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Online Learning for Min-Max Problems

Introduction

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.

Decision space: X .

State space: Y.

Cost function f : X × Y 7→ R.

A perspective of an iterative adversarial game with T rounds.

1 The algorithm first chooses an action xt ∈ X .

2 The (adversarial) nature reveals yt ∈ Y that could depend on xt .

3 The algorithm observes the state yt and suffers a loss
f t(xt) = f (xt , yt).
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Introduction

The Online Learning Framework

Online learning framework (2/4)

The objective of the player: minimize the accumulative cost

T∑
t=1

f (xt , yt).

Online Learning Algorithms

An algorithm that decides the actions xt before observing yt for each t.

The efficiency measure: regret.

RT =
T∑
t=1

f (xt , yt)−
T∑
t=1

f (x∗, yt),

where x∗ = argminx∈X
∑T

t=1 f (x, y
t) (static).
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Introduction

The Online Learning Framework

Online learning framework (3/4)

We aim for algorithms with RT = O(T c), for 0 ≤ c < 1.

Vanishing regret (or no-regret).

A computational efficiency concern:

It coulde be NP-hard to compute xt ’s even for T = 1 and y1 is
revealed beforehand.

A relaxed notion: α-regret

Rα
T =

T∑
t=1

f (xt , yt)− α

T∑
t=1

f (x∗, yt).

Goal: vanishing α-regret for some α ≥ 1.
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Introduction

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing α-Regret Algorithms

An online learning algorithm which

computes xt in poly(n, t), where n is the input instance size.

the (expected) regret is bounded by poly(n)T c , for some constant
0 ≤ c < 1.

For the case α = 1, we call it a polynomial time vanishing regret
algorithm.

The regret is polynomial in n and sublinear in T .
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Introduction

Main Contribution

Main Contribution (1/8)

Cardinality constrained problems

Given an n-elements set U , a set of constraints C on 2U , and an integer k .

Goal: Determine whether there exists a feasible solution of size ≤ k .

Min-Max-P
Given a cardinality problem P where all the elements in U are given
non-negative weights.

Goal: Compute a feasible solution such that the maximum weight of all
its elements is minimized.
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Introduction

Main Contribution

Main Contribution (2/8)

Online Min-Max-P
An online learning variant of min-max-P such that

the set of elements in U and the set of constraints C remain static.

the weights on the elements of U change over time.

Example: Min-Max Vertex Cover

Static: Given a graph G = (V ,E ), where each v ∈ V has weight
w(v) ≥ 0. Find a vertex cover V ′ ⊆ V which minimizes
w(V ′) = max{w(v) | v ∈ V ′}.
Online-version:

There are T rounds, a weight function w t on the vertices for each
round t.
An algorithm has to pick a vertex cover V ′

t of G and suffers a loss
w(V ′

t ) = max{w(v) : v ∈ V ′
t }.
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Introduction

Main Contribution

Vertex Cover (VC)

Miym, CC BY-SA 3.0, via Wikimedia Commons
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Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

VCW : Given an integer W , determine if G has a vertex cover of
maximum weight ≤ W .

Pick all vertices of weight ≤ W and see if this is a vertex cover.

The optimum solution: find the smallest W such that VCW is
affirmative.

Check all values W in {w(v) : v ∈ V (G)}.
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Introduction

Main Contribution

Main Contribution (3/8)

[A,B]-Gap-P
Given 0 ≤ A < B ≤ 1.

The decision problem where given an instance of P such that
|xopt | ≤ An or |xopt | ≥ Bn.

Goal: Decide whether |xopt | < Bn.

Main Theorem I

Assume that [A,B]-Gap-P is NP-complete, for 0 ≤ A < B ≤ 1. Then for
every α < B

A , there is no (randomized) polynomial-time vanishing α-regret
algorithm for online min-max-P unless NP = RP.
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Introduction

Main Contribution

Main Contribution (4/8)

Corollary 1

The online min-max vertex cover problem does not admit a
polynomial time vanishing (

√
2− ϵ)-regret algorithm unless NP = RP.

It does not admit a polynomial time vanishing (2− ϵ)-regret
algorithm unless Unique Game is in RP.

Corollary 2

If a cardinality problem P is NP-complete, then there is no polynomial
time vanishing regret algorithm for online min-max-P unless NP = RP.

Set α = 1,A = k
n ,B = k+1

n = A+ 1
n

Deciding if |xopt | ≤ k ⇔ deciding if |xopt | ≤ An or |xopt | ≥ Bn.
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Introduction

Main Contribution

Main Contribution (5/8)

We consider the relaxation:

min
x∈Q

max
i∈V

wixi ,

Q := {x : xi + xj ≥ 1,∀(i , j) ∈ E , 0 ≤ xi ≤ 1,∀i ∈ V }.
a sub-gradient g t(xt) = [0, 0, . . . ,w t

i , 0, . . . , 0] with wi in coordinate
argmax1≤i≤n w

t
i x

t
i and 0 otherwise.

Round the solution: Xi+1 = 1 if x t+1
i ≥ 1/2 and 0 otherwise.
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Introduction

Main Contribution

Main Contribution (6/8)

Theorem (OGD for online Min-Max VC)

Let W = max1≤t≤T max1≤i≤n w
t
i . Then, after T steps, Algorithm 2

achieves

T∑
t=1

max
1≤i≤n

w t
i X

t
i ≤ 2 · min

X∗∈X

T∑
t=1

max
1≤i≤n

w t
i X

∗
i + 3W

√
nT
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Introduction

Main Contribution

Main Contribution (7/8)

Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

xt = argmin
x∈X

(
t−1∑
τ=1

f (x, yτ ) + R(x)

)
,

where R(x) is the regularization term.

Need an optimization oracle over the observed history.

Multi-instance version of min-max-P
Given an integer N > 0, a set X of feasible solutions, and N objective
functions f1, f2, . . . , fN over X .

Goal: Minimize
∑N

i=1 fi (x) over X .
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Introduction

Main Contribution

Main Contribution (8/8)

Examples:

Min-max vertex cover

Weight function w : V 7→ R+ on the vertices.

Min-max perfect matching

Weight function w : E 7→ R+ on the edges.
The weight of the heaviest edge on the perfect matching is minimized.

Min-max path

Given a graph G = (V ,E ) and two vertices s, t, and a weight function
w : E 7→ R+ on the edges.
The weight of the heaviest edge in the s–t path is minimized.

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path
and min-max vertex cover are APX-hard.
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Main Theorem I

The Proof

Proof of Main Theorem I

Main Theorem I

Assume that the problem [A,B]-Gap-P is NP-complete, for 0 ≤ A < B ≤ 1.

Then for every α < B
A , there is no (randomized) polynomial-time vanishing

α-regret algorithm for online min-max-P unless NP = RP.

Assumption: a vanishing α-regret algorithm O as an oracle for online
min-max-P with α = B

A − ϵ = (1− ϵ′)BA , for ϵ > 0.

Devise a polynomial time algorithm that

answers ‘yes’ with prob. < D < 1 if |xopt | ≤ An
answers ‘no’ if |xopt | ≥ Bn.

⋆ Note: if |xopt | ≥ Bn, all the solutions xt computed by O must have
size ≥ Bn.
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Main Theorem I

The Proof

Algorithm for the [A,B]-Gap-P

1 for t = 1, 2, . . . ,T do
Choose xt ∈ X according to the random distribution given by O.

if |xt | < Bn then return ‘yes’ (i.e., |xopt | ≤ An).

Fix a weight vector w t by assigning weight 1 to an element of U
chosen uniformly at random and weight 0 to all other elements.

Feed the weight vector and the cost f t(xt) = maxu∈xt w
t(u) back to O.

2 return ‘No’ (i.e., |xopt | ≥ Bn).
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Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Assume that |xopt | ≤ An.

Let E be the event that the algorithm returns ‘No’.

It finds |xt | ≥ Bn at each step t ∈ [T ].

We get

Pr[E ] = Pr

[
T⋂
t=1

{
|xt | ≥ Bn

}]

≤ Pr[X ≥ TBn] ≤ E[X ]

TBn

=

∑T
t=1 E[|xt |]
TBn

=

∑T
t=1 E[f

t(xt)]

TB
.

where X =
∑T

t=1 |xt |, and E[f t(xt)] = E[|xt |]/n.
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Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

|xopt | ≤ An (by assumption).

Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Pr[f t(xopt) = 1] ≤ A

⇒
∑T

t=1 E[f
t(xopt)] ≤ AT .

Since O is a vanishing α-regret algorithm with α = (1− ϵ′)BA ,

T∑
t=1

E[f t(xt)] ≤ α
T∑
t=1

E[f t(xopt)] + poly(n)T c

≤ (1− ϵ′)BT + poly(n)T c .

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 22 / 34



Online Learning for Min-Max Problems

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

|xopt | ≤ An (by assumption).

Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Pr[f t(xopt) = 1] ≤ A ⇒
∑T

t=1 E[f
t(xopt)] ≤ AT .

Since O is a vanishing α-regret algorithm with α = (1− ϵ′)BA ,

T∑
t=1

E[f t(xt)] ≤ α
T∑
t=1

E[f t(xopt)] + poly(n)T c

≤ (1− ϵ′)BT + poly(n)T c .

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 22 / 34



Online Learning for Min-Max Problems

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

|xopt | ≤ An (by assumption).

Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Pr[f t(xopt) = 1] ≤ A ⇒
∑T

t=1 E[f
t(xopt)] ≤ AT .

Since O is a vanishing α-regret algorithm with α = (1− ϵ′)BA ,

T∑
t=1

E[f t(xt)] ≤ α
T∑
t=1

E[f t(xopt)] + poly(n)T c

≤ (1− ϵ′)BT + poly(n)T c .

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 22 / 34



Online Learning for Min-Max Problems

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Hence,

Pr[E ] ≤ (1− ϵ′)BT + poly(n)T c

BT
= (1− ϵ′) +

poly(n)T c−1

B
.

We can choose T =
(

Bϵ′

2poly(n)

) 1
c−1

=
(

Aϵ
2poly(n)B

) 1
c−1

, then

Pr[E ] ≤ 1− ϵ′

2
= 1− Aϵ

2B
.

(constant; strictly smaller than 1)

We’ve (roughly) shown that the [A,B]-Gap-P is in RP.
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Main Theorem I

An OGD for Online Min-Max-VC

The hardness result for online Min-Max VC is tight

Theorem (OGD for online Min-Max VC)

Let W = max1≤t≤T max1≤i≤n w
t
i . Then, after T steps, Algorithm 2

achieves

T∑
t=1

max
1≤i≤n

w t
i X

t
i ≤ 2 · min

X∗∈X

T∑
t=1

max
1≤i≤n

w t
i X

∗
i + 3W

√
nT
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Main Theorem I

An OGD for Online Min-Max-VC

Proof of the tightness

The guarantee from the OGD algorithm:

T∑
t=1

max
1≤i≤n

w t
i x

t
i ≤ min

X∗∈Q

T∑
t=1

max
1≤i≤n

w t
i x

∗
i +

3DG

2

√
T

D ≤
√
n (diameter of Q).

G ≤ W : Lipschitz constant of g t .
max1≤i≤n X

t
iw

t
i ≤ 2max1≤i≤n x

t
iw

t
i by the rounding procedure.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 25 / 34



Online Learning for Min-Max Problems

Main Theorem II

Outline

1 Introduction
The Online Learning Framework
Main Contribution

2 Main Theorem I
The Proof
An OGD for Online Min-Max-VC

3 Main Theorem II
Multi-Instance Min-Max VC
Multi-Instance Min-Max Perfect Matching

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 26 / 34



Online Learning for Min-Max Problems

Main Theorem II

Recall Main Theorem II

Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

xt = argmin
x∈X

(
t−1∑
τ=1

f (x, yτ ) + R(x)

)
,

where R(x) is the regularization term.

Need an optimization oracle over the observed history.

Multi-instance version of min-max-P
Given an integer N > 0, a set X of feasible solutions, and N objective
functions f1, f2, . . . , fN over X .

Goal: Minimize
∑N

i=1 fi (x) over X .
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Remark

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path
and min-max vertex cover are APX-hard.

The problems P could be polynomially solvable when using a “sum”
objective.

Main Theorem I cannot be applied.

Main Theorem II shows that FTRL fails to efficiently solve the online
min-max-P.
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Multi-Instance Min-Max VC

A straightforward reduction from VC (since VC is APX-hard).

Let’s say V = {v1, v2, . . . , vn}.
Construct n weight functions w1,w2, . . . ,wn : V 7→ R such that

In w i : we set w i (vi ) = 1 and w i (v) = 0 for v ̸= vi .

Any vertex cover has total cost equal to its size.
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Perfect Matching

Miym, CC BY-SA 3.0, via Wikimedia Commons

Maximum cardinality matchings.

Only in (b) there is a perfect matching.
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Multi-Instance Min-Max Perfect Matching (1/3)

Reduction from the Max-3-DNF problem.

A 3-DNF formula: (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x3 ∧ x4).
(x1 ∧ x2 ∧ x3): a clause
x1 or ¬x2: literals

Given

n Boolean variables X = {x1, x2, . . . , xn}
m clauses C1,C2, . . . ,Cm (conjunctions of 3 literals of X )

Goal: Determine a truth assignment σ : X 7→ {T ,F} such that the
number of satisfied clauses is maximized.
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Multi-Instance Min-Max Perfect Matching (2/3)

An instance I of Max-3-DNF ⇒ G (V ,E ) and m weight functions:

Each xi is associated a 4-cycle on vertices (ui , u
t
i , ūi , u

f
i ).

Weight function corresponds to clause Cj :

w j(uiu
t
i ) = 1 if ¬xi ∈ Ci , otherwise w j(uiu

t
i ) = 0.

w j(uiu
f
i ) = 1 if xi ∈ Ci , otherwise w j(uiu

f
i ) = 0.

Edges incident to vertices ūi always get weight 0.

⋆ The instance I ′ of multi-instance min-max matching is constructed
(in polynomial time).
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Multi-Instance Min-Max Perfect Matching (3/3)

A truth assignment σ of I corresponds to a matching Mσ of G .

value(I, σ) = m − value(I ′,Mσ)

Assume that there exists a (1 + ϵ)-approximation algorithm for
multi-instance min-max perfect matching, then we can get a (1− ρϵ)
approximation algorithm for Max-3-DNF for some constant ρ.

PTAS-reduction.

Thus, multi-instance min-max perfect matching is APX-hard.
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Multi-Instance Min-Max Perfect Matching

Discussion
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