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Introduction

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.
@ Decision space: X.

@ State space: V.

@ Cost function f : X x Y — R.
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Introduction

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.
@ Decision space: X.

@ State space: V.

@ Cost function f : X x Y — R.

A perspective of an iterative adversarial game with T rounds.
@ The algorithm first chooses an action x* € X.
@ The (adversarial) nature reveals y* € ) that could depend on x!.

© The algorithm observes the state y* and suffers a loss
fr(xt) = f(x', y").
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Introduction

The Online Learning Framework

Online learning framework (2/4)

The objective of the player: minimize the accumulative cost

Online Learning Algorithms

An algorithm that decides the actions x* before observing y* for each t.

@ The efficiency measure: regret.
T T
Rt = Z f(xtayt) - Z f(x*7yt)7
t=1 t=1

where x* = arg min ¢ y 2;1 f(x,y*) (static).
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Introduction

The Online Learning Framework

Online learning framework (3/4)

e We aim for algorithms with R = O(T¢), for 0 < ¢ < 1.
e Vanishing regret (or no-regret).
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The Online Learning Framework

Online learning framework (3/4)

e We aim for algorithms with R = O(T¢), for 0 < ¢ < 1.
e Vanishing regret (or no-regret).

@ A computational efficiency concern:
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Introduction

The Online Learning Framework

Online learning framework (3/4)

e We aim for algorithms with R = O(T¢), for 0 < ¢ < 1.
e Vanishing regret (or no-regret).

@ A computational efficiency concern:

o It coulde be NP-hard to compute x,'s even for T = 1 and y! is
revealed beforehand.

A relaxed notion: a-regret

T T

R% = Z f(xtayt) - QZ f(X*vyt)‘
=il

t=1

o Goal: vanishing a-regret for some o > 1.
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Introduction

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing a-Regret Algorithms

An online learning algorithm which
e computes x* in poly(n, t), where n is the input instance size.

o the (expected) regret is bounded by poly(n)T¢, for some constant
0<c< 1

@ For the case a =1, we call it a polynomial time vanishing regret
algorithm.
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Introduction

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing a-Regret Algorithms

An online learning algorithm which
e computes x* in poly(n, t), where n is the input instance size.

o the (expected) regret is bounded by poly(n)T¢, for some constant
0<c< 1

@ For the case a =1, we call it a polynomial time vanishing regret
algorithm.

The regret is polynomial in n and . )
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Main Contribution

Main Contribution (1/8)

Cardinality constrained problems

Given an n-elements set I/, a set of constraints C on 2, and an integer k.

Goal: Determine whether there exists a feasible solution of size < k.

Given a cardinality problem P where all the elements in U/ are given
non-negative weights.

Goal: Compute a feasible solution such that the maximum weight of all
its elements is minimized.
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Introduction

Main Contribution

Main Contribution (2/8)

Online Min-Max-P

An online learning variant of min-max-P such that
@ the set of elements in ¢/ and the set of constraints C remain static.

@ the weights on the elements of U/ change over time.
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Introduction
Main Contribution

Main Contribution (2/8)

Online Min-Max-P

An online learning variant of min-max-P such that

@ the set of elements in U and the set of constraints C remain static.

@ the weights on the elements of U/ change over time.

Example: Min-Max Vertex Cover
e Static: Given a graph G = (V, E), where each v € V has weight
w(v) > 0. Find a vertex cover V/ C V which minimizes
w(V') = max{w(v) | v € V'}.
@ Online-version:

e There are T rounds, a weight function w’ on the vertices for each
round t.

o An algorithm has to pick a vertex cover V/ of G and suffers a loss
w(V}) = max{w(v) : v € V/}.
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Main Contribution

Vertex Cover (VC)

Miym, CC BY-SA 3.0, via Wikimedia Commons

IS I
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Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

@ VCyy: Given an integer W, determine if G has a vertex cover of
maximum weight < W.

o Pick all vertices of weight < W and see if this is a vertex cover.
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Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

@ VCyy: Given an integer W, determine if G has a vertex cover of
maximum weight < W.

o Pick all vertices of weight < W and see if this is a vertex cover.

e The optimum solution: find the smallest W such that VCyy is
affirmative.
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Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

@ VCyy: Given an integer W, determine if G has a vertex cover of
maximum weight < W.

o Pick all vertices of weight < W and see if this is a vertex cover.

e The optimum solution: find the smallest W such that VCyy is
affirmative.

o Check all values W in {w(v):v € V(G)}.
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Introduction

Main Contribution

Main Contribution (3/8)

[A, B]-Gap-P
e Gven0< A< B<1.

@ The decision problem where given an instance of P such that
|Xopt| < An or |Xopt| > Bn.

o Goal: Decide whether |xqpt| < Bn.

Main Theorem |

Assume that [A, B]-Gap-P is NP-complete, for 0 < A < B < 1. Then for
every o < %, there is no (randomized) polynomial-time vanishing a-regret
algorithm for online min-max-P unless NP = RP.

| N\

\
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Main Contribution

Main Contribution (4/8)

@ The online min-max vertex cover problem does not admit a
polynomial time vanishing (/2 — €)-regret algorithm unless NP = RP.

@ It does not admit a polynomial time vanishing (2 — €)-regret
algorithm unless Unique Game is in RP.

If a cardinality problem P is NP-complete, then there is no polynomial
time vanishing regret algorithm for online min-max-P unless NP = RP.

oSeta=1A=5p=rl_A41

Deciding if |Xopt| < k < deciding if |Xopt| < An or |Xgp:| > Bn.
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Introduction

Main Contribution

Main Contribution (5/8)

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

1 Select an arbitrary fractional vertex cover x' € O .

2 for t=1,2,...do

Round x* to X': X! =1 if x > 1/2 and X{ =0 otherwise.

Play X' € {0,1)". Observe w' (weights of vertices) and incur the cost f'(X') =max; wiX{.
Update ytt1 =xf — %g[(x’).

S AW

Project y*+! to Q w.rt the ¢;-norm: x*+! = Projg (y**1) := argminge o [ly**! — x|

@ We consider the relaxation:
)r(gig rl_nea‘;( wiX;,
o Qi ={x:xi+x>1V(i,j)e E,0<x; <1,Vie V}
o a sub-gradient g*(x") = [0,0,...,w},0,...,0] with w; in coordinate
arg max; <;<, Wi x and 0 otherwise.

e Round the solution: X;;; =1 if xf“ >1/2 and 0 otherwise.
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Main Contribution

Main Contribution (6/8)

Theorem (OGD for online Min-Max VC)

Let W = maxi<¢<7 maxi<j<, w/. Then, after T steps, Algorithm 2
achieves

T T

max wi X! <2 min max w/ X +3WvnT
“—1<i<n X*€X £ 1<i<n
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Main Contribution

Main Contribution (7/8)

@ Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

t—1
x! = arg min f(x,y7)+ R(x) |,
min | 32 cv7) + R

where R(x) is the regularization term.
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@ Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

t—1
x! = arg min f(x,y7)+ R(x) |,
min | 32 cv7) + R

where R(x) is the regularization term.

o Need an optimization oracle over the observed history.
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Main Contribution (7/8)

@ Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

t—1
x! = arg min f(x,y7)+ R(x) |,
min | 32 cv7) + R

where R(x) is the regularization term.

o Need an optimization oracle over the observed history.

Multi-instance version of min-max-P
Given an integer N > 0, a set X of feasible solutions, and /N objective

functions f1, f>, ..., fy over X.

Goal: Minimize "I fi(x) over X.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 16 /34




Online Learning for Min-Max Problems

Introduction

Main Contribution

Main Contribution (8/8)

Examples:

@ Min-max vertex cover

o Weight function w : V s R™ on the vertices.
@ Min-max perfect matching

o Weight function w : E — R on the edges.

o The weight of the heaviest edge on the perfect matching is minimized.
@ Min-max path

o Given a graph G = (V/, E) and two vertices s, t, and a weight function

w : E — RT on the edges.
o The weight of the heaviest edge in the s—t path is minimized.

Main Theorem |1

The multi-instance version of min-max perfect matching, min-max path
and min-max vertex cover are APX-hard.
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Main Theorem |

The Proof

Proof of Main Theorem |

Main Theorem |

Assume that the problem [A, B]-Gap-P is NP-complete, for 0 < A< B < 1.
Then for every a < %, there is no (randomized) polynomial-time vanishing
a-regret algorithm for online min-max-P unless NP = RP.

@ Assumption: a vanishing a-regret algorithm O as an oracle for online
min-max-P with a = & —e = (1 — ¢)&, for e > 0.

@ Devise a polynomial time algorithm that
o answers ‘yes’ with prob. < D < 1 if |Xop| < An
o answers ‘no’ if [xept| > Bn.

* Note: if [xopt| > Bn, all the solutions x; computed by O must have
size > Bn.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 19 /34



Online Learning for Min-Max Problems

Main Theorem |

The Proof

Algorithm for the [A, B]-Gap-P

Q fort=1,2,...,T do
o Choose x! € X according to the random distribution given by O.
o if |x!| < Bn then return ‘yes’ (i.e., [xopt| < An).

o Fix a weight vector w' by assigning weight 1 to an element of U
chosen uniformly at random and weight 0 to all other elements.

o Feed the weight vector and the cost ff(x") = max,ex w(u) back to O.

@ return ‘No’ (i.e., [Xopt| > Bn).
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

o Assume that |xopt| < An.
@ Let E be the event that the algorithm returns ‘No'.
o It finds |x;| > Bn at each step t € [T].

o We get

;
Pr[E] = Pr [ﬂ{yxf\zsn}
t=1
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

o Assume that |xopt| < An.
@ Let E be the event that the algorithm returns ‘No'.
o It finds |x;| > Bn at each step t € [T].

o We get

< Pr[X > TBn]

;
Pr[E] = Pr [ﬂ{yxf\zsn}

t=1
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

o Assume that |xopt| < An.
@ Let E be the event that the algorithm returns ‘No'.
o It finds |x;| > Bn at each step t € [T].

o We get

< Pr[X > TBn] < %

;
Pr[E] = Pr [ﬂ{yxf\zsn}

1 TBn
_ L EX _ XL ElF(x)]
TBn B '

where X = 32 [x!], and E[f!(x!)] = E[|x![]/n.
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Note:

@ [Xopt| < An (by assumption).

@ Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Pr[ff(xqpt) = 1] < A
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Note:

@ [Xopt| < An (by assumption).

@ Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Priff(xopt) = 1] <A = S E[ff(xopt)] < AT,
@ Since O is a vanishing a-regret algorithm with oo = (1 — e/)%,
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Note:

@ [Xopt| < An (by assumption).

@ Only one element of weight 1 is picked uniformly at random at each
time t

Hence, Pr[ff(xopt) = 1] <A = S E[ft(xopt)] < AT.

@ Since O is a vanishing a-regret algorithm with oo = (1 — e/)%,
T T
D EIF(x)] < ad E[ff(xop)] + poly(n) T
t=1 t=1

< (1—¢€)BT + poly(n)T€.
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Hence,

(1 —€)BT + poly(n)T€
BT

poly(n) T¢~1

Pr[E] < 5

=(1-€)+

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 23 /34



Online Learning for Min-Max Problems

Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Hence,
(1 —€)BT + poly(n)T€ , poly(n) T¢~1
< =(1— =A
Pr[E] < BT 1-e)+—F%
= =
_ Be' c—1 Ae c—
We can choose T = (W) = (W) , then
€ Ae
PrlE1 <1 ——==1—- —.
el =1-7 2B

(constant; strictly smaller than 1)
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Main Theorem |

The Proof

Proof of Main Theorem | (contd.)

Hence,
(1 —€)BT + poly(n)T€ , poly(n) T¢~1
< =(1— =A
Pr[E] < BT 1-e)+—F%
= =
_ Be' c—1 Ae c—
We can choose T = (W) = (W) , then
€ Ae
PrlE1 <1 ——==1—- —.
el =1-7 2B

(constant; strictly smaller than 1)

e We've (roughly) shown that the [A, B]-Gap-P is in RP.
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Main Theorem |

An OGD for Online Min-Max-VC

The hardness result for online Min-Max VC is tight

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

1 Select an arbitrary fractional vertex cover x!l e Q.

2 for t=1,2,...do

Round ' to X': X[ =1 if x{ > 1/2 and X! =0 otherwise.

Play X' € {0, 1}". Observe w' (weights of vertices) and incur the cost f'(X‘) =max; w!X!.
Update y't1 =xf — %gf(x‘).

(-2 I B R V)

Project y'*! to Q w.rt the ¢;-norm: x*+! = Projg (y**!) := argmine o [y — x|2.

Theorem (OGD for online Min-Max VC)

Let W = maxi<¢<T maxi<j<, w/. Then, after T steps, Algorithm 2
achieves

T T

max wi X! < 2. min max wi X +3W+vnT
1 1<i<n X*eX 1 1<i<n
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An OGD for Online Min-Max-VC

Proof of the tightness

@ The guarantee from the OGD algorithm:

T T
DG
maxwx<m|n maxwx —1—3—\/?

1<i<n X*€Q 1<i< 2
t=1 t=1

o D < ./n (diameter of Q).
e G < W: Lipschitz constant of gt.
o maxi<i<n Xiw! < 2maxi<i<, xiw! by the rounding procedure.
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Recall Main Theorem Il

@ Follow-The-Regularized-Leader (FTRL): an algorithm which is less
predictable and more stable:

t—1
x! = arg min f(x,y7)+ R(x) |,
min | 32 cv7) + R

where R(x) is the regularization term.

o Need an optimization oracle over the observed history.

Multi-instance version of min-max-P
Given an integer N > 0, a set X of feasible solutions, and N objective

functions f1, f>, ..., fy over X.

Goal: Minimize "I fi(x) over X.
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Main Theorem |l

Remark

Main Theorem Il

The multi-instance version of min-max perfect matching, min-max path
and min-max vertex cover are APX-hard.

@ The problems P could be polynomially solvable when using a “sum”
objective.

e Main Theorem | cannot be applied.
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Main Theorem |l

Remark

Main Theorem Il

The multi-instance version of min-max perfect matching, min-max path
and min-max vertex cover are APX-hard.

@ The problems P could be polynomially solvable when using a “sum”
objective.

e Main Theorem | cannot be applied.

@ Main Theorem |l shows that FTRL fails to efficiently solve the online
min-max-P.
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Main Theorem |l

Multi-Instance Min-Max VC

Multi-Instance Min-Max VC

e A straightforward reduction from VC (since VC is APX-hard).

@ Let'ssay V ={wv1,va,...,vp}.
Construct n weight functions wl, w? ... . w" : V — R such that
o In w': weset w/(v;) =1and wi(v) =0 for v # v;.
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Main Theorem |l

Multi-Instance Min-Max VC

Multi-Instance Min-Max VC

e A straightforward reduction from VC (since VC is APX-hard).

@ Let'ssay V ={wv1,va,...,vp}.
Construct n weight functions wl, w? ... . w" : V — R such that
o In w': weset w/(v;) =1and wi(v) =0 for v # v;.

@ Any vertex cover has total cost equal to its size.
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Multi-Instance Min-Max Perfect Matching

Perfect Matching

Miym, CC BY-SA 3.0, via Wikimedia Commons

tﬁ (b)I i O (c)i i
@ Maximum cardinality matchings.

@ Only in (b) there is a perfect matching.
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Main Theorem |l

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (1/3)

@ Reduction from the Max-3-DNF problem.

o A 3-DNF formula: (x1 Axa A x3) V (x1 A =x2 A =x3) V (x1 A X3 A Xq).
o (x1 Axa Ax3): aclause
e xy or —xy: literals
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Main Theorem |l

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (1/3)

@ Reduction from the Max-3-DNF problem.

o A 3-DNF formula: (x1 Axa A x3) V (x1 A =x2 A =x3) V (x1 A X3 A Xq).
o (x1 Axa Ax3): aclause
e xy or —xy: literals

o Given
e n Boolean variables X = {x1,x2,...,%,}
o mclauses Cy, Gy, ..., Cp (conjunctions of 3 literals of X)

Goal: Determine a truth assignment o : X — {T, F} such that the
number of satisfied clauses is maximized.
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Main Theorem |l

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (2/3)

An instance Z of Max-3-DNF = G(V/, E) and m weight functions:
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Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (2/3)

An instance Z of Max-3-DNF = G(V/, E) and m weight functions:

e Each x; is associated a 4-cycle on vertices (u;, uf, dj, u,f)

Uy U;  or Ui U
xT; [
f f
Uy

@ Weight function corresponds to clause C;:
o wi(uuf) = 1if ~x; € G, otherwise w/(u;uf) = 0.
o w/(ujuf) =1if x; € G, otherwise w/(u;uf) = 0.
Edges incident to vertices &; always get weight 0.
% The instance 7’ of multi-instance min-max matching is constructed
(in polynomial time).
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Main Theorem |l

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (3/3)

@ A truth assignment o of Z corresponds to a matching M, of G.

o value(Z,0) = m — value(Z', M,)
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@ A truth assignment o of Z corresponds to a matching M, of G.
e value(Z,0) = m — value(Z', M,)

@ Assume that there exists a (1 + €)-approximation algorithm for
multi-instance min-max perfect matching, then we can get a (1 — pe)
approximation algorithm for Max-3-DNF for some constant p.

o PTAS-reduction.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning for Min-Max Problems 30 June 2023 33/34


https://en.wikipedia.org/wiki/PTAS_reduction

Online Learning for Min-Max Problems

Main Theorem |l

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (3/3)

@ A truth assignment o of Z corresponds to a matching M, of G.
e value(Z,0) = m — value(Z', M,)

@ Assume that there exists a (1 + €)-approximation algorithm for
multi-instance min-max perfect matching, then we can get a (1 — pe)
approximation algorithm for Max-3-DNF for some constant p.

o PTAS-reduction.

@ Thus, multi-instance min-max perfect matching is APX-hard.
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