On positive influence dominating sets in social
networks

Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu,
Wonjun Lee, Yan Shi, and Shan Shan

Theoretical Computer Science 412 (2011) 265-269.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

March 15, 2011

Introduction

Complexity of PIDS

An H(A)-approximation algorithm for PIDS

/26

Introduction

The dominating set problem

The dominating set problem

m Input: Given a graph G = (V, E) and an integer k.
m Task: Find a subset D C V of size < k such that each vertex

in V'\ D is adjacent to (i.e., dominated by) at least one vertex
in D.

Recent issues in social networks related to dominating sets

m A (1+ O(1))-approximation algorithm to the dominating set
in a power-law graph [SODA'2004].

m Another optimization problem:

The Positive Influence Dominating Set problem (PIDS)

m Input: Given a graph G = (V, E)

m Task: Find a subset D C V such that any v € V is dominated by
at least [@1 vertices.

Applications of PIDS

m It's helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

Applications of PIDS

m It's helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

* For example, a binge drinker can be converted to an abstainer
through intervention programs and have positive impact on
his direct friends.

Applications of PIDS

m It's helpful for the success of intervention programs for a
certain type of social problem (e.g., drinking, smoking, drug
related issues...)

* For example, a binge drinker can be converted to an abstainer
through intervention programs and have positive impact on
his direct friends.

* However, he (she) might turn back into a binge drinker and
have negative impact on his (her) direct friends if many of his
(her) direct friends are binge drinkers.

Contribution of this paper

Explaining the application of PIDS in social networks.

Showing that PIDS is APX-hard.
m Though it is still open that whether PIDS is in APX or not.

Providing a greedy H(A)-approximation algorithm for PIDS.

Conjecture that PIDS is easier in a power-law graph
m Most social networks follow the power-law.

Complexity of PIDS

PIDS is APX-hard. I

Theorem 2.2 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

PIDS is APX-hard. l

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

m Wait a minute...

10/26

PIDS is APX-hard. I

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is
APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

m Wait a minute... What is “APX" and what is an L-reduction?

10/26

APX & L-reduction

APX, APX-hard, & APX-complete

m APX (an abbreviation of "approximable”) is the set of NP
optimization problems that allow constant-factor
polynomial-time approximation algorithms.

m A problem P is APX-complete: P € APX & there exists a
PTAS-reduction from every problem in APX to P (APX-hard).

m Note that PTAS = polynomial-time approximation scheme

m Whenever an APX-hard problem is shown to possess a PTAS,
every problem in APX has a PTAS.

11/26

L-reduction (a kind of PTAS-reduction)

m A and B: two optimization problems;
m ¢y and cg: the cost functions of A and B respectively.

m A pair of functions f and g is an L-reduction if all of the
following conditions hold:
m f and g are computable in polynomial time;
m if x is an instance of problem A, then f(x) is an instance of
problem B;
if y is a solution to f(x), then g(y) is a solution to x;
there exists o > 0 such that

|OPTg(f(x))| < a- |OPTA(x)];
there exists 5 > 0 such that for every solution y to f(x)

|OPTa(x) — calg(¥))l < 8- |OPTg(f(x)) — ca(y)l-

12/26

The proof of the APX-hardness of PIDS

V3 ()

13/26

The proof of the APX-hardness of PIDS (contd.)

G has a vertex cover of size < k <= G’ has a positive influence
dominating set of size < k + 9n (where n = |V/|).

m Suppose that G has a vertex cover C of size k.
m Let D= CU{ae, bele € EYU{py,,qv,pP,,q,,pP.,ql|ve V}

m Note that |E| = 3|V|/2 (" G is a cubic graph).

14 /26

The proof of the APX-hardness of PIDS (contd.)

G has a vertex cover of size < k <= G’ has a positive influence
dominating set of size < k + 9n (where n = |V/|).

m Suppose that G has a vertex cover C of size k.
m Let D= CU{ae, bele € EYU{py,,qv,pP,,q,,pP.,ql|ve V}
m Note that |E| = 3|V|/2 (" G is a cubic graph).

m [D|=|C|+2-|E|+6-|V|=k+9n.

14 /26

The proof of the APX-hardness of PIDS (contd.)

G has a vertex cover of size < k <= G’ has a positive influence
dominating set of size < k + 9n (where n = |V/|).

m Suppose that G has a vertex cover C of size k.

Let D= CU{ae, bele € EYU{py,qv,p,.q,,p,. q,|veE V}.

Note that |E| = 3|V|/2 (*.- G is a cubic graph).

ID| =|C|+2-|E|+6-|V|=k+9n.

m Cis a vertex cover of G <= D is a PIDS of G’.

14 /26

The proof of the APX-hardness of PIDS (contd.)

optvc—cubic(G): the size of the minimum vertex cover of G;
optpips(G’): the size of the minimum PIDS of G'.

B optyc—cubic(G) <= optpips(G') = optyc—cubic(G) + 9n.
m n/2 = |E|/3 < optvc_cubic(G) (" Vv € V(G), deg(v) = 3).

m Plugging n = (Optp/Ds(G/) — Opt\/c_cub;c(G))/g into the
inequality, we have

optpips(G') < 19 - optve—cubic(G).

15/26

The proof of the APX-hardness of PIDS (contd.)

m From the proof of Claim 2, we see that if G’ has a PIDS, then
we can construct in polynomial time, a vertex cover
C =DnNYV of G with size |D| — 9n.

m Therefore,

||C| — optvc—cubic(G)| = || D] — optpips(G)].

16 /26

An H(A)-approximation algorithm for PIDS

17/26

m na(v): the number of neighbors of v in A for any vertex
subset A C V.

m We denote h(v) = [deg(v)/2].

* f(A) = > min(h(v), na(v)).

veVv

18/26

Important properties of f

m na(v): the number of neighbors of v in A for any vertex
subset A C V.

m We denote h(v) = [deg(v)/2].
* f(A) = > min(h(v), na(v)).

vev

Lemma 3.1
m f(0)=0;
m f(A)=>,cv h(v) if and only if A is a positive influence
dominating set;
m Iff(A) <> ,cy h(v), then there exists a vertex u € V' \ A
such that f(AU {u}) > f(A).

19/26

The greedy algorithm

Greedy Algorithm

1. A—0;
: while f(A) <> .\ h(v) do
3: choose u € V' \ A to maximize f(AU {u});

set A— AU {u};
4: end while
5. output A

20/26

A Theorem by Wolsey (Combinatorica, 1982)

Theorem 3.2 (Wolsey 1982)

Suppose that f is a monotone increasing, submodular integer
function with f()) = 0. Then the above Greedy Algorithm
produces an approximation solution with a factor of H() from
optimal, where v = max,cy f({v}) and H(y) =37, 2

i=17-"

21/26

monotone increasing & submodular

Definition 3.3
(1) f is monotone increasing if A C B implies f(A) < f(B).
(2) f is submodular if for any two subsets A and B,

f(A)+f(B)> f(AUB)+f(AN B).

(1) Suppose A C B, then na(v) < ng(v) for all v € V. Hence

F(A) = > min(h(v),na(v))

22/26

monotone increasing & submodular (contd.)

(2) f is submodular iff for u ¢ B, A C B implies 6,f(A) > §,f(B)
where 6,f(A) = f(AU {u}) — f(A). [Ding-Zhu Du et al.
SODA'2008]

m We have

duf(A) = Z[min(h(v),nAU{v}(v))—min(h(v),nA(v))],

vev

6,f(B) = Z[min(h(v),ngu{v}(v))—min(h(v),nB(v))]

veVv

23/26

monotone increasing & submodular (contd.)

(2) f is submodular iff for u ¢ B, A C B implies 6,f(A) > §,f(B)
where §,f(A) = f(AU{u}) — f(A). [Ding-Zhu Du et al.

SODA'2008]
m We have
s, f(A) = Z[min(h(v),nAU{v}(v))—min(h(v),nA(v))],
6,f(B) = Z[min(h(v),ngu{v}(v))—min(h(v),nB(v))]
vev

m For u ¢ B and A C B, we have

na(v) < ng(v) and nayguy(v) < neuguy(v).

23 /26

monotone increasing & submodular (contd.)

(2)

Case a. nauguy(v) < h(v). In this case,

5,F(A)

I AV T | |

min(h(v), nauguy(v)) — min(h(v), na(v))
nau{uy(v) — na(v)

nBU{u}(V) — ng(v)

min(h(v), nguivy(v)) — min(h(v), ng(v))
0uf(B).

Case b. nayguy(v) < h(v). In this case,

duf(A)

min(h(v), nauguy(v)) — min(h(v), na(v))
0

min(h(v), ngugu(v)) — min(h(v), ng(v))
ouf(B).

24 /26

Theorem 3.4

The Greedy Algorithm for PIDS produces an approximation
solution within a factor of H(A) from optimal where A is the
maximum vertex degree of the input graph.

Note that v = max,cy f({v}) = A.

25 /26

Thank you.

	Introduction
	Complexity of PIDS
	An H()-approximation algorithm for PIDS
	

