
On positive influence dominating sets in social
networks

Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu,
Wonjun Lee, Yan Shi, and Shan Shan

Theoretical Computer Science 412 (2011) 265–269.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan

March 15, 2011

1 / 26

Outline

1 Introduction

2 Complexity of PIDS

3 An H(∆)-approximation algorithm for PIDS

2 / 26

Outline

1 Introduction

2 Complexity of PIDS

3 An H(∆)-approximation algorithm for PIDS

3 / 26

The dominating set problem

The dominating set problem

Input: Given a graph G = (V , E) and an integer k .

Task: Find a subset D ⊆ V of size ≤ k such that each vertex
in V \D is adjacent to (i.e., dominated by) at least one vertex
in D.

4 / 26

Recent issues in social networks related to dominating sets

A (1 + O(1))-approximation algorithm to the dominating set
in a power-law graph [SODA’2004].

Another optimization problem:

The Positive Influence Dominating Set problem (PIDS)

Input: Given a graph G = (V ,E)

Task: Find a subset D ⊆ V such that any v ∈ V is dominated by

at least ⌈ d(v)
2 ⌉ vertices.

5 / 26

Applications of PIDS

It’s helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

⋆ For example, a binge drinker can be converted to an abstainer
through intervention programs and have positive impact on
his direct friends.

⋆ However, he (she) might turn back into a binge drinker and
have negative impact on his (her) direct friends if many of his
(her) direct friends are binge drinkers.

6 / 26

Applications of PIDS

It’s helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

⋆ For example, a binge drinker can be converted to an abstainer
through intervention programs and have positive impact on
his direct friends.

⋆ However, he (she) might turn back into a binge drinker and
have negative impact on his (her) direct friends if many of his
(her) direct friends are binge drinkers.

6 / 26

Applications of PIDS

It’s helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

⋆ For example, a binge drinker can be converted to an abstainer
through intervention programs and have positive impact on
his direct friends.

⋆ However, he (she) might turn back into a binge drinker and
have negative impact on his (her) direct friends if many of his
(her) direct friends are binge drinkers.

6 / 26

Contribution of this paper

Explaining the application of PIDS in social networks.

Showing that PIDS is APX-hard.

Though it is still open that whether PIDS is in APX or not.

Providing a greedy H(∆)-approximation algorithm for PIDS.

Conjecture that PIDS is easier in a power-law graph

Most social networks follow the power-law.

7 / 26

Outline

1 Introduction

2 Complexity of PIDS

3 An H(∆)-approximation algorithm for PIDS

8 / 26

Theorem 2.1

PIDS is APX-hard.

Theorem 2.2 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

9 / 26

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

Wait a minute... What is “APX” and what is an L-reduction?

10 / 26

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

Wait a minute... What is “APX” and what is an L-reduction?

10 / 26

APX & L-reduction

APX, APX-hard, & APX-complete

APX (an abbreviation of ”approximable”) is the set of NP

optimization problems that allow constant-factor
polynomial-time approximation algorithms.

A problem P is APX-complete: P ∈ APX & there exists a
PTAS-reduction from every problem in APX to P (APX-hard).

Note that PTAS = polynomial-time approximation scheme

Whenever an APX-hard problem is shown to possess a PTAS,
every problem in APX has a PTAS.

11 / 26

L-reduction (a kind of PTAS-reduction)

L-reduction

A and B: two optimization problems;

cA and cB : the cost functions of A and B respectively.

A pair of functions f and g is an L-reduction if all of the
following conditions hold:

f and g are computable in polynomial time;
if x is an instance of problem A, then f (x) is an instance of
problem B;
if y is a solution to f (x), then g(y) is a solution to x ;
there exists α > 0 such that

|OPTB(f (x))| ≤ α · |OPTA(x)|;

there exists β > 0 such that for every solution y to f (x)

|OPTA(x)− cA(g(y))| ≤ β · |OPTB(f (x))− cB(y)|.

12 / 26

The proof of the APX-hardness of PIDS

13 / 26

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size ≤ k ⇐⇒ G ′ has a positive influence
dominating set of size ≤ k + 9n (where n = |V |).

Suppose that G has a vertex cover C of size k .

Let D = C ∪ {ae , be |e ∈ E} ∪ {pv , qv , p′

v , q′

v , p′′

v , q′′

v |v ∈ V }.

Note that |E | = 3|V |/2 (∵ G is a cubic graph).

|D| = |C |+ 2 · |E |+ 6 · |V | = k + 9n.

C is a vertex cover of G ⇐⇒ D is a PIDS of G ′.

14 / 26

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size ≤ k ⇐⇒ G ′ has a positive influence
dominating set of size ≤ k + 9n (where n = |V |).

Suppose that G has a vertex cover C of size k .

Let D = C ∪ {ae , be |e ∈ E} ∪ {pv , qv , p′

v , q′

v , p′′

v , q′′

v |v ∈ V }.

Note that |E | = 3|V |/2 (∵ G is a cubic graph).

|D| = |C |+ 2 · |E |+ 6 · |V | = k + 9n.

C is a vertex cover of G ⇐⇒ D is a PIDS of G ′.

14 / 26

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size ≤ k ⇐⇒ G ′ has a positive influence
dominating set of size ≤ k + 9n (where n = |V |).

Suppose that G has a vertex cover C of size k .

Let D = C ∪ {ae , be |e ∈ E} ∪ {pv , qv , p′

v , q′

v , p′′

v , q′′

v |v ∈ V }.

Note that |E | = 3|V |/2 (∵ G is a cubic graph).

|D| = |C |+ 2 · |E |+ 6 · |V | = k + 9n.

C is a vertex cover of G ⇐⇒ D is a PIDS of G ′.

14 / 26

The proof of the APX-hardness of PIDS (contd.)

optVC−cubic(G): the size of the minimum vertex cover of G ;
optPIDS(G ′): the size of the minimum PIDS of G ′.

optVC−cubic(G) ⇐⇒ optPIDS(G ′) = optVC−cubic(G) + 9n.

n/2 = |E |/3 ≤ optVC−cubic(G) (∵ ∀v ∈ V (G), deg(v) = 3).

Plugging n = (optPIDS(G ′)− optVC−cubic(G))/9 into the
inequality, we have

optPIDS(G ′) ≤ 19 · optVC−cubic(G).

15 / 26

The proof of the APX-hardness of PIDS (contd.)

From the proof of Claim 2, we see that if G ′ has a PIDS, then
we can construct in polynomial time, a vertex cover
C = D ∩ V of G with size |D| − 9n.

Therefore,

||C | − optVC−cubic(G)| = ||D| − optPIDS(G ′)|.

16 / 26

Outline

1 Introduction

2 Complexity of PIDS

3 An H(∆)-approximation algorithm for PIDS

17 / 26

nA(v): the number of neighbors of v in A for any vertex
subset A ⊆ V .

We denote h(v) = ⌈deg(v)/2⌉.

⋆ f (A) =
∑

v∈V

min(h(v), nA(v)).

18 / 26

Important properties of f

nA(v): the number of neighbors of v in A for any vertex
subset A ⊆ V .

We denote h(v) = ⌈deg(v)/2⌉.

⋆ f (A) =
∑

v∈V

min(h(v), nA(v)).

Lemma 3.1

f (∅) = 0;

f (A) =
∑

v∈V
h(v) if and only if A is a positive influence

dominating set;

If f (A) <
∑

v∈V
h(v), then there exists a vertex u ∈ V \ A

such that f (A ∪ {u}) > f (A).

19 / 26

The greedy algorithm

Greedy Algorithm

1: A← ∅;
2: while f (A) <

∑
v∈V

h(v) do

3: choose u ∈ V \ A to maximize f (A ∪ {u});
set A← A ∪ {u};

4: end while

5: output A.

20 / 26

A Theorem by Wolsey (Combinatorica, 1982)

Theorem 3.2 (Wolsey 1982)

Suppose that f is a monotone increasing, submodular integer
function with f (∅) = 0. Then the above Greedy Algorithm
produces an approximation solution with a factor of H(γ) from
optimal, where γ = maxv∈V f ({v}) and H(γ) =

∑
γ

i=1
1
i
.

21 / 26

monotone increasing & submodular

Definition 3.3

(1) f is monotone increasing if A ⊂ B implies f (A) ≤ f (B).

(2) f is submodular if for any two subsets A and B,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

(1) Suppose A ⊂ B, then nA(v) ≤ nB(v) for all v ∈ V . Hence

f (A) =
∑

v∈V

min(h(v), nA(v))

≤
∑

v∈V

min(h(v), nB(v))

= f (B).

(2)

22 / 26

monotone increasing & submodular (contd.)

(2) f is submodular iff for u /∈ B, A ⊂ B implies δuf (A) ≥ δuf (B)
where δuf (A) = f (A ∪ {u})− f (A). [Ding-Zhu Du et al.
SODA’2008]

We have

δuf (A) =
∑

v∈V

[min(h(v), nA∪{v}(v))−min(h(v), nA(v))],

δuf (B) =
∑

v∈V

[min(h(v), nB∪{v}(v))−min(h(v), nB(v))]

For u /∈ B and A ⊂ B, we have

nA(v) ≤ nB(v) and nA∪{u}(v) ≤ nB∪{u}(v).

23 / 26

monotone increasing & submodular (contd.)

(2) f is submodular iff for u /∈ B, A ⊂ B implies δuf (A) ≥ δuf (B)
where δuf (A) = f (A ∪ {u})− f (A). [Ding-Zhu Du et al.
SODA’2008]

We have

δuf (A) =
∑

v∈V

[min(h(v), nA∪{v}(v))−min(h(v), nA(v))],

δuf (B) =
∑

v∈V

[min(h(v), nB∪{v}(v))−min(h(v), nB(v))]

For u /∈ B and A ⊂ B, we have

nA(v) ≤ nB(v) and nA∪{u}(v) ≤ nB∪{u}(v).

23 / 26

monotone increasing & submodular (contd.)

(2)

Case a. nA∪{u}(v) ≤ h(v). In this case,

δuf (A) = min(h(v), nA∪{u}(v))−min(h(v), nA(v))

= nA∪{u}(v)− nA(v)

= nB∪{u}(v)− nB(v)

≥ min(h(v), nB∪{v}(v))−min(h(v), nB(v))

= δuf (B).

Case b. nA∪{u}(v) ≤ h(v). In this case,

δuf (A) = min(h(v), nA∪{u}(v))−min(h(v), nA(v))

= 0

= min(h(v), nB∪{u}(v))−min(h(v), nB(v))

= δuf (B).

24 / 26

Theorem 3.4

The Greedy Algorithm for PIDS produces an approximation
solution within a factor of H(∆) from optimal where ∆ is the
maximum vertex degree of the input graph.

Note that γ = maxv∈V f ({v}) = ∆.

25 / 26

Thank you.

26 / 26

	Introduction
	Complexity of PIDS
	An H()-approximation algorithm for PIDS
	

