On positive influence dominating sets in social networks

Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi, and Shan Shan

Theoretical Computer Science 412 (2011) 265-269.
Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang
Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

March 15, 2011

Outline

1 Introduction

2 Complexity of PIDS

3 An $H(\Delta)$-approximation algorithm for PIDS

Outline

1 Introduction

2 Complexity of PIDS

3 An $H(\Delta)$-approximation algorithm for PIDS

The dominating set problem
■ Input: Given a graph $G=(V, E)$ and an integer k.

- Task: Find a subset $D \subseteq V$ of size $\leq k$ such that each vertex in $V \backslash D$ is adjacent to (i.e., dominated by) at least one vertex in D.

Recent issues in social networks related to dominating sets

- A $(1+O(1))$-approximation algorithm to the dominating set in a power-law graph [SODA'2004].
- Another optimization problem:

The Positive Influence Dominating Set problem (PIDS)

- Input: Given a graph $G=(V, E)$
- Task: Find a subset $D \subseteq V$ such that any $v \in V$ is dominated by at least $\left\lceil\frac{d(v)}{2}\right\rceil$ vertices.

Applications of PIDS

- It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)
* For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.

However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

Applications of PIDS

■ It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)

* For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.
* However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

Applications of PIDS

■ It's helpful for the success of intervention programs for a certain type of social problem (e.g., drinking, smoking, drug related issues...)

* For example, a binge drinker can be converted to an abstainer through intervention programs and have positive impact on his direct friends.
* However, he (she) might turn back into a binge drinker and have negative impact on his (her) direct friends if many of his (her) direct friends are binge drinkers.

Contribution of this paper

■ Explaining the application of PIDS in social networks.
■ Showing that PIDS is APX-hard.

- Though it is still open that whether PIDS is in APX or not.

■ Providing a greedy $H(\Delta)$-approximation algorithm for PIDS.

- Conjecture that PIDS is easier in a power-law graph
- Most social networks follow the power-law.

Outline

1 Introduction

2 Complexity of PIDS

3 An $H(\Delta)$-approximation algorithm for PIDS

Theorem 2.1

PIDS is APX-hard.

Theorem 2.2 (Du \& Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du \& Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

■ Wait a minute... What is "APX" and what is an L-reduction?

Theorem 2.3

PIDS is APX-hard.

Theorem 2.4 (Du \& Ko 2000)

The vertex cover problem in cubic graph (VC-cubic) is APX-complete.

We construct an L-reduction from VC-cubic to PIDS.

■ Wait a minute... What is "APX" and what is an L-reduction?

APX \& L-reduction

APX, APX-hard, \& APX-complete

- APX (an abbreviation of "approximable") is the set of NP optimization problems that allow constant-factor polynomial-time approximation algorithms.
- A problem \mathcal{P} is APX-complete: $\mathcal{P} \in \mathrm{APX} \&$ there exists a PTAS-reduction from every problem in APX to \mathcal{P} (APX-hard).

■ Note that PTAS = polynomial-time approximation scheme

- Whenever an APX-hard problem is shown to possess a PTAS, every problem in APX has a PTAS.

L-reduction (a kind of PTAS-reduction)

L-reduction

- A and B : two optimization problems;
- c_{A} and c_{B} : the cost functions of A and B respectively.
- A pair of functions f and g is an L-reduction if all of the following conditions hold:
- f and g are computable in polynomial time;
- if x is an instance of problem A, then $f(x)$ is an instance of problem B;
- if y is a solution to $f(x)$, then $g(y)$ is a solution to x;
- there exists $\alpha>0$ such that

$$
\left|O P T_{B}(f(x))\right| \leq \alpha \cdot\left|O P T_{A}(x)\right| ;
$$

- there exists $\beta>0$ such that for every solution y to $f(x)$

$$
\left|O P T_{A}(x)-c_{A}(g(y))\right| \leq \beta \cdot\left|O P T_{B}(f(x))-c_{B}(y)\right| .
$$

The proof of the APX-hardness of PIDS

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size $\leq k \Longleftrightarrow G^{\prime}$ has a positive influence dominating set of size $\leq k+9 n$ (where $n=|V|$).

■ Suppose that G has a vertex cover C of size k.
■ Let $D=C \cup\left\{a_{e}, b_{e} \mid e \in E\right\} \cup\left\{p_{v}, q_{v}, p_{v}^{\prime}, q_{v}^{\prime}, p_{v}^{\prime \prime}, q_{v}^{\prime \prime} \mid v \in V\right\}$.
■ Note that $|E|=3|V| / 2(\because G$ is a cubic graph $)$.

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size $\leq k \Longleftrightarrow G^{\prime}$ has a positive influence dominating set of size $\leq k+9 n$ (where $n=|V|$).

■ Suppose that G has a vertex cover C of size k.
■ Let $D=C \cup\left\{a_{e}, b_{e} \mid e \in E\right\} \cup\left\{p_{v}, q_{v}, p_{v}^{\prime}, q_{v}^{\prime}, p_{v}^{\prime \prime}, q_{v}^{\prime \prime} \mid v \in V\right\}$.
■ Note that $|E|=3|V| / 2(\because G$ is a cubic graph $)$.
■ $|D|=|C|+2 \cdot|E|+6 \cdot|V|=k+9 n$.

The proof of the APX-hardness of PIDS (contd.)

Claim 1

G has a vertex cover of size $\leq k \Longleftrightarrow G^{\prime}$ has a positive influence dominating set of size $\leq k+9 n$ (where $n=|V|$).

■ Suppose that G has a vertex cover C of size k.
■ Let $D=C \cup\left\{a_{e}, b_{e} \mid e \in E\right\} \cup\left\{p_{v}, q_{v}, p_{v}^{\prime}, q_{v}^{\prime}, p_{v}^{\prime \prime}, q_{v}^{\prime \prime} \mid v \in V\right\}$.
■ Note that $|E|=3|V| / 2(\because G$ is a cubic graph $)$.
■ $|D|=|C|+2 \cdot|E|+6 \cdot|V|=k+9 n$.

- C is a vertex cover of $G \Longleftrightarrow D$ is a PIDS of G^{\prime}.

The proof of the APX-hardness of PIDS (contd.)

opt $_{V C-c u b i c}(G)$: the size of the minimum vertex cover of G; optPIDS $\left(G^{\prime}\right)$: the size of the minimum PIDS of G^{\prime}.

■ $\operatorname{opt}_{V C-\text { cubic }}(G) \Longleftrightarrow \operatorname{opt}_{P I D S}\left(G^{\prime}\right)=\operatorname{opt}_{V C-\text { cubic }}(G)+9 n$.
$\square n / 2=|E| / 3 \leq \operatorname{opt}_{V C_{-c u b i c}}(G)(\because \forall v \in V(G), \operatorname{deg}(v)=3)$.
■ Plugging $n=\left(o p t_{\text {PIDS }}\left(G^{\prime}\right)-o p t_{V C-c u b i c}(G)\right) / 9$ into the inequality, we have

$$
\operatorname{opt}_{\text {PIDS }}\left(G^{\prime}\right) \leq 19 \cdot \operatorname{opt}_{V C-c u b i c}(G)
$$

- From the proof of Claim 2, we see that if G^{\prime} has a PIDS, then we can construct in polynomial time, a vertex cover $C=D \cap V$ of G with size $|D|-9 n$.

■ Therefore,

$$
\left||C|-\operatorname{opt}_{V C-c u b i c}(G)\right|=\| D\left|-\operatorname{opt}_{P I D S}\left(G^{\prime}\right)\right| .
$$

Outline

1 Introduction

2 Complexity of PIDS

3 An $H(\Delta)$-approximation algorithm for PIDS

- $n_{A}(v)$: the number of neighbors of v in A for any vertex subset $A \subseteq V$.
- We denote $h(v)=\lceil\operatorname{deg}(v) / 2\rceil$.
$\star f(A)=\sum_{v \in V} \min \left(h(v), n_{A}(v)\right)$.

Important properties of f

- $n_{A}(v)$: the number of neighbors of v in A for any vertex subset $A \subseteq V$.

■ We denote $h(v)=\lceil\operatorname{deg}(v) / 2\rceil$.
$\star f(A)=\sum_{v \in V} \min \left(h(v), n_{A}(v)\right)$.

Lemma 3.1

- $f(\emptyset)=0$;
- $f(A)=\sum_{v \in V} h(v)$ if and only if A is a positive influence dominating set;
- If $f(A)<\sum_{v \in V} h(v)$, then there exists a vertex $u \in V \backslash A$ such that $f(A \cup\{u\})>f(A)$.

Greedy Algorithm

1: $\quad A \leftarrow \emptyset ;$
2: while $f(A)<\sum_{v \in V} h(v)$ do choose $u \in V \backslash A$ to maximize $f(A \cup\{u\})$; set $A \leftarrow A \cup\{u\}$;
4: end while
5: output A.

A Theorem by Wolsey (Combinatorica, 1982)

Theorem 3.2 (Wolsey 1982)

Suppose that f is a monotone increasing, submodular integer function with $f(\emptyset)=0$. Then the above Greedy Algorithm produces an approximation solution with a factor of $H(\gamma)$ from optimal, where $\gamma=\max _{v \in V} f(\{v\})$ and $H(\gamma)=\sum_{i=1}^{\gamma} \frac{1}{i}$.

monotone increasing \& submodular

Definition 3.3

(1) f is monotone increasing if $A \subset B$ implies $f(A) \leq f(B)$.
(2) f is submodular if for any two subsets A and B,

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

(1) Suppose $A \subset B$, then $n_{A}(v) \leq n_{B}(v)$ for all $v \in V$. Hence

$$
\begin{aligned}
f(A) & =\sum_{v \in V} \min \left(h(v), n_{A}(v)\right) \\
& \leq \sum_{v \in V} \min \left(h(v), n_{B}(v)\right) \\
& =f(B)
\end{aligned}
$$

(2)
(2) f is submodular iff for $u \notin B, A \subset B$ implies $\delta_{u} f(A) \geq \delta_{u} f(B)$ where $\delta_{u} f(A)=f(A \cup\{u\})-f(A)$. [Ding-Zhu Du et al. SODA'2008]

- We have

$$
\begin{aligned}
\delta_{u} f(A) & =\sum_{v \in V}\left[\min \left(h(v), n_{A \cup\{v\}}(v)\right)-\min \left(h(v), n_{A}(v)\right)\right], \\
\delta_{u} f(B) & =\sum_{v \in V}\left[\min \left(h(v), n_{B \cup\{v\}}(v)\right)-\min \left(h(v), n_{B}(v)\right)\right]
\end{aligned}
$$

- For $u \notin B$ and $A \subset B$, we have

$$
n_{A}(v) \leq n_{B}(v) \text { and } n_{A \cup\{u\}}(v) \leq n_{B \cup\{u\}}(v) \text {. }
$$

(2) f is submodular iff for $u \notin B, A \subset B$ implies $\delta_{u} f(A) \geq \delta_{u} f(B)$ where $\delta_{u} f(A)=f(A \cup\{u\})-f(A)$. [Ding-Zhu Du et al. SODA'2008]

- We have

$$
\begin{aligned}
\delta_{u} f(A) & =\sum_{v \in V}\left[\min \left(h(v), n_{A \cup\{v\}}(v)\right)-\min \left(h(v), n_{A}(v)\right)\right] \\
\delta_{u} f(B) & =\sum_{v \in V}\left[\min \left(h(v), n_{B \cup\{v\}}(v)\right)-\min \left(h(v), n_{B}(v)\right)\right]
\end{aligned}
$$

- For $u \notin B$ and $A \subset B$, we have

$$
n_{A}(v) \leq n_{B}(v) \text { and } n_{A \cup\{u\}}(v) \leq n_{B \cup\{u\}}(v)
$$

monotone increasing \& submodular (contd.)

(2)

Case a. $n_{A \cup\{u\}}(v) \leq h(v)$. In this case,

$$
\begin{aligned}
\delta_{u} f(A) & =\min \left(h(v), n_{A \cup\{u\}}(v)\right)-\min \left(h(v), n_{A}(v)\right) \\
& =n_{A \cup\{u\}}(v)-n_{A}(v) \\
& =n_{B \cup\{u\}}(v)-n_{B}(v) \\
& \geq \min \left(h(v), n_{B \cup\{v\}}(v)\right)-\min \left(h(v), n_{B}(v)\right) \\
& =\delta_{u} f(B) .
\end{aligned}
$$

Case b. $n_{A \cup\{u\}}(v) \leq h(v)$. In this case,

$$
\begin{aligned}
\delta_{u} f(A) & =\min \left(h(v), n_{A \cup\{u\}}(v)\right)-\min \left(h(v), n_{A}(v)\right) \\
& =0 \\
& =\min \left(h(v), n_{B \cup\{u\}}(v)\right)-\min \left(h(v), n_{B}(v)\right) \\
& =\delta_{u} f(B) .
\end{aligned}
$$

Theorem 3.4

The Greedy Algorithm for PIDS produces an approximation solution within a factor of $H(\Delta)$ from optimal where Δ is the maximum vertex degree of the input graph.

Note that $\gamma=\max _{v \in V} f(\{v\})=\Delta$.

Thank you.

