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No-Regret Online Learning

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391 /index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the monograph by Prof. Francesco Orabona:
https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Outline

© Introduction
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Introduction

Online Convex Optimization

Goal: Design an algorithm such that

@ At discrete time steps t = 1,2, ..., output x; € IC, for each t.
e KC: a convex set of feasible solutions.

o After x; is generated, a convex cost function f; : IC — R is revealed.

@ Then the algorithm suffers the loss fi(x:).

And we want to minimize the cost.

r
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Introduction

The difficulty

@ The cost functions f; is unknown before t.
e fi,f,..., 1, ... are not necessarily fixed.
e Can be generated dynamically by an adversary.
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Introduction

What's the regret?

@ The offline optimum: After T steps,

]
[ fi(x).
iR )

@ The regret after T steps:

T T
regrety = Z fr(xe) — )r:né’r%z fr(x).
t=1 t=1
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Introduction

What's the regret?
@ The offline optimum: After T steps,
T
i fr(x).
IDLY

@ The regret after T steps:
T T
regretT = Z fr(xt) — QEZ fr(x).
t=1 t=1

@ The rescue: regretr < o(T).
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No-Regret Online Learning
Introduction

What's the regret?
@ The offline optimum: After T steps,
T
i fr(x).
IDLY

@ The regret after T steps:
T T
regretT = Z fr(xt) — QEZ fr(x).
t=1 t=1

@ The rescue: regret; < o(T). = No-Regret in average when
T — oc.

o For example, regret;/T = g — 0 when T — . -@
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Introduction

Prerequisites (1/5)

Diameter

Let K C R? be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of :

Vx,y € K,||x —y|| < D.

Convex set

| A

A set IC is convex if for any x,y € IC, we have

Va € [0,1],ax+ (1 —a)y € K.

SE
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Introduction

Prerequisites (2/5)

Convex function

A function f : K — R is convex if for any x,y € K,

Va € [0,1], F((1 — a)x + ay) < (1 — a)f(x) + af(y).

Equivalently, if f is differentiable (i.e., Vf(x) exists for all x € KC), then f
is convex if and only if for all x,y € IC,

fly) = f(x)+ VF(x)" (y — x).

SE
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Introduction

Prerequisites (3/5)

Theorem [Rockafellar 1970]

Suppose that f : K — R is a convex function and let x € int dom(f). If f
is differentiable at x, then for all y € RY,

f(y) = f(x) +(VF(x),y — x).

Subgradient

| A\

For a function f : R? — R, g € RY is a subgradient of f at x € RY if for
all y e RY,

fly) > f(x) + (g, y — x).

SE
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Introduction

Prerequisites (4/5)

Projection

The closest point of y in a convex set K in terms of norm ||-||:

I e i —vyll.
x(y) = argmin|lx — y|

| \

Pythagoras Theorem

Let X C RY be a convex set, y € RY and x = MNi(y). Then for any
z € IC, we have
ly —z[| = [Ix — z]|.

.
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Introduction

Prerequisites (5/5)

Minimum vs. zero gradient

Vf(x) =0 iff x € arg min {f(x)}.
xeR

First-order optimality condition (FOO)

Let X C RY be a convex set, x* € arg min,cx f(x). Then for any y € K
we have

VF(x*)T(y — x*) > 0.

A\

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 12/77




No-Regret Online Learning
Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.
@ Say we have subgradients g; for each x;.
o f(x;) — f(u) < (g, x; — u) for each u € RY.

r
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Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x;) — f(u) < (g, x; — u) for each u € RY.

o Hence, if we define fi(x) := (g, x), then for any u € R,

T

S filxe) — F(u) <

t=1 t

T

(g, xe —u) =) _F(x)— f(u).

1; t=1

M)~

r
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Introduction

Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x;) — f(u) < (g, x; — u) for each u € RY.

o Hence, if we define fi(x) := (g, x), then for any u € R,

T T T o g
D flxe) = Fu) <> (g xe—u)y = fi(x:) — F(u).
t=1 =k el
0OCO — OLO.

r
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Gradient Descent for Online Convex Optimization (GD)

Outline

© Gradient Descent for Online Convex Optimization (GD)
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Gradient Descent for Online Convex Optimization (GD)

Online Gradient Descent (GD)

O Input: convex set IC, T, x; € K, step size {n;}.
Q fort+ 1to T do:

@ Play x; and observe cost fi(x;).
@ Update and Project:

sl s = Xt—ntVft(Xt)
P E— nlC(yt+1)

© end for
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Gradient Descent for Online Convex Optimization (GD)

GD for online convex optimization is of no-regret

Online gradient descent with step size {1 = GL\/E’ t € [T]} guarantees the
following for all T > 1:

T T
3
regretr = Z fr(x:) — xrpér;cz fr(x*) < EGD\/?
=1 =1
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (1/3)

o Let x* € argmineeic 3/, fi(x).

@ Since f; is convex, we have
fo(xe) = fr(x") < (VH(xe)) " (xe — x¥).
o By the updating rule for x;;1 and the Pythagorean theorem, we have

31— x*1? = M (e =1V Ee(xe)) = x| < (e =1V Er(xe) — x|,

r
-:@
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (2/3)

@ Hence

IXe41 — X% < llxe = x*|I> + g2 VA (xe)|1? = 20e(VHr(xe)) T (xe — x*)
12— e — x*|J2

Nt

l|x: — x

2(Vi(x)) " (xe — x*) < +n:G>.

@ Summing above inequality from t =1 to T and setting n; = GL\/E and

L =0 we have :
7o

r
-:@
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (3/3)

T T
2(2 ft(xt)—ft(x*)> < 2 (V)T (xe — x¥)
7=l t=1
T " . T
). Z llxe = x*||2 = [|xe41 — x*||2 Y
< 7 Tt
=il
< anﬁx*uz () +62an
e |
< oE ()l
Z Tt Ne—1 Zm
et D2i —+ G2Z’l7t
) nr =1
e vl @
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Gradient Descent for Online Convex Optimization (GD)

The Lower Bound

Theorem B

Let K = {x € R? : ||x||oc < r} be a convex subset of RY. Let A be any
algorithm for Online Convex Optimization on /. Then for any T > 1,
there exists a sequence of vectors gi,...,87 with ||g¢]2 < Land u e K
such that the regret of A satisfies

T T
regrety(u) = Z<gt,xt> - Z<gt, u) > \@f\/?

t=1 t=1

o The diameter D of K is at most 1/3 %, (2r)2 < 2rV/d.
@ ||X|loo £ r & |x(i)] < rfor each i € [n].
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Multiplicative Weight Update (MWU)

Outline

© Muiltiplicative Weight Update (MWU)
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Multiplicative Weight Update (MWU)

Listen to the experts?

@ Let's say we have n experts.

@ We want to make best use of the advices coming from the experts.

(&
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Multiplicative Weight Update (MWU)

Listen to the experts?

@ Let's say we have n experts.

@ We want to make best use of the advices coming from the experts.

@ The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

o x: = (x¢(1),%:(2),...,x:(n)), where x,(i) € [0,1] and ), x;(i) = 1.

SE
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Multiplicative Weight Update (MWU)

Listen to the experts?

Let's say we have n experts.

We want to make best use of the advices coming from the experts.

@ The idea: at each time step, decide the probability distribution (i.e.,
weights) of the experts to follow their advice.

o x: = (x¢(1),%:(2),...,x:(n)), where x,(i) € [0,1] and ), x;(i) = 1.

The loss of following expert i at time t: £:(i).

The expected loss of the algorithm at time t:

Xt7£t E Xt

SE
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Multiplicative Weight Update (MWU)

MWU in Portfolio Rebalancing

" t+1

t

o

W

Qa8 e = S & a

Stock A Stock B Stock C Stock A Stock B Stock C
(Strategy A) (Strategy B) (Strategy C) (Strategy A) (Strategy B) (Strategy C)

A Afe

Pictures authorized via CC BY-SA
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Multiplicative Weight Update (MWU)

The regret of listening to the experts...

T T

regretT = Z(xt,ﬂt) - miin Zﬂt(i).

t=1 t=1

@ The set of feasible solutions K = A C R", probability distributions
over {1,...,n}.

o fr(x) =, x(i)€:(i): linear function.

* Assume that [£.(/)| <1 for all t and /.

r
-:@
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Multiplicative Weight Update (MWU)

The MWU Algorithm

@ The spirit: “Hedge".

@ Well-known and frequently rediscovered.

SE
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Multiplicative Weight Update (MWU)

The MWU Algorithm

@ The spirit: “Hedge".

@ Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)
e Maintain a vector of weights wy = (w¢(1), ..., w¢(n)) where
wy = (1,1,...,1).
o Update the weights at time t by
o wy(i) = wy_q(i) - e P2l
we (/)

Zjl‘vzl we(j)

o X; =

B: a parameter which will be optimized later.
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Multiplicative Weight Update (MWU)

The MWU Algorithm

@ The spirit: “Hedge".
@ Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

e Maintain a vector of weights wy = (w¢(1), ..., w¢(n)) where
wy = (1,1,...,1).

@ Update the weights at time t by
° Wt(’) = Wt_1(i) . e Bla(i)
we (/)

Zj"vzl we(j)

o X; =

B: a parameter which will be optimized later.
The weight of expert i at time t: e Al @
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Multiplicative Weight Update (MWU)

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that [€.(i)| <1 for all t and i. For 5 € (0,1/2), the regret of
MWU after T steps is bounded as

T n
I I
regret’t <83 3 x(A() + T < BT+ =
t=1 j=1

In particular, if T > 41Inn, then

regret <2V TlInn

Inn

by setting 8 = =

y
~ nassmad
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Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt = Zlnzl Wt(l)

The idea:
@ If the algorithm incurs a large loss after T steps, then W1 is small.

o And, if W41 is small, then even the best expert performs quite badly.

S
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Multiplicative Weight Update (MWU)

Proof of Theorem 1

Let Wt = Zlnzl Wt(l)

The idea:
@ If the algorithm incurs a large loss after T steps, then W1 is small.

o And, if W41 is small, then even the best expert performs quite badly.

Let £* == min; 3. ==, 2: (7).
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Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 1 (Wry1 is SMALL = L* is LARGE)

WT+1 > e BL*,

Let j = argmin L* = argmin; Z;l £:(7).

n
Wrip=) e Sl b() > o BEL £el) — o=BL",
i=1

D v
e
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
Writ < n ] = Bixe, £e) + 52(xe, 63)),
t=1

Note: Wi = n.

Wt+1 . zn: Wt+1(i) _ zn: Wt(l') . e*ﬂir(i)

W, W,
& i=1 & i=1
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Multiplicative Weight Update (MWU)

The proof (contd.)

Lemma 2 (MWU brings large loss = Wy, is SMALL)

n

Wt < HH(l - ﬁ<xt7£t> + /82<xt7£§>)7

t=1

Note: Wi = n.

Wt+1 - n Wt+1(i) o n Wt( ° @ ﬂet
W, T 2w

i=1 i=1

= th( —BE:(0)

IN

th (1= B(i) + B2E(0))
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n

Writ < n ] = Bixe, £e) + 52(xe, 63)),
t=1
Note: W = n.
Wt+1 . . Wt+1(i) _ . M —Be:(i)
W 2 W~ _ZXt(
< th (1 = (i) + B2L5(i))

= 1—5<Xt7 t>+52<xt,£f>
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
Wri1 < ”H( )s
t=1 )
Note: Wi = n.
W1 70 5wy (i) - e P80
T L S Al

i=1 i=1

th (1= B(i) + B2E(0))

_ < e—a(xt.etwﬁ?(xt,ef).

IN
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Multiplicative Weight Update (MWU)

The proof (contd.)
Lemma 2 (MWU brings large loss = Wy, is SMALL)

n
Wri1<n H e—5<xt,ﬁt>+52<xt»@>.
t=1

Note: Wi = n.

n Le—Bu() "

W, .
Vt;/—:l _ Z Wt+1 Z we (i _ th(i) e Bl

i=1 =1 i=1

th (1= Be:(i) + B2(7))

IA

- 1_ /8<Xt7£t> +52<Xt,£%> < e7/3<xtaet>+‘3 (Xr-l,).
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Multiplicative Weight Update (MWU)

The proof (contd.)

Hence

T

InWryy <Inn— [ > B, x) | + 262 £, x;)

i=1

and In Wt > —(L*.
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The proof (contd.)

Hence
T T
InWryy <lInn-— (th,xt)) + (Zﬁzwi,x»)
i=1 i=1
and In Wt > —(L*.
Thus,

T
(Z<£t7xt>> = L* < M +BZ ‘etvxt
t=1

r
-:@
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Multiplicative Weight Update (MWU)

The proof (contd.)

Hence
T T
InWryy <lInn-— (th,xt)) + (Zﬁzwi,x»)
i=1 i=1
and In Wt > —(L*.
Thus,

T
(Z<£t7xt>> = L* < M +BZ ‘etvxt
t=1

/1
Take 8 = ¥ we have regret < 2v T Inn.

r
-:@
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Follow The Leader (FTL)

Outline

@ Follow The Leader (FTL)
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?

(&
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

(&
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

o First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

Xip-=.ahg )r(nellrg Z fi(x).
k=1

r
-:@
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

o First, we assume to make no assumptions on K and {f; : L — R}.
@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

Xip-=.ahg )r(nellrg Z fi(x).
k=1

That is, the best solution for the previous t — 1 steps.

r
-:@
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Follow The Leader (FTL)

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

o First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

X; = argmin fi(x).
1 ngICZ k( )
k=1
That is, the best solution for the previous t — 1 steps.

@ It seems reasonable and makes sense, doesn't it?

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 33/77




No-Regret Online Learning
Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1

Xt (0.5,0.5)

% (0,0.5)
fr(xt): 0.25

arg miny Zi:l fi(x): (1,0)
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Follow The Leader (FTL)

FTL leads to “overfitting”

& 1 2

X¢: (0.5,0.5) (1,0)

2% (0,0.5) (1,0)
fr(xt): 0.25 1

arg miny > i1 fi(x): [f1,.0) s BCQANIDY
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3

Xt (0.5,0.5) (1,0) (0,1)

% (0,05)- —A#G) (0,1)
fr(xt): 0.25 1 1

arg miny Zi:l fi(x): (1,0) (OB (10

r
-:@
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Follow The Leader (FTL)

FTL leads to “overfitting”

& 1 2 3 4

Xt (0.5,0.5) (1,0) (0,1) (1,0)

% (0,10°5)- @A)~ (0;1) (L1.0)
fr(xt): 0.25 1 1 1

arg miny > i1 fi(x): (1,.0) s FR(QNINR (1 ONEENE 217

r
-:@
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5
Xe: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
l: (0,0'5)" —AMD) (0, 1) " (L.0) | 0,1)
fo(xe): 0.25 1 1 1 1

arg miny > i1 fi(x): (1,0) s FRQNBR (1 OJEND-T S L0

r
-:@
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5
Xe: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
l: (0,0'5)" —AMD) (0, 1) " (L.0) | 0,1)
fo(xe): 0.25 1 1 1 1

arg miny > i1 fi(x): (1,0) s FRQNBR (1 OJEND-T S L0

r
-:@
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Follow The Leader (FTL)

FTL leads to “overfitting”

t: 1 2 3 4 5
Xe: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
l: (0,0'5)" —AMD) (0, 1) " (L.0) | 0,1)

fo(xe): 0.25 1 1 1 1

arg miny > i1 fi(x): (1,0) s FRQNBR (1 OJEND-T S L0

optimum loss: ~ T/2.
FTL's loss: ~ T.
regret: ~ T /2 (linear).

r
-:@

No-Regret Online Learning 5th March 2025 @NUU DEE 34 /77

Joseph C. C. Lin (CSE, NTOU, TW)



No-Regret Online Learning
Follow The Leader (FTL)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions fi, .

.., fr and any number of time steps
T, the FTL algorithm satisfies

.
regret < Z(ft(xt) — fe(Xt41)).

t=1

SE
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Follow The Leader (FTL)

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions fi, ...

, fr and any number of time steps
T, the FTL algorithm satisfies

-
regret Z (fe(xt) — fe(xes1))-

Implication: If f;() is Lipschitz w.r.t. to some distance function |||,
then x; and x;41 are close = ||f;(x;) — fi(xt+1)|| can't be too large.

Modify FTL: x;'s shouldn't change too much from step by step.

5th March 2025 @NUU DEE 35/77
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T 1]
regret = Z fr(x) — )r(rylg Z fi(x)
t=1 t=1
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T iy
regret = Z fr(x) — )r(nellgz fr(x Z fr(xt) — fr(xer1))-
t=1 =l =l

The theorem < Zt 1 fe(Xer1) < mingex Zt 1 fe(x).

SE
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T iy
regret = Z fr(x) — )r(nellgz fr(x Z fr(xt) — fr(xer1))-
t=1 =l =l

The theorem < Z;l fr(Xe41) < mingex 2;1 fe(x).

Prove by induction. T = 1: The definition of x».

’-_.
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T iy
regret = Z fr(x) — )r(nellgz fr(x Z fr(xt) — fr(xer1))-
t=1 =l =l

The theorem < Z;l fr(Xe41) < mingex 2;1 fe(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:

(&
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T iy
regret = Z fr(x) — )r(nellgz fr(x Z fr(xt) — fr(xer1))-
t=1 =l =l

The theorem < Z;l fr(Xe41) < mingex 2;1 fe(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:

T41 T ] T41
E fr(Xet1) E fe(Xer1) + frea(x742) g fi(xT42) = m|n E fe(x
=1
where

-~

M‘!

fr(xep1) < mm Z fi(x Z (x742)- .-:@

t=1
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Follow The Leader (FTL)

Proof of Theorem 2

Recall that

T T iy
regret = Z fr(x) — )r(nellgz fr(x Z fr(xt) — fr(xer1))-
t=1 =l =l

The theorem < 2;1 fr(Xe41) < mingex Z;l fe(x).

Prove by induction. T = 1: The definition of x».
Assume that it holds up to T. Then:

T41 ] T41
E fi(xe1) = E fe(Xer1) + frea(x742) g fi(xT42) = m|n E fe(x
=1 =1

where

-~

T T
; fe(Xe41) < ;ﬂei,g; fe(x Z (xr+2). (o P
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Follow The Regularized Leader (FTRL)

Outline

© Follow The Regularized Leader (FTRL)

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning
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Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

@ You might have already been using regularization for quite a long
time.
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Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

from keras import regularizers

model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.12(0.01)

)
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Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

# L1 data (only 5 informative features)

X_1, y_1 = datasets.make classification(n_samples=n_samples,
n_features=n_features, n_informative=5,
random_state=1)

# L2 data: non sparse, but less features

y_2 = np.sign(.5 - rnd.rand(n_samples))

X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)

clf_sets = [(LinearSVC(penalty='11", loss='squared_hinge', dual=False,
tol=1e-3),
np.logspace(-2.3, -1.3, 10), X_1, y_1),
(LinearSVC(penalty='12", loss='squared_hinge', dual=True),
np.logspace(-4.5, -2, 10), X_2, y_2)]

(&
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Follow The Regularized Leader (FTRL)

The regularizer

At each step, we compute the solution

t—1
X; = arg )r(nellr% R(x) + Z fi(x)
k=1

This is called Follow the Regularized Leader (FTRL).

In short,

FTRL = FTL + Regularizer.

SE
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Follow The Regularized Leader (FTRL)

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For
@ every sequence of cost function {f;(-)}+>1 and
@ every regularizer function R(-),

for every x, the regret with respect to x after T steps of the FTRL
algorithm is bounded as

)
regret(x) < (Z fi(xe) - ft(Xt+1)> + R(x) = R(x1),
t=1

where regretr(x) := 32/, (fi(x;) — fi(x)). )

O/ B

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 41/77




No-Regret Online Learning
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Proof of Theorem 3

o Consider a mental experiment:

<]
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Follow The Regularized Leader (FTRL)

Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.

o The solutions: x1, X1, Xo, ..., XT.

(&
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Follow The Regularized Leader (FTRL)

Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ...

@ Use x; as the first solution.
o The solutions: x1, X1, Xo, ..., XT.

@ The regret:

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning
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Follow The Regularized Leader (FTRL)

Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.
o The solutions: x1, X1, Xo, ..., XT.

@ The regret:

T T

R(x) — R(x) + S (f(x) - fi(x)) < R(x1) = R(x) + 3 (f(x) — filxes1))

t=1 =1l

minimizer of R(-)
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Follow The Regularized Leader (FTRL)

Proof of Theorem 3

o Consider a mental experiment:

e We run the FTL algorithm for T + 1 steps.
e The sequence of cost functions: R, fi, f, ..., fr.

@ Use x; as the first solution.
o The solutions: x1, X1, Xo, ..., XT.

@ The regret:

T T

R(x) — R(x) + S (f(x) - fi(x)) < R(x1) = R(x) + 3_(f(x) — filxes1))

t=1 =1l

output of FTL at t 4+ 1
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Follow The Regularized Leader (FTRL)
MWU Revisited

Outline

© Follow The Regularized Leader (FTRL)
® MWU Reuvisited

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

S
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.
e negative-entropy: a good measure of how centralized a distribution is.

’-_.
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.

e negative-entropy: a good measure of how centralized a distribution is.
n

R(x):=c- > x(i)Inx(i).

i=1

S
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative-entropy regularization

@ We have seen an example that FTL tends to put all probability mass
on one expert (it's bad!)

o ldea: penalize over “concentralized” distributions.
e negative-entropy: a good measure of how centralized a distribution is.

R(x):=c- > x(i)Inx(i).
i=1
@ So our FTRL gives
t—1 n
Xl mig Z(Ek,x> +c- Zx(i) In x(7)
x€
k=1 =il

r
-:@
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative entropy regularization

t—1 n
Xin— arg)r(neig (Z(ﬁk,x> +c- Zx(i) In x(i)) :

k=1 i=1

@ The constraint x € A = > . x; = 1.
@ So we use Lagrange multiplier to solve

t—1 n
e = (Z(Ek,x>> S <Z x(7) In x(i)) + - ({x,1) = 1).

k=1 =1k
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Follow The Regularized Leader (FTRL)
MWU Revisited

Using negative entropy regularization

t—1 n
Xin— arg)r(neig (Z(ﬁk,x> +c- Zx(i) In x(i)) :

k=1 i=1

@ The constraint x € A = > . x; = 1.
@ So we use Lagrange multiplier to solve

t—1 n
e = (Z(Ek,x>> S (Z x(7) In x(i)) + - ({x,1) = 1).

k=1 i=1

@ The partial derivative 8‘?{6):

t—1
L (i)) 1L (L i) L o
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Follow The Regularized Leader (FTRL)
MWU Revisited

Rediscover MWU?

A 1t—1
8x(l_):o = x(i) = exp _1_c_c;£k(l)

(&
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Follow The Regularized Leader (FTRL)
MWU Revisited

Rediscover MWU?

oL _ 1
8x(i)_0 = x(i) = exp _1_c_c;£k(’)

Take the value of A to make the solution a probability distribution.
Thus,

S
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Follow The Regularized Leader (FTRL)
MWU Revisited

Rediscover MWU?

oL _ 1
()~ 0 = x(i)=exp (-1 —pin T ;ek(,)>

Take the value of A to make the solution a probability distribution.
Thus,

oxp (L 42 44(0))
o0 (- o ad0)

X (7=

r
-:@
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Follow The Regularized Leader (FTRL)
MWU Revisited

Rediscover MWU?

oL _ 1
()~ 0 = x(i)=exp (-1 —pin T ;zm)

Take the value of A to make the solution a probability distribution.
Thus,

exp (—1 i ()
>yexe (-1 52 4())
Exactly the solution of MWU if we take ¢ = 1//!

X (7=
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

Outline

© Follow The Regularized Leader (FTRL)

@ FTRL with 2-norm regularizer

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning

’.

5th March 2025 @NUU DEE

47 /77



No-Regret Online Learning
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FTRL with 2-norm regularizer

L2 Regularization

o Let’s try to apply the FTRL to the case that the regularizer is of

L2 norm!
@ Consider also linear cost functions but IC = R” first.

o What kind of problem we might encounter?

’-_.
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

L2 Regularization

o Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

@ Consider also linear cost functions but IC = R" first.

o What kind of problem we might encounter?

@ The offline optimum could be —oc.

o FTL will also tend to find a solution of “big” size, too.

s
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

L2 Regularization

o Let’s try to apply the FTRL to the case that the regularizer is of
L2 norm!

@ Consider also linear cost functions but I = R” first.

o What kind of problem we might encounter?

@ The offline optimum could be —oc.

o FTL will also tend to find a solution of “big” size, too.

o To fight this tendency, it makes sense to use a regularizer which

penalizes the size of a solution.

R(x) := c||x||°.

r
-:@
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FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® X¢i1 = arg minyern c||x|> + 325 _; €k, x).
@ Compute the gradient:

t
2cx + ka =0
k=1

1 t
== —
= 2c;k

Hence, x1 = 0, x;11 = x; — 2—1C£t.
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® X¢i1 = argminyern c||x|> + 35 _; (k, x).
convex

@ Compute the gradient:

t
2cx + ka =20
k=1

1 t
== —
= ZC;k

Hence, x1 = 0, x;11 = x; — 2—1C£t.

(&
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

0X1:0.

® X¢i1 = arg minyern c||x|> + 325 _; €k, x).
@ Compute the gradient:

t
2cx + ka =0
k=1

1 t
== —
= ZC;k

Hence, x1 = 0, x;11 = x; — %ﬁt.
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

@ X1 = 0.
® X¢i1 = arg minyern c||x|> + 325 _; €k, x).

@ Compute the gradient:

t
2cx + ka =0
k=1

1 t
STX= ——
= ZC;k

Hence, x1 = 0, x;11 = x; — iét.
— penalize the experts that performed badly in the past! @ =
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FTRL with 2-norm regularizer

The regret of FTRL with 2-norm regularization

o First, we have
2 f; = (€ (e, L) = Lye
t(Xe) = fe(xer1) = (be, Xe — Xeq1) = < b5 t> = 27” el

@ So, with respect to a solution x,

T

regretr(x) < R(x) = R(x1)+ 3 fi(xe) — filxes1)
=i

1 (7
cllx|® + 52 >l
t=1

@ Suppose that ||£;|| < L for each t and ||x|| < D. Then by optimizing

G—= we have

il
2D2[2!

regret 7(x) < DLV2T. @
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FTRL with 2-norm regularizer

Dealing with constraints

@ Let's deal with the constraint that K is an arbitrary convex set
instead of R".

@ Using the same regularizer, we have our FTRL which gives

x, = argmin cf ||,

t
Xe+1 = arg min ol x|[? + D (e, x).
k=1

(&
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

Dealing with constraints

@ Let's deal with the constraint that K is an arbitrary convex set
instead of R".

@ Using the same regularizer, we have our FTRL which gives

x, = argmin cf ||,

t
Xe+1 = arg min ol x|[? + D (e, x).
k=1

@ The idea: First solve the unconstrained optimization and then
project the solution on K.

(&
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FTRL with 2-norm regularizer

Unconstrained optimization + projection

5
yer1 = arg min cllyl® + > (£:,y).
el

X£+1 = Ni(yr+1) = arg)f(nei/ngx — Yer1l|-

(&
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FTRL with 2-norm regularizer

Unconstrained optimization + projection

5
yer1 = arg min cllyl® + > (£:,y).
el

X£+1 = Ni(yr+1) = arg)f(nei/ngx — Yer1l|-

o Claim: x{ ; = x;11.
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FTRL with 2-norm regularizer

Proof of the claim: x;,; = X¢41

e First, we already have that y;11 = _217: Zf(:l L.
@ Then,

Xty = argmin|x — yei1|l = arg minf|x — yeqa||?

= arg)r(nei,g|’XH2 —2(x, yr41) + HYt+1||2
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

Proof of the claim: x;,; = X¢41

e First, we already have that y;11 = _217: Zf(:l L.
@ Then,

X£+1 =S arg)r(nei’ng — Y1l = arg)r(neilrcle m }’t+1H2
= argmin|lx|[* — 2(x, yea) + [lyesall®

= argmin|x|2 — 2(x, ye41)

1 t
L il lI2 — -y
= argmin|x]| 2<x7 2C§ £t>
(=it
t
. 2
s e
arg min c|x| +<x,k§1 t>

= Xt+1- .-:-_@
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

To bound the regret

fe(xt) — fe(xeq1) = Loy xe — xe1) < ||| - |1xe — Xeqa |

’:.
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

To bound the regret

ft(xt) = ft(Xt+1) = <£t;xt i Xt+1>

Joseph C. C. Lin (CSE, NTOU, TW)
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[[€e]l - [1xe = xea]
€21l - [ly: = yerall

& = = =
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Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

To bound the regret

ft(xt)

So, assume

Joseph C. C. Lin (CSE,

— fr(xe11) = e, Xe — xe11) < |[€e]l - (| xe — xeq1]]
< el - llye — yeall
1
< el
< e

maxxex||x|| < D and ||£€¢]| < L for all ¢, we have

-
1
regrety < cllx*|? —cllal® + o2 > _lI€:]
t=1

i
< By
2c
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No-Regret Online Learning
Follow The Regularized Leader (FTRL)
FTRL with 2-norm regularizer

To bound the regret

ft(xt)

So, assume

Joseph C. C. Lin (CSE,

— fr(xe11) = e, Xe — xe11) < |[€e]l - (| xe — xeq1]]
< el - llye — yeall
1
< el
< e

maxxex||x|| < D and ||£€¢]| < L for all ¢, we have

-
1
regrety < cllx*|? —cllal® + o2 > _lI€:]
t=1

1
< -hgs 2—TL2 sl jai O
(&
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Multi-Armed Bandit (MAB)

Outline

© Multi-Armed Bandit (MAB)
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Multi-Armed Bandit (MAB)

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

SE
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Multi-Armed Bandit (MAB)

The setting

@ We can see N arms as N experts.
@ Arms give are independent.
@ We can only pull an arm and observe the reward of it.
e It's NOT possible to observe the reward of pulling the other arms...

e Each arm i has its own reward r; € [0, 1].
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Multi-Armed Bandit (MAB)

The setting

@ We can see N arms as IV experts.
@ Arms give are independent.
@ We can only pull an arm and observe the reward of it.
e It's NOT possible to observe the reward of pulling the other arms...
e Each arm i has its own reward r; € [0, 1].
o ;: the mean of reward of arm i
@ [ij: the empirical mean of reward of arm i
w*: the mean of reward of the BEST arm.
Aj o — pi.
Index of the best arm: [ := argmax;cyq, . nyHi-
The associated highest expected reward: p* = p«.

’-_.
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Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (4" —pm)

t=1

r
-:@
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Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (u* —M/t)—zz — )

t=1 =il /=

r
-:@
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Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T
Z( _Nlt)_zz _:U’I
t=1 =il /=
N
D,

regret =

r
-:@
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Multi-Armed Bandit (MAB)

The regret formulation for MAB

Let /; be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

T

regrety = Y (u* —M/t)—zz — )

t=1 =il /=
N

=D Iy
i=1

= E n,-7TA,~.

i <p*

r
-:@

Joseph C. C. Lin (CSE, NTOU, TW) No-Regret Online Learning 5th March 2025 @NUU DEE 59/77




No-Regret Online Learning
Multi-Armed Bandit (MAB)
Greedy Algorithms

Outline

© Multi-Armed Bandit (MAB)
o Greedy Algorithms
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Multi-Armed Bandit (MAB)
Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm
@ For t < cN, select a random arm with probability 1/N and pull it.

@ For t > cN, pull the arm [; := argmax;—1,...n fii -

@ Here c is a constant.

S
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Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

@ For t < cN, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,...n fii -

@ Here c is a constant.

@ This algorithm is of linear regret, hence is not a no-regret algorithm.

S
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Multi-Armed Bandit (MAB)
Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

@ For t < cN, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,...n fii -

@ Here c is a constant.
@ This algorithm is of linear regret, hence is not a no-regret algorithm.
@ For example,

o Arm 1: 0/1 reward with mean 3/4.
e Arm 2: Fixed reward of 1/4.

o After cN = 2c steps, with constant probability, we have fi; oy < fi2,cn-
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Greedy Algorithms

A Naive Greedy Algorithm

Greedy Algorithm

@ For t < cN, select a random arm with probability 1/N and pull it.
@ For t > cN, pull the arm [; := argmax;—1,...n fii -

@ Here c is a constant.

@ This algorithm is of linear regret, hence is not a no-regret algorithm.
@ For example,
o Arm 1: 0/1 reward with mean 3/4.
e Arm 2: Fixed reward of 1/4.
o After cN = 2c steps, with constant probability, we have fi; oy < fi2,cn-
o If this is the case, the algorithm will keep pulling arm 2 and will never

change! '@
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Multi-Armed Bandit (MAB)
Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

e With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).
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Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

e With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.
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Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

e With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
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Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

e With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
@ Indeed,
e Each arm is pulled in average e T /N times.
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Greedy Algorithms

e-Greedy Algorithm

e-Greedy Algorithm
Forall t=1,2,...,N:
o With probability 1 — ¢, pull arm /; := argmax;—1,_._n fli .

e With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

o It looks good.

@ Unfortunately, this algorithm still incurs linear regret.
@ Indeed,

e Each arm is pulled in average e T /N times.

o Hence the (expected) regret will be at least 5 > A,

i <p*
CE
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

Outline

© Multi-Armed Bandit (MAB)

@ Upper Confidence Bound (UCB)
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

The upper confidence bound algorithm (UCB)
@ At each time step (round), we simply pull the arm with the highest
“empirical reward estimate + high-confidence interval size”.

@ The empirical reward estimate of arm / at time t:

2221 Is,i s

Hit =
Nt

n; +: the number of times arm i is played.
ls.i: 1 if the choice of arm is i at time s and 0 otherwise.

@ Reward estimate + confidence interval:

" [Int
UCB,’yt = /’Liﬂf -+ T @
it -'
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Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that T > N.
Q@ Fort=1,...,N, play arm t.
Q@ Fort=N-+1,...,T, play arm

Ar = argmaxjcqy . nyUCB; 1.
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Upper Confidence Bound (UCB)

Algorithm UCB

A
\4

A

@ l2  Empirical mean
1 »
| B

Int

Mgt

Confidence interval

o
=

2 —
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

Algorithm UCB (after more time steps...)

@ S

@ [i5 Empirical mean
<+—Jn—>
—— i

@ .. Ve
@ e =
@ —t—

Confidence interval

[ ]
4
/

o
=
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Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

[ = | =

with probability > 1 — 2/t

Immediately, we know that
e with prob. > 1 —2/t2, UCB;; 1= fij¢ + ',%>u,-.

e with prob. > 1 —2/¢t?, el 2’ when n; ; > 4:;-

r
-:@
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples
X1,...,%n € [0,1] with E[x;] = i, we have

n .
PI’ HZIZI Xi . H‘ Z 5:| S 2e72n52'
n

:\5\\
=20 " pn+9o
\ Tail probability
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Upper Confidence Bound (UCB)

Very unlikely to play a suboptimal arm

At any time step t, if a suboptimal arm i (i.e., u;j < p*) has been played

for nj s > 45t times, then UCB;; < UCB- ; with probability > 1 — 4/¢2.

Therefore, fc;r any t,

4Int 4
Pr |:It+1,i =1 nj ¢ > A2 ] £ =
A? t2 J
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Upper Confidence Bound (UCB)

Proof of Lemma 3

With probability < 2/t% 4+ 2/t (union bound) that

Int A;
UCB,t—M,t+ < ,U’It+
n,t 2
< Lk o
- 2
= ,LL* < UCB,‘*,t

does NOT hold.
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

For any arm i with p; < p*,

4In T
E[n,-j] S > + 8.
A’
-
Elnir] = 1+E|> 1{ly1,;= 1}]
t=N
T
4int
= 1+E Z]l {It+1,i =1,n;: < Az}
t=N i

+E

Zn{/ g g >4'”t}]
t41i = 1,0 2 ——— 3
t=N A '@
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Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

-
4InT 4Int
E[njr] £ — +E Z 1 {It+1,i =1,ni: 2 2}‘|
As r As
o 4int
= AT + Z Pr {/t—o—l,i =1,n;; > N}
i =N i
4 | T e 4int 4int
= R R Z Pr |:It+1,i =1|nj;:> N} - Pr ["i,t > N}
i O i i
IF-
4InT 4
S
f t=N
4In T
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Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

-
4InT 4Int
E[njr] £ — +E Z 1 {It+1,i =1,ni: 2 2}‘|
As r As
anT & 4int
= AT + Z Pr {/t—o—l,i =1,n;; > N}
i =N i
4 | T e 4int 4int
= R R Z Pr |:It+1,i =1|nj;:> N} - Pr ["i,t > N}
i =N i i
IF-
4InT 4
S +Z§
z t=N

4In T -
< An,2 +8 (since ;1/1‘2:7&'2/6).

r
-:@
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Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all T > N, the (expected) regret by the UCB algorithm in round T is

E[regrety] <5V NT In T + 8N.

SE
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Multi-Armed Bandit (MAB)
Upper Confidence Bound (UCB)

Proof of Theorem 4

@ Divide the arms into two groups:
© Group ONE (G;): “almost optimal arms” with A; < /% In T,
@ Group TWO (Gy): “bad” arms with A; > /X in T.

[N N
Zn,-,TA,-§< T|nT>Zn,,T§T. FInT=vNTInT.

i€Gy i€Gy
By Lemma 4,
4InT [TInT
ZE[I’I;’T]A,' < Z A +84A; < Z 4 N + 8
i€Gy i€Gy i€G
< 4VNTInT + 8N.

L
@ NTOU CsE
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Time-Decay e-Greedy

Outline

© Multi-Armed Bandit (MAB)

@ Time-Decay e-Greedy
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Time-Decay e-Greedy

Time Decaying e-Greedy Algorithm

What if the horizon T is known in advance when we run e-Greedy?

Time-Decaying e-Greedy Algorithm
Forall t =1,2,..., N, set e := NY/3/T1/3:
o With probability 1 — ¢, pull arm /; := argmax;—1,_ n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).
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Time Decaying e-Greedy Algorithm

What if the horizon T is known in advance when we run e-Greedy?

Time-Decaying e-Greedy Algorithm
Forall t =1,2,..., N, set e := NY/3/T1/3:
o With probability 1 — ¢, pull arm /; := argmax;—1,_ n fli .

@ With probability €, select an arm uniformly at random (i.e., each with
probability 1/N).

Time-Decaying e-Greedy Algorithm gets roughly O(N/3T?2/3) regret.
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Thank you.

)
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