On positive influence dominating sets in social networks

Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi, and Shan Shan

Theoretical Computer Science 412 (2011) 265–269.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

March 15, 2011

2 Complexity of PIDS

3 An $H(\Delta)$ -approximation algorithm for PIDS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 Complexity of PIDS

3 An $H(\Delta)$ -approximation algorithm for PIDS

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The dominating set problem

- **Input:** Given a graph G = (V, E) and an integer k.
- Task: Find a subset D ⊆ V of size ≤ k such that each vertex in V \ D is adjacent to (i.e., dominated by) at least one vertex in D.

- A (1 + O(1))-approximation algorithm to the dominating set in a *power-law graph* [SODA'2004].
- Another optimization problem:

The Positive Influence Dominating Set problem (PIDS)

- Input: Given a graph G = (V, E)
- **Task**: Find a subset $D \subseteq V$ such that any $v \in V$ is dominated by at least $\lceil \frac{d(v)}{2} \rceil$ vertices.

- It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)
- For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.
- However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

- It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)
- ★ For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.
- However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

- It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)
- ★ For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.
- However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

- Explaining the application of PIDS in social networks.
- Showing that PIDS is APX-hard.
 - Though it is still open that whether PIDS is in APX or not.
- Providing a greedy $H(\Delta)$ -approximation algorithm for PIDS.
- Conjecture that PIDS is easier in a power-law graph
 Most social networks follow the power-law.

2 Complexity of PIDS

3 An $H(\Delta)$ -approximation algorithm for PIDS

Theorem 2.1

PIDS is APX-hard.

Theorem 2.2 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an *L*-reduction from VC-cubic to PIDS.

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an *L*-reduction from VC-cubic to PIDS.

■ Wait a minute... What is "APX" and what is an *L*-reduction?

・ロン ・四 と ・ ヨ と ・ ヨ と

10/26

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du & Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

■ Wait a minute... What is "APX" and what is an *L*-reduction?

(a)

10/26

APX, APX-hard, & APX-complete

- APX (an abbreviation of "approximable") is the set of NP optimization problems that allow constant-factor polynomial-time approximation algorithms.
- A problem \mathcal{P} is APX-complete: $\mathcal{P} \in APX$ & there exists a PTAS-reduction from every problem in APX to \mathcal{P} (APX-hard).
- Note that PTAS = polynomial-time approximation scheme
- Whenever an APX-hard problem is shown to possess a PTAS, every problem in APX has a PTAS.

L-reduction

- A and B: two optimization problems;
- c_A and c_B : the cost functions of A and B respectively.
- A pair of functions f and g is an L-reduction if all of the following conditions hold:
 - f and g are computable in polynomial time;
 - if x is an instance of problem A, then f(x) is an instance of problem B;
 - if y is a solution to f(x), then g(y) is a solution to x;
 - there exists $\alpha > 0$ such that

 $|OPT_B(f(x))| \leq \alpha \cdot |OPT_A(x)|;$

• there exists $\beta > 0$ such that for every solution y to f(x)

 $|OPT_A(x) - c_A(g(y))| \leq \beta \cdot |OPT_B(f(x)) - c_B(y)|.$

The proof of the APX-hardness of PIDS

Claim 1

G has a vertex cover of size $\leq k \iff G'$ has a positive influence dominating set of size $\leq k + 9n$ (where n = |V|).

- Suppose that G has a vertex cover C of size k.
- Let $D = C \cup \{a_e, b_e | e \in E\} \cup \{p_v, q_v, p'_v, q'_v, p''_v, q''_v | v \in V\}.$
- Note that |E| = 3|V|/2 (:: G is a cubic graph).
- $|D| = |C| + 2 \cdot |E| + 6 \cdot |V| = k + 9n.$
- C is a vertex cover of $G \iff D$ is a PIDS of G'.

Claim 1

G has a vertex cover of size $\leq k \iff G'$ has a positive influence dominating set of size $\leq k + 9n$ (where n = |V|).

- Suppose that G has a vertex cover C of size k.
- Let $D = C \cup \{a_e, b_e | e \in E\} \cup \{p_v, q_v, p'_v, q'_v, p''_v, q''_v | v \in V\}.$
- Note that |E| = 3|V|/2 (:: G is a cubic graph).
- $|D| = |C| + 2 \cdot |E| + 6 \cdot |V| = k + 9n.$
- C is a vertex cover of $G \iff D$ is a PIDS of G'.

Claim 1

G has a vertex cover of size $\leq k \iff G'$ has a positive influence dominating set of size $\leq k + 9n$ (where n = |V|).

- Suppose that G has a vertex cover C of size k.
- Let $D = C \cup \{a_e, b_e | e \in E\} \cup \{p_v, q_v, p'_v, q'_v, p''_v, q''_v | v \in V\}.$
- Note that |E| = 3|V|/2 (:: G is a cubic graph).
- $|D| = |C| + 2 \cdot |E| + 6 \cdot |V| = k + 9n.$
- C is a vertex cover of $G \iff D$ is a PIDS of G'.

 $opt_{VC-cubic}(G)$: the size of the minimum vertex cover of G; $opt_{PIDS}(G')$: the size of the minimum PIDS of G'.

•
$$opt_{VC-cubic}(G) \iff opt_{PIDS}(G') = opt_{VC-cubic}(G) + 9n.$$

■
$$n/2 = |E|/3 \le opt_{VC-cubic}(G)$$
 (:: $\forall v \in V(G)$, $deg(v) = 3$).

Plugging n = (opt_{PIDS}(G') - opt_{VC-cubic}(G))/9 into the inequality, we have

$$opt_{PIDS}(G') \leq 19 \cdot opt_{VC-cubic}(G).$$

 From the proof of Claim 2, we see that if G' has a PIDS, then we can construct in polynomial time, a vertex cover C = D ∩ V of G with size |D| − 9n.

Therefore,

$$||C| - opt_{VC-cubic}(G)| = ||D| - opt_{PIDS}(G')|.$$

(日) (四) (E) (E) (E) (E) (E)

16/26

2 Complexity of PIDS

3 An $H(\Delta)$ -approximation algorithm for PIDS

n_A(v): the number of neighbors of v in A for any vertex subset A ⊆ V.

• We denote
$$h(v) = \lceil deg(v)/2 \rceil$$
.

*
$$f(A) = \sum_{v \in V} \min(h(v), n_A(v)).$$

Important properties of f

n_A(v): the number of neighbors of v in A for any vertex subset A ⊆ V.

• We denote
$$h(v) = \lceil deg(v)/2 \rceil$$
.

*
$$f(A) = \sum_{v \in V} \min(h(v), n_A(v)).$$

Lemma 3.1

- $f(\emptyset) = 0;$
- f(A) = ∑_{v∈V} h(v) if and only if A is a positive influence dominating set;
- If f(A) < ∑_{v∈V} h(v), then there exists a vertex u ∈ V \ A such that f(A ∪ {u}) > f(A).

Greedy Algorithm

- 1: $A \leftarrow \emptyset$;
- 2: while $f(A) < \sum_{v \in V} h(v)$ do
- 3: choose $u \in V \setminus A$ to maximize $f(A \cup \{u\})$; set $A \leftarrow A \cup \{u\}$;
- 4: end while

5: output A.

Theorem 3.2 (Wolsey 1982)

Suppose that f is a monotone increasing, submodular integer function with $f(\emptyset) = 0$. Then the above Greedy Algorithm produces an approximation solution with a factor of $H(\gamma)$ from optimal, where $\gamma = \max_{v \in V} f(\{v\})$ and $H(\gamma) = \sum_{i=1}^{\gamma} \frac{1}{i}$.

Definition 3.3

- (1) f is monotone increasing if $A \subset B$ implies $f(A) \leq f(B)$.
- (2) f is submodular if for any two subsets A and B,

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

(1) Suppose $A \subset B$, then $n_A(v) \le n_B(v)$ for all $v \in V$. Hence

$$f(A) = \sum_{v \in V} \min(h(v), n_A(v))$$

$$\leq \sum_{v \in V} \min(h(v), n_B(v))$$

$$= f(B).$$

monotone increasing & submodular (contd.)

(2) f is submodular iff for $u \notin B$, $A \subset B$ implies $\delta_u f(A) \ge \delta_u f(B)$ where $\delta_u f(A) = f(A \cup \{u\}) - f(A)$. [Ding-Zhu Du et al. SODA'2008]

We have

$$\delta_{u}f(A) = \sum_{v \in V} [\min(h(v), n_{A \cup \{v\}}(v)) - \min(h(v), n_{A}(v))],$$

$$\delta_{u}f(B) = \sum_{v \in V} [\min(h(v), n_{B \cup \{v\}}(v)) - \min(h(v), n_{B}(v))]$$

For $u \notin B$ and $A \subset B$, we have

 $n_A(v) \le n_B(v)$ and $n_{A \cup \{u\}}(v) \le n_{B \cup \{u\}}(v)$.

イロト 不得下 イヨト イヨト 二日

23 / 26

monotone increasing & submodular (contd.)

(2) f is submodular iff for $u \notin B$, $A \subset B$ implies $\delta_u f(A) \ge \delta_u f(B)$ where $\delta_u f(A) = f(A \cup \{u\}) - f(A)$. [Ding-Zhu Du et al. SODA'2008]

We have

$$\delta_{u}f(A) = \sum_{v \in V} [\min(h(v), n_{A \cup \{v\}}(v)) - \min(h(v), n_{A}(v))],$$

$$\delta_{u}f(B) = \sum_{v \in V} [\min(h(v), n_{B \cup \{v\}}(v)) - \min(h(v), n_{B}(v))]$$

• For $u \notin B$ and $A \subset B$, we have

 $n_A(v) \leq n_B(v)$ and $n_{A\cup\{u\}}(v) \leq n_{B\cup\{u\}}(v)$.

イロト 不得下 イヨト イヨト 二日

23 / 26

monotone increasing & submodular (contd.)

(2)

Case a. $n_{A\cup\{u\}}(v) \le h(v)$. In this case,

$$\begin{aligned} \delta_{u}f(A) &= \min(h(v), n_{A\cup\{u\}}(v)) - \min(h(v), n_{A}(v)) \\ &= n_{A\cup\{u\}}(v) - n_{A}(v) \\ &= n_{B\cup\{u\}}(v) - n_{B}(v) \\ &\geq \min(h(v), n_{B\cup\{v\}}(v)) - \min(h(v), n_{B}(v)) \\ &= \delta_{u}f(B). \end{aligned}$$

Case b. $n_{A\cup\{u\}}(v) \leq h(v)$. In this case,

$$\begin{split} \delta_{u}f(A) &= \min(h(v), n_{A\cup\{u\}}(v)) - \min(h(v), n_{A}(v)) \\ &= 0 \\ &= \min(h(v), n_{B\cup\{u\}}(v)) - \min(h(v), n_{B}(v)) \\ &= \delta_{u}f(B). \end{split}$$

Theorem 3.4

The Greedy Algorithm for PIDS produces an approximation solution within a factor of $H(\Delta)$ from optimal where Δ is the maximum vertex degree of the input graph.

25 / 26

Note that $\gamma = \max_{v \in V} f(\{v\}) = \Delta$.

Thank you.