Online Learning for Min-Max Discrete Problems

Theoretical Computer Science Vol. 930 (2022) 209–217.E. Bampis, D. Christou, V. Escoffier, K. T. Nguyen

Speaker: Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

30 June 2023

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning for Min-Max Problems

B ► < E ► < E ► 30 June 2023

Outline

Introduction

- The Online Learning Framework
- Main Contribution

Main Theorem I

- The Proof
- An OGD for Online Min-Max-VC

3 Main Theorem II

- Multi-Instance Min-Max VC
- Multi-Instance Min-Max Perfect Matching

Introduction

Outline

Introduction

- The Online Learning Framework
- Main Contribution

Main Theorem I

- The Proof
- An OGD for Online Min-Max-VC

Main Theorem II

- Multi-Instance Min-Max VC
- Multi-Instance Min-Max Perfect Matching

Joseph C. C. Lin (CSIE, TKU, TW)

イロト イヨト イヨト イヨト

Introduction

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.

- Decision space: \mathcal{X} .
- State space: \mathcal{Y} .

Joseph C. C. Lin (CSIE, TKU, TW)

• Cost function $f : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$.

イロト 不得下 イヨト イヨト

Introduction

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.

- Decision space: \mathcal{X} .
- State space: \mathcal{Y} .
- Cost function $f : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$.

A perspective of an iterative adversarial game with T rounds.

- The algorithm first chooses an action $\mathbf{x}^t \in \mathcal{X}$.
- **2** The (adversarial) nature reveals $\mathbf{y}^t \in \mathcal{Y}$ that could depend on \mathbf{x}^t .
- The algorithm observes the state \mathbf{y}^t and suffers a loss $f^t(\mathbf{x}^t) = f(\mathbf{x}^t, \mathbf{y}^t)$.

Introduction

The Online Learning Framework

Online learning framework (2/4)

The objective of the player: minimize the accumulative cost

$$\sum_{t=1}^{T} f(\mathbf{x}^t, \mathbf{y}^t).$$

Online Learning Algorithms

An algorithm that decides the actions \mathbf{x}^t before observing \mathbf{y}^t for each t.

• The efficiency measure: regret.

$$R_{T} = \sum_{t=1}^{T} f(\mathbf{x}^{t}, \mathbf{y}^{t}) - \sum_{t=1}^{T} f(\mathbf{x}^{*}, \mathbf{y}^{t}),$$

where $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f(\mathbf{x}, \mathbf{y}^t)$ (static).

Introduction

The Online Learning Framework

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).

э

Joseph C. C. Lin (CSIE, TKU, TW)

Introduction

The Online Learning Framework

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).
- A computational efficiency concern:

イロト イヨト イヨト イヨト

Introduction

The Online Learning Framework

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).
- A computational efficiency concern:
 - It coulde be NP-hard to compute \mathbf{x}_t 's even for T = 1 and \mathbf{y}^1 is revealed beforehand.

A relaxed notion: α -regret

$$R_T^{\alpha} = \sum_{t=1}^T f(\mathbf{x}^t, \mathbf{y}^t) - \alpha \sum_{t=1}^T f(\mathbf{x}^*, \mathbf{y}^t).$$

• Goal: vanishing α -regret for some $\alpha \geq 1$.

Introduction

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing α -Regret Algorithms

An online learning algorithm which

- computes \mathbf{x}^t in poly(n, t), where n is the input instance size.
- the (expected) regret is bounded by $poly(n)T^{c}$, for some constant $0 \le c < 1$.
- For the case $\alpha = 1$, we call it a polynomial time vanishing regret algorithm.

Introduction

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing α -Regret Algorithms

An online learning algorithm which

- computes \mathbf{x}^t in poly(n, t), where n is the input instance size.
- the (expected) regret is bounded by $poly(n)T^{c}$, for some constant $0 \le c < 1$.
- For the case $\alpha = 1$, we call it a polynomial time vanishing regret algorithm.

The regret is polynomial in n and sublinear in T.

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning for Min-Max Problems

Introduction

Main Contribution

Main Contribution (1/8)

Cardinality constrained problems

Given an *n*-elements set \mathcal{U} , a set of constraints \mathcal{C} on $2^{\mathcal{U}}$, and an integer *k*.

Goal: Determine whether there exists a feasible solution of size $\leq k$.

$\mathsf{Min}\text{-}\mathsf{Max}\text{-}\mathcal{P}$

Given a cardinality problem \mathcal{P} where all the elements in \mathcal{U} are given non-negative weights.

Goal: Compute a feasible solution such that the maximum weight of all its elements is minimized.

Introduction

Main Contribution

Main Contribution (2/8)

 $\mathsf{Online}\ \mathsf{Min}\text{-}\mathsf{Max}\text{-}\mathcal{P}$

An online learning variant of min-max- \mathcal{P} such that

- \bullet the set of elements in ${\cal U}$ and the set of constraints ${\cal C}$ remain static.
- the weights on the elements of \mathcal{U} change over time.

Introduction

Main Contribution

Main Contribution (2/8)

Online Min-Max- \mathcal{P}

An online learning variant of min-max- \mathcal{P} such that

- \bullet the set of elements in ${\cal U}$ and the set of constraints ${\cal C}$ remain static.
- the weights on the elements of ${\cal U}$ change over time.

Example: Min-Max Vertex Cover

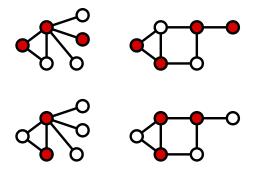
- Static: Given a graph G = (V, E), where each $v \in V$ has weight $w(v) \ge 0$. Find a vertex cover $V' \subseteq V$ which minimizes $w(V') = \max\{w(v) \mid v \in V'\}.$
- Online-version:
 - There are T rounds, a weight function w^t on the vertices for each round t.
 - An algorithm has to pick a vertex cover V'_t of G and suffers a loss $w(V'_t) = \max\{w(v) : v \in V'_t\}.$

Introduction

Main Contribution

Vertex Cover (VC)

Miym, CC BY-SA 3.0, via Wikimedia Commons



Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning for Min-Max Problems

30 June 2023

イロト イポト イヨト イヨト

Joseph C. C. Lin (CSIE, TKU, TW)

Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

- VC_W: Given an integer W, determine if G has a vertex cover of maximum weight ≤ W.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.

イロト イヨト イヨト イヨト

Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

- VC_W: Given an integer W, determine if G has a vertex cover of maximum weight ≤ W.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.
 - The optimum solution: find the smallest W such that VC_W is affirmative.

Introduction

Main Contribution

Static Min-Max VC is polynomial-time solvable

- VC_W: Given an integer W, determine if G has a vertex cover of maximum weight ≤ W.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.
 - The optimum solution: find the smallest W such that VC_W is affirmative.
 - Check all values W in $\{w(v) : v \in V(G)\}$.

Introduction

Main Contribution

Main Contribution (3/8)

[A, B]-Gap- \mathcal{P}

- Given $0 \le A < B \le 1$.
- The decision problem where given an instance of \mathcal{P} such that $|\mathbf{x}_{opt}| \leq An$ or $|\mathbf{x}_{opt}| \geq Bn$.
- Goal: Decide whether $|\mathbf{x}_{opt}| < Bn$.

Main Theorem I

Assume that [A, B]-Gap- \mathcal{P} is NP-complete, for $0 \le A < B \le 1$. Then for every $\alpha < \frac{B}{A}$, there is no (randomized) polynomial-time vanishing α -regret algorithm for online min-max- \mathcal{P} unless NP = RP.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning

30 June 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Introduction

Main Contribution

Main Contribution (4/8)

Corollary 1

- The online min-max vertex cover problem does not admit a polynomial time vanishing $(\sqrt{2} \epsilon)$ -regret algorithm unless NP = RP.
- It does not admit a polynomial time vanishing (2ϵ) -regret algorithm unless Unique Game is in RP.

Corollary 2

If a cardinality problem $\mathcal P$ is NP-complete, then there is no polynomial time vanishing regret algorithm for online min-max- $\mathcal P$ unless NP = RP.

• Set
$$\alpha = 1, A = \frac{k}{n}, B = \frac{k+1}{n} = A + \frac{1}{n}$$

Deciding if $|\mathbf{x}_{opt}| \le k \Leftrightarrow$ deciding if $|\mathbf{x}_{opt}| \le An$ or $|\mathbf{x}_{opt}| \ge Bn$.

Introduction

Main Contribution

Main Contribution (5/8)

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

- 1 Select an arbitrary fractional vertex cover $x^1 \in \mathcal{Q}$.
- **2** for $t = 1, 2, \dots$ do
- **3** Round x^t to X^t : $X_i^t = 1$ if $x_i^t \ge 1/2$ and $X_i^t = 0$ otherwise.
- **4** Play $X^t \in \{0, 1\}^n$. Observe w^t (weights of vertices) and incur the cost $f^t(X^t) = \max_i w_i^t X_i^t$.

5 Update
$$y^{t+1} = x^t - \frac{1}{\sqrt{t}}g^t(x^t)$$
.

- 6 Project y^{t+1} to \mathcal{Q} w.r.t the ℓ_2 -norm: $x^{t+1} = \operatorname{Proj}_{\mathcal{Q}}(y^{t+1}) := \arg\min_{x \in \mathcal{Q}} \|y^{t+1} x\|_2$.
 - We consider the relaxation:

$$\min_{\mathbf{x}\in\mathcal{Q}}\max_{i\in V}w_ix_i,$$

- $\mathcal{Q} := \{\mathbf{x} : x_i + x_j \ge 1, \forall (i,j) \in E, 0 \le x_i \le 1, \forall i \in V\}.$
- a sub-gradient $g^t(\mathbf{x}^t) = [0, 0, \dots, w_i^t, 0, \dots, 0]$ with w_i in coordinate arg $\max_{1 \le i \le n} w_i^t x_i^t$ and 0 otherwise.
- Round the solution: $X_{i+1} = 1$ if $x_i^{t+1} \ge 1/2$ and 0 otherwise.

Introduction

Main Contribution

Main Contribution (6/8)

Theorem (OGD for online Min-Max VC)

Let $W = \max_{1 \le t \le T} \max_{1 \le i \le n} w_i^t$. Then, after T steps, Algorithm 2 achieves

$$\sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t X_i^t \le 2 \cdot \min_{X^* \in \mathcal{X}} \sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t X_i^* + 3W\sqrt{nT}$$

Joseph C. C. Lin (CSIE, TKU, TW)

Introduction

Main Contribution

Main Contribution (7/8)

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = rgmin_{\mathbf{x}\in\mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x},\mathbf{y}^{ au}) + R(\mathbf{x})
ight),$$

where $R(\mathbf{x})$ is the regularization term.

イロト イヨト イヨト イヨト

Joseph C. C. Lin (CSIE, TKU, TW)

Introduction

Main Contribution

Main Contribution (7/8)

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = rgmin_{\mathbf{x}\in\mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x},\mathbf{y}^{ au}) + R(\mathbf{x})
ight),$$

where $R(\mathbf{x})$ is the regularization term.

• Need an optimization oracle over the observed history.

イロト 不得下 イヨト イヨト

Introduction

Main Contribution

Main Contribution (7/8)

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = rgmin_{\mathbf{x}\in\mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x},\mathbf{y}^{ au}) + R(\mathbf{x})
ight),$$

where $R(\mathbf{x})$ is the regularization term.

• Need an optimization oracle over the observed history.

Multi-instance version of min-max- \mathcal{P}

Given an integer N > 0, a set \mathcal{X} of feasible solutions, and N objective functions f_1, f_2, \ldots, f_N over \mathcal{X} .

Goal: Minimize $\sum_{i=1}^{N} f_i(\mathbf{x})$ over \mathcal{X} .

イロト イポト イヨト イヨト

Introduction

Main Contribution

Main Contribution (8/8)

Examples:

- Min-max vertex cover
 - Weight function $w: V \mapsto \mathbb{R}^+$ on the vertices.
- Min-max perfect matching
 - Weight function $w : E \mapsto \mathbb{R}^+$ on the edges.
 - The weight of the heaviest edge on the perfect matching is minimized.
- Min-max path
 - Given a graph G = (V, E) and two vertices s, t, and a weight function $w : E \mapsto \mathbb{R}^+$ on the edges.
 - The weight of the heaviest edge in the *s*-*t* path is minimized.

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning for Min-Max Problems

30 June 2023

17/34

Outline

Introduction

- The Online Learning Framework
- Main Contribution

Main Theorem I

- The Proof
- An OGD for Online Min-Max-VC

Main Theorem II

- Multi-Instance Min-Max VC
- Multi-Instance Min-Max Perfect Matching

Joseph C. C. Lin (CSIE, TKU, TW)

< □ > < □ > < □ > < □ > < □ > < □ >

Main Theorem I

The Proof

Proof of Main Theorem I

Main Theorem I

Assume that the problem [A, B]-Gap- \mathcal{P} is NP-complete, for $0 \le A < B \le 1$. Then for every $\alpha < \frac{B}{A}$, there is **no** (randomized) polynomial-time vanishing α -regret algorithm for online min-max- \mathcal{P} unless NP = RP.

- Assumption: a vanishing α -regret algorithm \mathcal{O} as an oracle for online min-max- \mathcal{P} with $\alpha = \frac{B}{A} - \epsilon = (1 - \epsilon')\frac{B}{A}$, for $\epsilon > 0$.
- Devise a polynomial time algorithm that
 - answers 'yes' with prob. < D < 1 if $|\mathbf{x}_{ont}| < An$
 - answers 'no' if $|\mathbf{x}_{opt}| \geq Bn$.
- * Note: if $|\mathbf{x}_{opt}| \geq Bn$, all the solutions \mathbf{x}_t computed by \mathcal{O} must have size > Bn.

Main Theorem I

The Proof

Algorithm for the [A, B]-Gap- \mathcal{P}

1 for t = 1, 2, ..., T do

- Choose $\mathbf{x}^t \in \mathcal{X}$ according to the random distribution given by \mathcal{O} .
- if $|\mathbf{x}^t| < Bn$ then return 'yes' (i.e., $|\mathbf{x}_{opt}| \le An$).
- Fix a weight vector w^t by assigning weight 1 to an element of U chosen uniformly at random and weight 0 to all other elements.
- Feed the weight vector and the cost $f^t(\mathbf{x}^t) = \max_{u \in \mathbf{x}^t} w^t(u)$ back to \mathcal{O} .

2 return 'No' (i.e., $|\mathbf{x}_{opt}| \ge Bn$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Proof

Proof of Main Theorem I (contd.)

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- Let *E* be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.

• We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{T} \left\{ |\mathbf{x}^{t}| \geq Bn \right\}\right]$$

The Proof

Proof of Main Theorem I (contd.)

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- Let *E* be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.

• We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{T} \left\{ |\mathbf{x}^t| \ge Bn \right\}\right] \le \Pr[X \ge TBn]$$

The Proof

Proof of Main Theorem I (contd.)

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- Let *E* be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.

• We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{T} \left\{ |\mathbf{x}^{t}| \ge Bn \right\}\right] \le \Pr[X \ge TBn] \le \frac{\mathbf{E}[X]}{TBn}$$
$$= \frac{\sum_{t=1}^{T} \mathbf{E}[|\mathbf{x}^{t}|]}{TBn} = \frac{\sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}^{t})]}{TB}.$$

where $X = \sum_{t=1}^{T} |\mathbf{x}^t|$, and $\mathbf{E}[f^t(\mathbf{x}^t)] = \mathbf{E}[|\mathbf{x}^t|]/n$.

Joseph C. C. Lin (CSIE, TKU, TW)

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time \boldsymbol{t}

Hence, $\Pr[f^t(\mathbf{x}_{opt}) = 1] \leq A$

イロト イヨト イヨト イヨト

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time *t*
- Hence, $\Pr[f^t(\mathbf{x}_{opt}) = 1] \le A \implies \sum_{t=1}^T \mathbf{E}[f^t(\mathbf{x}_{opt})] \le AT$.
- Since \mathcal{O} is a vanishing α -regret algorithm with $\alpha = (1 \epsilon')\frac{B}{A}$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time *t*
- Hence, $\Pr[f^t(\mathbf{x}_{opt}) = 1] \leq A \implies \sum_{t=1}^T \mathbf{E}[f^t(\mathbf{x}_{opt})] \leq AT$.
- Since \mathcal{O} is a vanishing α -regret algorithm with $\alpha = (1 \epsilon')\frac{B}{A}$,

$$\sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}^{t})] \leq \alpha \sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}_{opt})] + \operatorname{poly}(n) T^{c}$$
$$\leq (1 - \epsilon') BT + \operatorname{poly}(n) T^{c}.$$

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Hence,

$$\Pr[E] \leq rac{(1-\epsilon')BT + \operatorname{poly}(n)T^c}{BT} = (1-\epsilon') + rac{\operatorname{poly}(n)T^{c-1}}{B}.$$

э

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Hence,

$$\begin{split} \Pr[E] &\leq \frac{(1-\epsilon')BT + \operatorname{poly}(n)T^c}{BT} = (1-\epsilon') + \frac{\operatorname{poly}(n)T^{c-1}}{B}. \end{split}$$

We can choose $T = \left(\frac{B\epsilon'}{2\operatorname{poly}(n)}\right)^{\frac{1}{c-1}} = \left(\frac{A\epsilon}{2\operatorname{poly}(n)B}\right)^{\frac{1}{c-1}}$, then
$$\Pr[E] &\leq 1 - \frac{\epsilon'}{2} = 1 - \frac{A\epsilon}{2B}. \end{split}$$

(constant; strictly smaller than 1)

イロト イポト イヨト イヨト

Main Theorem I

The Proof

Proof of Main Theorem I (contd.)

Hence,

$$\begin{split} \Pr[E] &\leq \frac{(1-\epsilon')BT + \operatorname{poly}(n)T^c}{BT} = (1-\epsilon') + \frac{\operatorname{poly}(n)T^{c-1}}{B}. \end{split}$$

We can choose $T = \left(\frac{B\epsilon'}{2\operatorname{poly}(n)}\right)^{\frac{1}{c-1}} = \left(\frac{A\epsilon}{2\operatorname{poly}(n)B}\right)^{\frac{1}{c-1}}$, then
$$\Pr[E] &\leq 1 - \frac{\epsilon'}{2} = 1 - \frac{A\epsilon}{2B}. \end{split}$$

(constant; strictly smaller than 1)

• We've (roughly) shown that the [A, B]-Gap- \mathcal{P} is in RP.

< ロ > < 同 > < 回 > < 回 > < 回 > <

An OGD for Online Min-Max-VC

The hardness result for online Min-Max VC is tight

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

1 Select an arbitrary fractional vertex cover $x^1 \in \mathcal{Q}$.

2 for $t = 1, 2, \dots$ do

- **3** Round x^t to X^t : $X_i^t = 1$ if $x_i^t \ge 1/2$ and $X_i^t = 0$ otherwise.
- **4** Play $X^t \in \{0, 1\}^n$. Observe w^t (weights of vertices) and incur the cost $f^t(X^t) = \max_i w_i^t X_i^t$.

5 Update
$$y^{t+1} = x^t - \frac{1}{\sqrt{t}}g^t(x^t)$$
.

6 Project y^{t+1} to \mathcal{Q} w.r.t the ℓ_2 -norm: $x^{t+1} = \operatorname{Proj}_{\mathcal{Q}}(y^{t+1}) := \arg\min_{x \in \mathcal{Q}} \|y^{t+1} - x\|_2$.

Theorem (OGD for online Min-Max VC)

Let $W = \max_{1 \le t \le T} \max_{1 \le i \le n} w_i^t$. Then, after T steps, Algorithm 2 achieves

$$\sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t X_i^t \le 2 \cdot \min_{X^* \in \mathcal{X}} \sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t X_i^* + 3W\sqrt{nT}$$

Joseph C. C. Lin (CSIE, TKU, TW)

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >

 30 June 2023

Main Theorem I

An OGD for Online Min-Max-VC

```
Proof of the tightness
```

• The guarantee from the OGD algorithm:

$$\sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t \mathbf{x}_i^t \le \min_{X^* \in \mathcal{Q}} \sum_{t=1}^{T} \max_{1 \le i \le n} w_i^t \mathbf{x}_i^* + \frac{3DG}{2} \sqrt{T}$$

イロト イヨト イヨト イヨト

Outline

Introduction

- The Online Learning Framework
- Main Contribution

Main Theorem I

- The Proof
- An OGD for Online Min-Max-VC

3 Main Theorem II

- Multi-Instance Min-Max VC
- Multi-Instance Min-Max Perfect Matching

< □ > < □ > < □ > < □ > < □ > < □ >

Recall Main Theorem II

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = rgmin_{\mathbf{x}\in\mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x},\mathbf{y}^{ au}) + R(\mathbf{x})
ight),$$

where $R(\mathbf{x})$ is the regularization term.

• Need an optimization oracle over the observed history.

Multi-instance version of min-max- \mathcal{P}

Given an integer N > 0, a set \mathcal{X} of feasible solutions, and N objective functions f_1, f_2, \ldots, f_N over \mathcal{X} .

Goal: Minimize $\sum_{i=1}^{N} f_i(\mathbf{x})$ over \mathcal{X} .

イロト イポト イヨト イヨト

Remark

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

- \bullet The problems ${\mathcal P}$ could be polynomially solvable when using a "sum" objective.
 - Main Theorem I cannot be applied.

< 日 > < 同 > < 三 > < 三 > <

Remark

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

- \bullet The problems ${\mathcal P}$ could be polynomially solvable when using a "sum" objective.
 - Main Theorem I cannot be applied.
- Main Theorem II shows that FTRL fails to efficiently solve the online min-max- \mathcal{P} .

Main Theorem II

Multi-Instance Min-Max VC

Multi-Instance Min-Max VC

- A straightforward reduction from VC (since VC is APX-hard).
- Let's say $V = \{v_1, v_2, \dots, v_n\}$. Construct *n* weight functions $w^1, w^2, \dots, w^n : V \mapsto \mathbb{R}$ such that • In w^i : we set $w^i(v_i) = 1$ and $w^i(v) = 0$ for $v \neq v_i$.

Main Theorem II

Multi-Instance Min-Max VC

Multi-Instance Min-Max VC

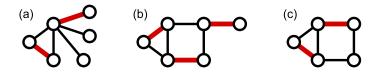
- A straightforward reduction from VC (since VC is APX-hard).
- Let's say $V = \{v_1, v_2, \dots, v_n\}$. Construct *n* weight functions $w^1, w^2, \dots, w^n : V \mapsto \mathbb{R}$ such that • In w^i : we set $w^i(v_i) = 1$ and $w^i(v) = 0$ for $v \neq v_i$.
- Any vertex cover has total cost equal to its size.

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Perfect Matching

Miym, CC BY-SA 3.0, via Wikimedia Commons



- Maximum cardinality matchings.
- Only in (b) there is a perfect matching.

Joseph C. C. Lin (CSIE, TKU, TW)

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (1/3)

- Reduction from the Max-3-DNF problem.
 - A 3-DNF formula: $(x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_3 \land x_4)$.
 - (x₁ ∧ x₂ ∧ x₃): a clause
 - x_1 or $\neg x_2$: literals

3

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (1/3)

- Reduction from the Max-3-DNF problem.
 - A 3-DNF formula: $(x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_3 \land x_4)$.
 - $(x_1 \land x_2 \land x_3)$: a clause
 - x_1 or $\neg x_2$: literals
- Given
 - *n* Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
 - *m* clauses C_1, C_2, \ldots, C_m (conjunctions of 3 literals of *X*)

Goal: Determine a truth assignment $\sigma : X \mapsto \{T, F\}$ such that the number of satisfied clauses is maximized.

Joseph C. C. Lin (CSIE, TKU, TW)

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (2/3)

An instance \mathcal{I} of Max-3-DNF $\Rightarrow G(V, E)$ and *m* weight functions:

3

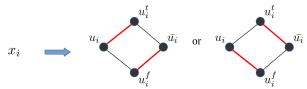
Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (2/3)

An instance \mathcal{I} of Max-3-DNF $\Rightarrow G(V, E)$ and *m* weight functions:

• Each x_i is associated a 4-cycle on vertices $(u_i, u_i^t, \bar{u}_i, u_i^f)$.



- Weight function corresponds to clause C_i:
 - $w^j(u_iu_i^t) = 1$ if $\neg x_i \in C_i$, otherwise $w^j(u_iu_i^t) = 0$.
 - w^j(u_iu^f_i) = 1 if x_i ∈ C_i, otherwise w^j(u_iu^f_i) = 0. Edges incident to vertices ū_i always get weight 0.
- * The instance \mathcal{I}' of multi-instance min-max matching is constructed (in polynomial time).

Joseph C. C. Lin (CSIE, TKU, TW)

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of \mathcal{I} corresponds to a matching M_{σ} of G.
- value $(\mathcal{I}, \sigma) = m \text{value}(\mathcal{I}', M_{\sigma})$

イロト イヨト イヨト イヨト

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of \mathcal{I} corresponds to a matching M_{σ} of G.
- value $(\mathcal{I}, \sigma) = m \text{value}(\mathcal{I}', M_{\sigma})$
- Assume that there exists a $(1 + \epsilon)$ -approximation algorithm for multi-instance min-max perfect matching, then we can get a $(1 \rho\epsilon)$ approximation algorithm for Max-3-DNF for some constant ρ .
 - PTAS-reduction.

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of \mathcal{I} corresponds to a matching M_{σ} of G.
- value $(\mathcal{I}, \sigma) = m \text{value}(\mathcal{I}', M_{\sigma})$
- Assume that there exists a $(1 + \epsilon)$ -approximation algorithm for multi-instance min-max perfect matching, then we can get a $(1 \rho\epsilon)$ approximation algorithm for Max-3-DNF for some constant ρ .
 - PTAS-reduction.
- Thus, multi-instance min-max perfect matching is APX-hard.

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Discussion

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning for Min-Max Problems

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 30 June 2023