

‖xt − x∗‖2

(
1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2
T∑
t=1

(
1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2 1

ηT
+ G 2

T∑
t=1

ηt

≤ 3DG
√
T .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 19 / 77

No-Regret Online Learning

Gradient Descent for Online Convex Optimization (GD)

The Lower Bound

Theorem B

Let K = {x ∈ Rd : ‖x‖∞ ≤ r} be a convex subset of Rd . Let A be any
algorithm for Online Convex Optimization on K. Then for any T ≥ 1,
there exists a sequence of vectors g1, . . . , gT with ‖gt‖2 ≤ L and u ∈ K
such that the regret of A satisfies

regretT (u) =
T∑
t=1

〈gt , xt〉 −
T∑
t=1

〈gt ,u〉 ≥
√

2LD
√
T

4
.

The diameter D of K is at most
√∑d

i=1(2r)2 ≤ 2r
√
d .

‖x‖∞ ≤ r ⇔ |x(i)| ≤ r for each i ∈ [n].

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 20 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 21 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Listen to the experts?

Let’s say we have n experts.

We want to make best use of the advices coming from the experts.

The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

xt = (xt(1), xt(2), . . . , xt(n)), where xt(i) ∈ [0, 1] and
∑

i xt(i) = 1.

The loss of following expert i at time t: `t(i).

The expected loss of the algorithm at time t:

〈xt , `t〉 =
n∑

i=1

xt(i)`t(i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 22 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Listen to the experts?

Let’s say we have n experts.

We want to make best use of the advices coming from the experts.

The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

xt = (xt(1), xt(2), . . . , xt(n)), where xt(i) ∈ [0, 1] and
∑

i xt(i) = 1.

The loss of following expert i at time t: `t(i).

The expected loss of the algorithm at time t:

〈xt , `t〉 =
n∑

i=1

xt(i)`t(i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 22 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Listen to the experts?

Let’s say we have n experts.

We want to make best use of the advices coming from the experts.

The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

xt = (xt(1), xt(2), . . . , xt(n)), where xt(i) ∈ [0, 1] and
∑

i xt(i) = 1.

The loss of following expert i at time t: `t(i).

The expected loss of the algorithm at time t:

〈xt , `t〉 =
n∑

i=1

xt(i)`t(i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 22 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

MWU in Portfolio Rebalancing

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 23 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The regret of listening to the experts...

regret∗T =
T∑
t=1

〈xt , `t〉 −min
i

T∑
t=1

`t(i).

The set of feasible solutions K = ∆ ⊆ Rn, probability distributions
over {1, . . . , n}.
ft(x) =

∑
i x(i)`t(i): linear function.

? Assume that |`t(i)| ≤ 1 for all t and i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 24 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The MWU Algorithm

The spirit: “Hedge”.

Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

Maintain a vector of weights wt = (wt(1), . . . ,wt(n)) where
w1 := (1, 1, . . . , 1).

Update the weights at time t by

wt(i) := wt−1(i) · e−β`t−1(i).

xt :=
wt(i)∑n
j=1 wt(j)

.

β: a parameter which will be optimized later.

The weight of expert i at time t: e−β
∑t−1

k=1 `k (i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 25 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The MWU Algorithm

The spirit: “Hedge”.

Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

Maintain a vector of weights wt = (wt(1), . . . ,wt(n)) where
w1 := (1, 1, . . . , 1).

Update the weights at time t by

wt(i) := wt−1(i) · e−β`t−1(i).

xt :=
wt(i)∑n
j=1 wt(j)

.

β: a parameter which will be optimized later.

The weight of expert i at time t: e−β
∑t−1

k=1 `k (i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 25 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The MWU Algorithm

The spirit: “Hedge”.

Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

Maintain a vector of weights wt = (wt(1), . . . ,wt(n)) where
w1 := (1, 1, . . . , 1).

Update the weights at time t by

wt(i) := wt−1(i) · e−β`t−1(i).

xt :=
wt(i)∑n
j=1 wt(j)

.

β: a parameter which will be optimized later.

The weight of expert i at time t: e−β
∑t−1

k=1 `k (i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 25 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that |`t(i)| ≤ 1 for all t and i . For β ∈ (0, 1/2), the regret of
MWU after T steps is bounded as

regret∗T ≤ β
T∑
t=1

n∑
i=1

xt(i)`2
t (i) +

ln n

β
≤ βT +

ln n

β
.

In particular, if T > 4 ln n, then

regret∗T ≤ 2
√
T ln n

by setting β =

√
ln n

T
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 26 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt :=
∑n

i=1 wt(i).

The idea:

If the algorithm incurs a large loss after T steps, then WT+1 is small.

And, if WT+1 is small, then even the best expert performs quite badly.

Let L∗ := mini
∑T

t=1 `t(i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 27 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt :=
∑n

i=1 wt(i).

The idea:

If the algorithm incurs a large loss after T steps, then WT+1 is small.

And, if WT+1 is small, then even the best expert performs quite badly.

Let L∗ := mini
∑T

t=1 `t(i).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 27 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 1 (WT+1 is SMALL ⇒ L∗ is LARGE)

WT+1 ≥ e−βL
∗
.

Proof.

Let j = arg min L∗ = arg mini
∑T

t=1 `t(i).

WT+1 =
n∑

i=1

e−β
∑T

t=1 `t(i) ≥ e−β
∑T

t=1 `t(j) = e−βL
∗
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 28 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt

=
n∑

i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 29 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt
=

n∑
i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 29 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt
=

n∑
i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉

≤ e−β〈xt ,`t〉+β
2〈xt ,`2

t 〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 29 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

(1− β〈xt , `t〉+ β2〈xt , `2
t 〉),

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt
=

n∑
i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 29 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss ⇒ WT+1 is SMALL)

WT+1 ≤ n
n∏

t=1

e−β〈xt ,`t〉+β
2〈xt ,`2

t 〉.

Proof.

Note: W1 = n.

Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt
=

n∑
i=1

wt(i) · e−β`t(i)

Wt
=

n∑
i=1

xt(i) · e−β`t(i)

≤
n∑

i=1

xt(i) · (1− β`t(i) + β2`2
t (i))

= 1− β〈xt , `t〉+ β2〈xt , `2
t 〉 ≤ e−β〈xt ,`t〉+β

2〈xt ,`2
t 〉.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 30 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77

No-Regret Online Learning

Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

lnWT+1 ≤ ln n −

(
T∑
i=1

β〈`t , xt〉

)
+

(
T∑
i=1

β2〈`2
t , xt〉

)

and lnWT+1 ≥ −βL∗.

Thus, (
T∑
t=1

〈`t , xt〉

)
− L∗ ≤ ln n

β
+ β

T∑
t=1

〈`2
t , xt〉.

Take β =

√
ln n

T
, we have regretT ≤ 2

√
T ln n.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 31 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 32 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Why so complicated?

How about just following the one with best performance?

Follow The Leader (FTL) Algorithm.

First, we assume to make no assumptions on K and {ft : L 7→ R}.
At time t, we are given previous cost functions f1, . . . , ft−1, and then
give the solution

xt := arg min
x∈K

t−1∑
k=1

fk(x).

That is, the best solution for the previous t − 1 steps.

It seems reasonable and makes sense, doesn’t it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1

2 3 4 5 . . .

xt : (0.5, 0.5)

(1, 0) (0, 1) (1, 0) (0, 1) . . .

`t : (0, 0.5)

(1, 0) (0, 1) (1, 0) (0, 1) . . .

ft(xt): 0.25

1 1 1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0)

(0, 1) (1, 0) (0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2

3 4 5 . . .

xt : (0.5, 0.5) (1, 0)

(0, 1) (1, 0) (0, 1) . . .

`t : (0, 0.5) (1, 0)

(0, 1) (1, 0) (0, 1) . . .

ft(xt): 0.25 1

1 1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1)

(1, 0) (0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3

4 5 . . .

xt : (0.5, 0.5) (1, 0) (0, 1)

(1, 0) (0, 1) . . .

`t : (0, 0.5) (1, 0) (0, 1)

(1, 0) (0, 1) . . .

ft(xt): 0.25 1 1

1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1) (1, 0)

(0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4

5 . . .

xt : (0.5, 0.5) (1, 0) (0, 1) (1, 0)

(0, 1) . . .

`t : (0, 0.5) (1, 0) (0, 1) (1, 0)

(0, 1) . . .

ft(xt): 0.25 1 1 1

1 . . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1) (1, 0) (0, 1)

(1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5

. . .

xt : (0.5, 0.5) (1, 0) (0, 1) (1, 0) (0, 1)

. . .

`t : (0, 0.5) (1, 0) (0, 1) (1, 0) (0, 1)

. . .

ft(xt): 0.25 1 1 1 1

. . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

. . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5 . . .

xt : (0.5, 0.5) (1, 0) (0, 1) (1, 0) (0, 1) . . .

`t : (0, 0.5) (1, 0) (0, 1) (1, 0) (0, 1) . . .

ft(xt): 0.25 1 1 1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1) (1, 0) (0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5 . . .

xt : (0.5, 0.5) (1, 0) (0, 1) (1, 0) (0, 1) . . .

`t : (0, 0.5) (1, 0) (0, 1) (1, 0) (0, 1) . . .

ft(xt): 0.25 1 1 1 1 . . .

arg minx
∑t

k=1 fk(x): (1, 0) (0, 1) (1, 0) (0, 1) (1, 0) . . .

optimum loss: ≈ T/2.

FTL’s loss: ≈ T .

regret: ≈ T/2 (linear).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 34 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f1, . . . , ft and any number of time steps
T , the FTL algorithm satisfies

regretT ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

Implication: If ft(·) is Lipschitz w.r.t. to some distance function ‖·‖,
then xt and xt+1 are close ⇒ ‖ft(xt)− ft(xt+1)‖ can’t be too large.

Modify FTL: xt ’s shouldn’t change too much from step by step.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 35 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f1, . . . , ft and any number of time steps
T , the FTL algorithm satisfies

regretT ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

Implication: If ft(·) is Lipschitz w.r.t. to some distance function ‖·‖,
then xt and xt+1 are close ⇒ ‖ft(xt)− ft(xt+1)‖ can’t be too large.

Modify FTL: xt ’s shouldn’t change too much from step by step.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 35 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Leader (FTL)

Proof of Theorem 2

Recall that

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)).

The theorem ⇔
∑T

t=1 ft(xt+1) ≤ minx∈K
∑T

t=1 ft(x).

Prove by induction. T = 1: The definition of x2.

Assume that it holds up to T . Then:

T+1∑
t=1

ft(xt+1) =
T∑
t=1

ft(xt+1) + fT+1(xT+2) ≤
T+1∑
t=1

ft(xT+2) = min
x∈K

T+1∑
t=1

ft(x),

where
T∑
t=1

ft(xt+1) ≤ min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xT+2).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 36 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 37 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

You might have already been using regularization for quite a long
time.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 38 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 39 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 39 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

The regularizer

At each step, we compute the solution

xt := arg min
x∈K

(
R(x) +

t−1∑
k=1

fk(x)

)
.

This is called Follow the Regularized Leader (FTRL).

In short,

FTRL = FTL + Regularizer.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 40 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

every sequence of cost function {ft(·)}t≥1 and

every regularizer function R(·),

for every x , the regret with respect to x after T steps of the FTRL
algorithm is bounded as

regretT (x) ≤

(
T∑
t=1

ft(xt)− ft(xt+1)

)
+ R(x)− R(x1),

where regretT (x) :=
∑T

t=1(ft(xt)− ft(x)).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 41 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTL at t + 1

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 42 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTL at t + 1

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 42 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x))

≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTL at t + 1

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 42 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)

output of FTL at t + 1

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 42 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .

The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)

output of FTL at t + 1

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 42 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 43 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 44 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 44 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 44 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 44 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative entropy regularization

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

The constraint x ∈ ∆ ⇒
∑

i xi = 1.

So we use Lagrange multiplier to solve

L =

(
t−1∑
k=1

〈`k , x〉

)
+ c ·

(
n∑

i=1

x(i) ln x(i)

)
+ λ · (〈x , 1〉 − 1).

The partial derivative ∂L
∂x(i) :(

t−1∑
k=1

`k(i)

)
+ c · (1 + ln xi) + λ

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 45 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Using negative entropy regularization

xt = arg min
x∈∆

(
t−1∑
k=1

〈`k , x〉+ c ·
n∑

i=1

x(i) ln x(i)

)
.

The constraint x ∈ ∆ ⇒
∑

i xi = 1.

So we use Lagrange multiplier to solve

L =

(
t−1∑
k=1

〈`k , x〉

)
+ c ·

(
n∑

i=1

x(i) ln x(i)

)
+ λ · (〈x , 1〉 − 1).

The partial derivative ∂L
∂x(i) :(

t−1∑
k=1

`k(i)

)
+ c · (1 + ln xi) + λ

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 45 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

`k(i)

)

Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 `k(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 `k(j)

) .
Exactly the solution of MWU if we take c = 1/β!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 46 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

`k(i)

)
Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 `k(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 `k(j)

) .
Exactly the solution of MWU if we take c = 1/β!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 46 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

`k(i)

)
Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 `k(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 `k(j)

) .

Exactly the solution of MWU if we take c = 1/β!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 46 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

`k(i)

)
Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 `k(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 `k(j)

) .
Exactly the solution of MWU if we take c = 1/β!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 46 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 47 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

L2 Regularization

Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

Consider also linear cost functions but K = Rn first.

What kind of problem we might encounter?

The offline optimum could be −∞.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c‖x‖2.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 48 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

L2 Regularization

Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

Consider also linear cost functions but K = Rn first.

What kind of problem we might encounter?

The offline optimum could be −∞.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c‖x‖2.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 48 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

L2 Regularization

Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

Consider also linear cost functions but K = Rn first.

What kind of problem we might encounter?

The offline optimum could be −∞.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c‖x‖2.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 48 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.
convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = arg minx∈Rn c‖x‖2 +
∑t

k=1〈`k , x〉.

convex

Compute the gradient:

2cx +
t∑

k=1

`k = 0

⇒ x = − 1

2c

t∑
k=1

`k .

Hence, x1 = 0, xt+1 = xt − 1
2c `t .

→ penalize the experts that performed badly in the past!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 49 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regret of FTRL with 2-norm regularization

First, we have

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 =

〈
`t ,

1

2c
`t

〉
=

1

2c
‖`t‖2.

So, with respect to a solution x ,

regretT (x) ≤ R(x)− R(x1) +
T∑
t=1

ft(xt)− ft(xt+1)

= c‖x‖2 +
1

2c

T∑
t=1

‖`t‖2.

Suppose that ‖`t‖ ≤ L for each t and ‖x‖ ≤ D. Then by optimizing

c =
√

T
2D2L2 , we have

regretT (x) ≤ DL
√

2T .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 50 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Dealing with constraints

Let’s deal with the constraint that K is an arbitrary convex set
instead of Rn.

Using the same regularizer, we have our FTRL which gives

x1 = arg min
x∈K

c‖x‖2,

xt+1 = arg min
x∈K

c‖x‖2 +
t∑

k=1

〈`t , x〉.

The idea: First solve the unconstrained optimization and then
project the solution on K .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 51 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Dealing with constraints

Let’s deal with the constraint that K is an arbitrary convex set
instead of Rn.

Using the same regularizer, we have our FTRL which gives

x1 = arg min
x∈K

c‖x‖2,

xt+1 = arg min
x∈K

c‖x‖2 +
t∑

k=1

〈`t , x〉.

The idea: First solve the unconstrained optimization and then
project the solution on K .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 51 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Unconstrained optimization + projection

yt+1 = arg min
y∈Rn

c‖y‖2 +
t∑

k=1

〈`t , y〉.

x ′t+1 = ΠK(yt+1) = arg min
x∈K
‖x − yt+1‖.

Claim: x ′t+1 = xt+1.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 52 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Unconstrained optimization + projection

yt+1 = arg min
y∈Rn

c‖y‖2 +
t∑

k=1

〈`t , y〉.

x ′t+1 = ΠK(yt+1) = arg min
x∈K
‖x − yt+1‖.

Claim: x ′t+1 = xt+1.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 52 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Proof of the claim: x ′t+1 = xt+1

First, we already have that yt+1 = − 1
2c

∑t
k=1 `t .

Then,

x ′t+1 = arg min
x∈K
‖x − yt+1‖ = arg min

x∈K
‖x − yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉+ ‖yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉

= arg min
x∈K
‖x‖2 − 2

〈
x ,− 1

2c

t∑
k=1

`t

〉

= arg min
x∈K

c‖x‖2 +

〈
x ,

t∑
k=1

`t

〉
= xt+1.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 53 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Proof of the claim: x ′t+1 = xt+1

First, we already have that yt+1 = − 1
2c

∑t
k=1 `t .

Then,

x ′t+1 = arg min
x∈K
‖x − yt+1‖ = arg min

x∈K
‖x − yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉+ ‖yt+1‖2

= arg min
x∈K
‖x‖2 − 2〈x , yt+1〉

= arg min
x∈K
‖x‖2 − 2

〈
x ,− 1

2c

t∑
k=1

`t

〉

= arg min
x∈K

c‖x‖2 +

〈
x ,

t∑
k=1

`t

〉
= xt+1.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 53 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 ≤ ‖`t‖ · ‖xt − xt+1‖

≤ ‖`t‖ · ‖yt − yt+1‖.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 54 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 ≤ ‖`t‖ · ‖xt − xt+1‖
≤ ‖`t‖ · ‖yt − yt+1‖.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 54 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 ≤ ‖`t‖ · ‖xt − xt+1‖
≤ ‖`t‖ · ‖yt − yt+1‖

≤ 1

2c
‖`t‖2.

So, assume maxx∈K‖x‖ ≤ D and ‖`t‖ ≤ L for all t, we have

regretT ≤ c‖x∗‖2 − c‖x1‖2 +
1

2c

T∑
t=1

‖`t‖2

≤ cD2 +
1

2c
TL2

≤ DL
√

2T .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 55 / 77

No-Regret Online Learning

Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = 〈`t , xt − xt+1〉 ≤ ‖`t‖ · ‖xt − xt+1‖
≤ ‖`t‖ · ‖yt − yt+1‖

≤ 1

2c
‖`t‖2.

So, assume maxx∈K‖x‖ ≤ D and ‖`t‖ ≤ L for all t, we have

regretT ≤ c‖x∗‖2 − c‖x1‖2 +
1

2c

T∑
t=1

‖`t‖2

≤ cD2 +
1

2c
TL2 ≤ DL

√
2T .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 55 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 56 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 57 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The setting

We can see N arms as N experts.

Arms give are independent.

We can only pull an arm and observe the reward of it.

It’s NOT possible to observe the reward of pulling the other arms...

Each arm i has its own reward ri ∈ [0, 1].

µi : the mean of reward of arm i

µ̂i : the empirical mean of reward of arm i

µ∗: the mean of reward of the BEST arm.
∆i : µ∗ − µi .
Index of the best arm: I ∗ := arg maxi∈{1,...,N}µi .
The associated highest expected reward: µ∗ = µI∗ .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 58 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The setting

We can see N arms as N experts.

Arms give are independent.

We can only pull an arm and observe the reward of it.

It’s NOT possible to observe the reward of pulling the other arms...

Each arm i has its own reward ri ∈ [0, 1].
µi : the mean of reward of arm i

µ̂i : the empirical mean of reward of arm i

µ∗: the mean of reward of the BEST arm.
∆i : µ∗ − µi .
Index of the best arm: I ∗ := arg maxi∈{1,...,N}µi .
The associated highest expected reward: µ∗ = µI∗ .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 58 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt)

=
N∑
i=1

∑
t:It=i

(µ∗ − µi)

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 59 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt) =
N∑
i=1

∑
t:It=i

(µ∗ − µi)

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 59 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt) =
N∑
i=1

∑
t:It=i

(µ∗ − µi)

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 59 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt) =
N∑
i=1

∑
t:It=i

(µ∗ − µi)

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 59 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 60 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := arg maxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .
If this is the case, the algorithm will keep pulling arm 2 and will never
change!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 61 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := arg maxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .
If this is the case, the algorithm will keep pulling arm 2 and will never
change!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 61 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := arg maxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .

If this is the case, the algorithm will keep pulling arm 2 and will never
change!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 61 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := arg maxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .
If this is the case, the algorithm will keep pulling arm 2 and will never
change!

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 61 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.
Hence the (expected) regret will be at least εT

N

∑
i :µi<µ∗ ∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 62 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.
Hence the (expected) regret will be at least εT

N

∑
i :µi<µ∗ ∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 62 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.
Hence the (expected) regret will be at least εT

N

∑
i :µi<µ∗ ∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 62 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.

Hence the (expected) regret will be at least εT
N

∑
i :µi<µ∗ ∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 62 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Greedy Algorithms

ε-Greedy Algorithm

ε-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average εT/N times.
Hence the (expected) regret will be at least εT

N

∑
i :µi<µ∗ ∆i .

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 62 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 63 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

The upper confidence bound algorithm (UCB)

At each time step (round), we simply pull the arm with the highest
“empirical reward estimate + high-confidence interval size”.

The empirical reward estimate of arm i at time t:

µ̂i ,t =

∑t
s=1 Is,i · rs
ni ,t

.

ni ,t : the number of times arm i is played.
Is,i : 1 if the choice of arm is i at time s and 0 otherwise.

Reward estimate + confidence interval:

UCBi ,t := µ̂i ,t +

√
ln t

ni ,t
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 64 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that T ≥ N.

1 For t = 1, . . . ,N, play arm t.

2 For t = N + 1, . . . ,T , play arm

At = arg maxi∈{1,...,N}UCBi ,t−1.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 65 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB

(after more time steps...)

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 66 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Algorithm UCB (after more time steps...)

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 66 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

|µ̂i ,t − µi | <

√
ln t

ni ,t

with probability ≥ 1− 2/t2.

Immediately, we know that

with prob. ≥ 1− 2/t2, UCBi ,t := µ̂i ,t +
√

ln t
ni,t

> µi .

with prob. ≥ 1− 2/t2, µ̂i ,t < µi + ∆i
2 when ni ,t ≥ 4 ln t

∆2
i

.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 67 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples
x1, . . . , xn ∈ [0, 1] with E[xi] = µ, we have

Pr

[∣∣∣∣∑n
i=1 xi
n

− µ
∣∣∣∣ ≥ δ] ≤ 2e−2nδ2

.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 68 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., µi < µ∗) has been played
for ni ,t ≥ 4 ln t

∆2
i

times, then UCBi ,t < UCBI∗,t with probability ≥ 1− 4/t2.

Therefore, for any t,

Pr

[
It+1,i = 1

∣∣∣∣ ni ,t ≥ 4 ln t

∆2
i

]
≤ 4

t2
.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 69 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 3

With probability < 2/t2 + 2/t2 (union bound) that

UCBi ,t = µ̂i ,t +

√
ln t

ni ,t
≤ µ̂i ,t +

∆i

2

<

(
µi +

∆i

2

)
+

∆i

2

= µ∗ < UCBi∗,t

does NOT hold.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 70 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm i with µi < µ∗,

E[ni ,T] ≤ 4 lnT

∆2
i

+ 8.

E[ni,T] = 1 + E

[
T∑

t=N

1 {It+1,i = 1}

]

= 1 + E

[
T∑

t=N

1

{
It+1,i = 1, ni,t <

4 ln t

∆2
i

}]

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 71 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

E[ni,T] ≤ 4 lnT

∆2
i

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1

∣∣∣∣ ni,t ≥ 4 ln t

∆2
i

]
· Pr

[
ni,t ≥

4 ln t

∆2
i

]

≤ 4 lnT

∆2
i

+
T∑

t=N

4

t2

≤ 4 lnT

∆2
i

+ 8

(since
∞∑
t=1

1/t2 = π2/6).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 72 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

E[ni,T] ≤ 4 lnT

∆2
i

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1

∣∣∣∣ ni,t ≥ 4 ln t

∆2
i

]
· Pr

[
ni,t ≥

4 ln t

∆2
i

]

≤ 4 lnT

∆2
i

+
T∑

t=N

4

t2

≤ 4 lnT

∆2
i

+ 8 (since
∞∑
t=1

1/t2 = π2/6).

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 72 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all T ≥ N, the (expected) regret by the UCB algorithm in round T is

E[regretT] ≤ 5
√
NT lnT + 8N.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 73 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Upper Confidence Bound (UCB)

Proof of Theorem 4

Divide the arms into two groups:

1 Group ONE (G1): “almost optimal arms” with ∆i <
√

N
T lnT .

2 Group TWO (G2): “bad” arms with ∆i ≥
√

N
T lnT .

∑
i∈G1

ni,T∆i ≤

(√
N

T
lnT

)∑
i∈G1

ni,T ≤ T ·
√

N

T
lnT =

√
NT lnT .

By Lemma 4,

∑
i∈G2

E[ni,T]∆i ≤
∑
i∈G2

4 lnT

∆i
+ 8∆i ≤

∑
i∈G2

4

√
T lnT

N
+ 8

≤ 4
√
NT lnT + 8N.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 74 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Time-Decay ε-Greedy

Outline

1 Introduction

2 Gradient Descent for Online Convex Optimization (GD)

3 Multiplicative Weight Update (MWU)

4 Follow The Leader (FTL)

5 Follow The Regularized Leader (FTRL)
MWU Revisited
FTRL with 2-norm regularizer

6 Multi-Armed Bandit (MAB)
Greedy Algorithms
Upper Confidence Bound (UCB)
Time-Decay ε-Greedy

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 75 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Time-Decay ε-Greedy

Time Decaying ε-Greedy Algorithm

What if the horizon T is known in advance when we run ε-Greedy?

Time-Decaying ε-Greedy Algorithm

For all t = 1, 2, . . . ,N, set ε := N1/3/T 1/3:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

Theorem

Time-Decaying ε-Greedy Algorithm gets roughly O(N1/3T 2/3) regret.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 76 / 77

No-Regret Online Learning

Multi-Armed Bandit (MAB)

Time-Decay ε-Greedy

Time Decaying ε-Greedy Algorithm

What if the horizon T is known in advance when we run ε-Greedy?

Time-Decaying ε-Greedy Algorithm

For all t = 1, 2, . . . ,N, set ε := N1/3/T 1/3:

With probability 1− ε, pull arm It := arg maxi=1,...,N µ̂i ,t .

With probability ε, select an arm uniformly at random (i.e., each with
probability 1/N).

Theorem

Time-Decaying ε-Greedy Algorithm gets roughly O(N1/3T 2/3) regret.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 76 / 77

No-Regret Online Learning

Thank you.

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 77 / 77

	Introduction
	Gradient Descent for Online Convex Optimization (GD)
	Multiplicative Weight Update (MWU)
	Follow The Leader (FTL)
	Follow The Regularized Leader (FTRL)
	MWU Revisited
	FTRL with 2-norm regularizer

	Multi-Armed Bandit (MAB)
	Greedy Algorithms
	Upper Confidence Bound (UCB)
	Time-Decay -Greedy

	

