Revenue and Reserve Prices in a Probabilistic Single Item Auction

Noga Alon, Moran Feldman, Moshe Tennenholtz

Algorithmica Online first (2015) 1–15.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

19 February 2016

Outline

- 3 Bounding R_{ℓ}/R_{∞}
- 4 Computing Optimal Reserve Prices

Motivations

- Real-time bidding in advertising.
 - ad exchanges.
- Publishers (like MSN and Yahoo) attempt to *maximize* the revenue they collect from the advertisers.
 - Doing so by wisely targeting their ads at *right* users.

Probabilistic single-item auction

- * Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz: Signaling schemes for revenue maximaization. *EC'14*.
- $\star\,$ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC'12.

- Single item, *m* bidders.
 - The item is chosen randomly from a set of n indivisible goods according to a distribution p ∈ Δ(n).
- Second-price auction.
 - Reserve price: a minimum price set by the auctioneer.
 - * If no bid exceeds the reserve price, the item is left unsold.
 - The player with the highest bid gets the item
 - The price: second highest bid (no less than the reserve price)

Probabilistic single-item auction

- * Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz: Signaling schemes for revenue maximaization. *EC'14*.
- $\star\,$ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC'12.

- Single item, *m* bidders.
 - The item is chosen randomly from a set of n indivisible goods according to a distribution p ∈ Δ(n).
- Second-price auction.
 - Reserve price: a minimum price set by the auctioneer.
 - * If no bid exceeds the reserve price, the item is left unsold.
 - The player with the highest bid gets the item
 - The price: second highest bid (no less than the reserve price)

Probabilistic single-item auction

- * Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz: Signaling schemes for revenue maximaization. *EC'14*.
- $\star\,$ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC'12.

- Single item, *m* bidders.
 - The item is chosen randomly from a set of n indivisible goods according to a distribution p ∈ Δ(n).
- Second-price auction.
 - Reserve price: a minimum price set by the auctioneer.
 - * If no bid exceeds the reserve price, the item is left unsold.
 - The player with the highest bid gets the item.
 - The price: second highest bid (no less than the reserve price).

Probabilistic single-item auction

- * Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz: Signaling schemes for revenue maximaization. *EC'14*.
- $\star\,$ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC'12.

- Single item, *m* bidders.
 - The item is chosen randomly from a set of n indivisible goods according to a distribution p ∈ Δ(n).
- Second-price auction.
 - Reserve price: a minimum price set by the auctioneer.
 - * If no bid exceeds the reserve price, the item is left unsold.
 - \star The player with the highest bid gets the item.
 - The price: second highest bid (no less than the reserve price).

Probabilistic single-item auction

- * Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz: Signaling schemes for revenue maximaization. *EC'14*.
- $\star\,$ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC'12.

- Single item, *m* bidders.
 - The item is chosen randomly from a set of n indivisible goods according to a distribution p ∈ Δ(n).
- Second-price auction.
 - Reserve price: a minimum price set by the auctioneer.
 - \star If no bid exceeds the reserve price, the item is left unsold.
 - \star The player with the highest bid gets the item.
 - The price: second highest bid (no less than the reserve price).

Contribution of this paper

- Extend the previous framework by allowing actions with *reserved* prices.
- Investigate the effect of limiting # different reserve prices on the revenue.
 - Bounding R_{ℓ}/R_{∞} .
 - \diamond R_ℓ : the max. possible expected revenue using ℓ different reserve prices.
- Efficient algorithms for computing the optimal set of reserve prices.

The Model

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction

19 Feb 2016 6 / 47

The Model

- n impression types.
- *m* bidders.
- Each bidder d_j has a value $v(i, j) \ge 0$ for impression type t_i .
- Each impression of type t_i arrives with prob. p_i.
- The auction mechanism can set up to ℓ reserve prices r_1, r_2, \ldots, r_ℓ .
- Every t_i is assigned $r'_i = \max_{k \in [\ell]} \{r_k \mid r_k \leq v(i,j) \text{ for some } j \in [m] \}$.
 - 0 if there is no such reserve price.
 - $\star\,$ The auctioneer is familiar with bidders' values.

The Model (contd.)

- Whenever an impression of type t_i arrives, bidders are notified about its exact type and then bidder d_j declares a bid b(i, j).
- d_h , d_s : the bidders with the 1st & the 2nd highest bids, resp.
- The bidder winning the good and the payment are determined by:
- ♦ if $b(i, h) < r'_i$, no bidder gets the item;
- ♦ if $b(i, s) < r'_i ≤ b(i, h)$, bidder d_h gets the item and pays r'_i ;
- ♦ if $r'_i ≤ b(i, s)$, bidder d_h gets the item and pays b(i, s).
- ◇ Truthful for every given choice of reserve prices.
- ightarrow Declaring b(i,j) = v(i,j) is a weakly dominant strategy for bidder d_j

• • = • • =

The Model (contd.)

- Whenever an impression of type t_i arrives, bidders are notified about its exact type and then bidder d_j declares a bid b(i, j).
- d_h , d_s : the bidders with the 1st & the 2nd highest bids, resp.
- The bidder winning the good and the payment are determined by:
- ♦ if $b(i, h) < r'_i$, no bidder gets the item;
- ♦ if $b(i, s) < r'_i ≤ b(i, h)$, bidder d_h gets the item and pays r'_i ;
- ♦ if $r'_i ≤ b(i, s)$, bidder d_h gets the item and pays b(i, s).
- Truthful for every given choice of reserve prices.
- ♦ Declaring b(i,j) = v(i,j) is a weakly dominant strategy for bidder d_j .

Prices in Prob. Single Item Auction The Model

- ۲ R_{ℓ} : the expected revenue when the **best** choice of $\leq \ell$ reserve prices are used.
- h_i : the maximal value given by any bidder for impression of type t_i .

- *R*_ℓ: the expected revenue when the **best** choice of ≤ ℓ reserve prices are used.
- h_i : the maximal value given by any bidder for impression of type t_i .

- R_ℓ: the expected revenue when the **best** choice of ≤ ℓ reserve prices are used.
- h_i : the maximal value given by any bidder for impression of type t_i .

- *R*_ℓ: the expected revenue when the **best** choice of ≤ ℓ reserve prices are used.
- h_i : the maximal value given by any bidder for impression of type t_i .

- *R*_ℓ: the expected revenue when the **best** choice of ≤ ℓ reserve prices are used.
- h_i : the maximal value given by any bidder for impression of type t_i .

Prices in Prob. Single Item Auction The Model

Bounds on R_{ℓ}/R_{∞}

Table 1 Bounds on R_{ℓ}/R_{∞}

	Case	Can be as low as		Is at least	
Uniform probabilities	$\ell \le \ln^{1/2 - \varepsilon} n$	ℓ/H_n	(1)	$(1-o(1))\cdot\ell/H_n$	(1)
	$\omega(1) \leq \ell$	$(1+o(1))\cdot c(1-e^{-1/c})$	(2)	$(1-o(1))\cdot c(1-e^{-1/c})$	(2)
		where $c = \ell / \ln n$		where $c = \ell / \ln n$	
General probabilities	All	$(1+o(1))\cdot\ell/n$	(3)	ℓ/n	(3)

Bounding R_ℓ/R_∞

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction

19 Feb 2016 15 / 47

Case I:

Uniform Probability Distribution over the Impression Types

Lemma 1

Assume uniform probabilities, we have that

$$R_1 \ge R_\infty/H_n$$

where H_n is the *n*th harmonic number.

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

$$\sum_{i=1}^n h_i/n < \sum_{i=1}^n R_\infty/(i \cdot H_n) = \frac{R_\infty}{H_n} \cdot \sum_{i=1}^n \frac{1}{i} = R_\infty$$

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

$$R_{\infty} = \sum_{i=1}^{n} h_i / n < \sum_{i=1}^{n} R_{\infty} / (i \cdot H_n) = \frac{R_{\infty}}{H_n} \cdot \sum_{i=1}^{n} \frac{1}{i} = R_{\infty}$$
(contradiction)

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

$$R_{\infty} = \sum_{i=1}^n h_i/n < \sum_{i=1}^n R_{\infty}/(i \cdot H_n) = \frac{R_{\infty}}{H_n} \cdot \sum_{i=1}^n \frac{1}{i} = R_{\infty}$$

⁽contradiction)

Proof of Lemma 1

- Choose a single reserve price h_i ⇒ the auctioneer can get a revenue of ≥ h_i from impression types t₁, t₂,..., t_i.
 - Total revenue $\geq i \cdot h_i/n$.
- If $i \cdot h_i/n \ge R_{\infty}/H_n$ for some *i*, then we are done.
- Assume the contrary then we get:

$$R_{\infty} = \sum_{i=1}^n h_i/n < \sum_{i=1}^n R_{\infty}/(i \cdot H_n) = \frac{R_{\infty}}{H_n} \cdot \sum_{i=1}^n \frac{1}{i} = R_{\infty}$$

(contradiction)

• We can change Lemma 1 a little bit...

• Let
$$\sum_{i=1}^{n'} h_i/n = \hat{R}_{n'}$$
, where $n' \leq n$.

$$\hat{R}_{n'} = \sum_{i=1}^{n'} h_i / n < \sum_{i=1}^{n'} \hat{R}_{n'} / (i \cdot H_{n'}) = \frac{\hat{R}_{n'}}{H_{n'}} \cdot \sum_{i=1}^{n'} \frac{1}{i} = \hat{R}_{n'}$$

(contradiction)

$$\frac{i \cdot h_i}{n} \geq \frac{\sum_{i=1}^{n'} h_i/n}{H_{n'}}.$$

• Let
$$\sum_{i=1}^{n'} h_i/n = \hat{R}_{n'}$$
, where $n' \leq n$.

$$\hat{R}_{n'} = \sum_{i=1}^{n'} h_i / n < \sum_{i=1}^{n'} \hat{R}_{n'} / (i \cdot H_{n'}) = \frac{\hat{R}_{n'}}{H_{n'}} \cdot \sum_{i=1}^{n'} \frac{1}{i} = \hat{R}_{n'}$$

(contradiction)

$$\frac{i \cdot h_i}{n} \geq \frac{\sum_{i=1}^{n'} h_i / n}{H_{n'}}.$$

• Let
$$\sum_{i=1}^{n'} h_i/n = \hat{R}_{n'}$$
, where $n' \leq n$.

$$\hat{R}_{n'} = \sum_{i=1}^{n'} h_i / n < \sum_{i=1}^{n'} \hat{R}_{n'} / (i \cdot H_{n'}) = \frac{\hat{R}_{n'}}{H_{n'}} \cdot \sum_{i=1}^{n'} \frac{1}{i} = \hat{R}_{n'}$$

(contradiction)

$$\mathbb{R}_1 \geq rac{i \cdot h_i}{n} \geq rac{\sum_{i=1}^{n'} h_i/n}{H_{n'}}.$$

• Let
$$\sum_{i=1}^{n'} h_i/n = \hat{R}_{n'}$$
, where $n' \leq n$.

$$\hat{R}_{n'} = \sum_{i=1}^{n'} h_i / n < \sum_{i=1}^{n'} \hat{R}_{n'} / (i \cdot H_{n'}) = \frac{\hat{R}_{n'}}{H_{n'}} \cdot \sum_{i=1}^{n'} \frac{1}{i} = \hat{R}_{n'}$$

(contradiction)

$$R_1 \geq rac{i \cdot h_i}{n} \geq rac{\sum_{i=1}^{n'} h_i/n}{H_{n'}}.$$

• Let
$$\sum_{i=1}^{n'} h_i/n = \hat{R}_{n'}$$
, where $n' \leq n$.

$$\hat{R}_{n'} = \sum_{i=1}^{n'} h_i / n < \sum_{i=1}^{n'} \hat{R}_{n'} / (i \cdot H_{n'}) = \frac{\hat{R}_{n'}}{H_{n'}} \cdot \sum_{i=1}^{n'} \frac{1}{i} = \hat{R}_{n'}$$

(contradiction)

$$R_1 \geq rac{i \cdot h_i}{n} \geq rac{\sum_{i=1}^{n'} h_i/n}{H_{n'}}.$$

• When ℓ is not too large:

Theorem 1

Assume uniform probabilities. Then, for every $1 \le \ell \le \ln^{1/2-\epsilon} n$ and an arbitrarily small $\epsilon > 0$, it always holds that

$$R_\ell \geq (1 - o(1)) \cdot \ell / H_n \cdot R_\infty.$$

Moreover, there exists an instance with uniform probabilities for which

$$R_{\ell} \leq \ell/H_n \cdot R_{\infty}.$$

Proof of Theorem 1 (part 1)

• Define $c = \ln^{\epsilon} n$ (Note: $c^{\ell} \le n$). $\therefore \ell \le \ln^{1/2-\epsilon} n$

• If $\sum_{i=1}^{c^{\ell}} h_i/n \ge R_{\infty}/c$, then by Lemma 1, R_1 is at least:

$$\begin{array}{ll} \frac{\sum_{i=1}^{c^{\ell}}h_{i}/n}{H_{c^{\ell}}} & \geq & (1-o(1))\cdot\frac{R_{\infty}/c}{\ell\ln c} \geq (1-o(1))\cdot\frac{\ell\cdot R_{\infty}}{\ln^{1-2\epsilon}n\cdot c\cdot \ln c} \\ & = & (1-o(1))\cdot\frac{\ell\cdot R_{\infty}}{\ln^{1-\epsilon}n\cdot \ln\ln^{\epsilon}n} = (1-o(1))\cdot\frac{\ln^{\epsilon}n}{\ln\ln^{\epsilon}n}\cdot\frac{\ell}{\ln n}\cdot R_{\infty} \\ & \geq & (1-o(1))\cdot\frac{\ell}{H_{n}}\cdot R_{\infty}, \end{array}$$

This case is complete because R_ℓ ≥ R₁.
Consider the case: ∑_{i=1}^{cℓ} h_i/n < R_∞/c.

Proof of Theorem 1 (part 1)

• Define $c = \ln^{\epsilon} n$ (Note: $c^{\ell} \le n$). $\therefore \ell \le \ln^{1/2 - \epsilon} n$

• If $\sum_{i=1}^{c^{\ell}} h_i/n \ge R_{\infty}/c$, then by Lemma 1, R_1 is at least:

$$\begin{array}{ll} \frac{\sum_{i=1}^{c^{\ell}}h_{i}/n}{H_{c^{\ell}}} & \geq & (1-o(1))\cdot\frac{R_{\infty}/c}{\ell\ln c} \geq (1-o(1))\cdot\frac{\ell\cdot R_{\infty}}{\ln^{1-2\epsilon}n\cdot c\cdot \ln c} \\ & = & (1-o(1))\cdot\frac{\ell\cdot R_{\infty}}{\ln^{1-\epsilon}n\cdot \ln\ln^{\epsilon}n} = (1-o(1))\cdot\frac{\ln^{\epsilon}n}{\ln\ln^{\epsilon}n}\cdot\frac{\ell}{\ln n}\cdot R_{\infty} \\ & \geq & (1-o(1))\cdot\frac{\ell}{H_{n}}\cdot R_{\infty}, \end{array}$$

This case is complete because R_ℓ ≥ R₁.
Consider the case: ∑_{i=1}^{c^ℓ} h_i/n < R_∞/c.

Proof of Theorem 1 (part 1)

• Define $c = \ln^{\epsilon} n$ (Note: $c^{\ell} \le n$). $\therefore \ell \le \ln^{1/2-\epsilon} n$

• If $\sum_{i=1}^{c^{\ell}} h_i/n \ge R_{\infty}/c$, then by Lemma 1, R_1 is at least:

$$\begin{array}{ll} \frac{\sum_{i=1}^{c^{\ell}} h_i/n}{H_{c^{\ell}}} & \geq & (1-o(1)) \cdot \frac{R_{\infty}/c}{\ell \ln c} \geq (1-o(1)) \cdot \frac{\ell \cdot R_{\infty}}{\ln^{1-2\epsilon} n \cdot c \cdot \ln c} \\ & = & (1-o(1)) \cdot \frac{\ell \cdot R_{\infty}}{\ln^{1-\epsilon} n \cdot \ln \ln^{\epsilon} n} = (1-o(1)) \cdot \frac{\ln^{\epsilon} n}{\ln \ln^{\epsilon} n} \cdot \frac{\ell}{\ln n} \cdot R_{\infty} \\ & \geq & (1-o(1)) \cdot \frac{\ell}{H_n} \cdot R_{\infty}, \end{array}$$

- This case is complete because $R_{\ell} \ge R_1$.
- Consider the case: $\sum_{i=1}^{c^{\ell}} h_i / n < R_{\infty} / c$.

Proof of Theorem 1 (part 1)

• Define $c = \ln^{\epsilon} n$ (Note: $c^{\ell} \le n$). $\therefore \ell \le \ln^{1/2-\epsilon} n$

• If $\sum_{i=1}^{c^{\ell}} h_i/n \ge R_{\infty}/c$, then by Lemma 1, R_1 is at least:

$$\begin{array}{ll} \frac{\sum_{i=1}^{c^{\ell}} h_i/n}{H_{c^{\ell}}} & \geq & (1-o(1)) \cdot \frac{R_{\infty}/c}{\ell \ln c} \geq (1-o(1)) \cdot \frac{\ell \cdot R_{\infty}}{\ln^{1-2\epsilon} n \cdot c \cdot \ln c} \\ & = & (1-o(1)) \cdot \frac{\ell \cdot R_{\infty}}{\ln^{1-\epsilon} n \cdot \ln \ln^{\epsilon} n} = (1-o(1)) \cdot \frac{\ln^{\epsilon} n}{\ln \ln^{\epsilon} n} \cdot \frac{\ell}{\ln n} \cdot R_{\infty} \\ & \geq & (1-o(1)) \cdot \frac{\ell}{H_n} \cdot R_{\infty}, \end{array}$$

- This case is complete because $R_{\ell} \ge R_1$.
- Consider the case: $\sum_{i=1}^{c^{\ell}} h_i/n < R_{\infty}/c$.

Proof of Theorem 1 (part 1) (contd.)

Define:

$$r_{k,i} = \left\{ egin{array}{cc} h_{\lfloor i \cdot c^{k-1}
floor} & ext{if } i \cdot c^{k-1} \leq n, \ 0 & ext{otherwise.} \end{array}
ight.$$

• The *i*th set of reserve prices: $\{r_{k,i} \mid 1 \le k \le \ell\}$.

• Note that
$$\sum_{i=1}^{n} r_{1,i} = \sum_{i=1}^{n} h_i = n \cdot R_{\infty}$$
.

$$r_{k,i} = \begin{cases} h_{\lfloor i \cdot c^{k-1} \rfloor} & \text{if } i \cdot c^{k-1} \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

• For every $1 \le i \le n$:

 $\frac{\lfloor i \cdot c^0 \rfloor \cdot r_{1,i}}{n} + \sum_{k=2}^{\ell} \frac{\lfloor \lfloor i \cdot c^{k-1} \rfloor - \lfloor i \cdot c^{k-2} \rfloor \rfloor \cdot r_{k,i}}{n} \leq R_{\ell}$ $\Rightarrow \quad \frac{i \cdot r_{1,i}}{n} + \frac{i \cdot (c-2)}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot r_{k,i} \leq R_{\ell}$ $\Rightarrow \quad \frac{r_{1,i}}{n} + \frac{c-2}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot r_{k,i} \leq \frac{R_{\ell}}{i}$ $\therefore \quad R_{\infty} + \frac{c-2}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot \sum_{i=1}^{n} r_{k,i} \leq R_{\ell} \cdot H_{n}. \quad (1)$

3

- 4 週 ト - 4 三 ト - 4 三 ト

$$r_{k,i} = \begin{cases} h_{\lfloor i \cdot c^{k-1} \rfloor} & \text{if } i \cdot c^{k-1} \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

• For every $1 \le i \le n$:

 $\frac{\lfloor i \cdot c^0 \rfloor \cdot r_{1,i}}{n} + \sum_{k=2}^{\ell} \frac{\lfloor \lfloor i \cdot c^{k-1} \rfloor - \lfloor i \cdot c^{k-2} \rfloor \rfloor \cdot r_{k,i}}{n} \leq R_{\ell}$ $\Rightarrow \quad \frac{i \cdot r_{1,i}}{n} + \frac{i \cdot (c-2)}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot r_{k,i} \leq R_{\ell}$ $\Rightarrow \quad \frac{r_{1,i}}{n} + \frac{c-2}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot r_{k,i} \leq \frac{R_{\ell}}{i}$ $\therefore \quad R_{\infty} + \frac{c-2}{n} \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot \sum_{i=1}^{n} r_{k,i} \leq R_{\ell} \cdot H_{n}. \quad (1)$

3

- 4 同 6 4 日 6 4 日 6

• :: *h*'s are non-increasing, for every $2 \le k \le \ell$:

$$\sum_{i=1}^{n} r_{k,i} = \sum_{i=1}^{\lfloor n/c^{k-1} \rfloor} h_{\lfloor i \cdot c^{k-1} \rfloor} \ge \frac{\sum_{i=c^{k-1}}^{n} h_i}{c^{k-1}} = \frac{\sum_{i=1}^{n} h_i - \sum_{i=1}^{c^{k-1}-1} h_i}{c^{k-1}}$$
$$\ge \frac{n \cdot R_{\infty} - n \cdot R_{\infty}/c}{c^{k-1}} = n \cdot R_{\infty} \cdot \frac{1 - 1/c}{c^{k-1}},$$

↑ by our assumption.

• : *h*'s are non-increasing, for every $2 \le k \le \ell$:

$$\sum_{i=1}^{n} r_{k,i} = \sum_{i=1}^{\lfloor n/c^{k-1} \rfloor} h_{\lfloor i \cdot c^{k-1} \rfloor} \ge \frac{\sum_{i=c^{k-1}}^{n} h_i}{c^{k-1}} = \frac{\sum_{i=1}^{n} h_i - \sum_{i=1}^{c^{k-1}-1} h_i}{c^{k-1}}$$
$$\ge \frac{n \cdot R_{\infty} - n \cdot R_{\infty}/c}{c^{k-1}} = n \cdot R_{\infty} \cdot \frac{1 - 1/c}{c^{k-1}},$$

↑ by our assumption.

• \therefore *h*'s are non-increasing, for every $2 \le k \le \ell$:

$$\sum_{i=1}^{n} r_{k,i} = \sum_{i=1}^{\lfloor n/c^{k-1} \rfloor} h_{\lfloor i \cdot c^{k-1} \rfloor} \ge \frac{\sum_{i=c^{k-1}}^{n} h_i}{c^{k-1}} = \frac{\sum_{i=1}^{n} h_i - \sum_{i=1}^{c^{k-1}-1} h_i}{c^{k-1}}$$
$$\ge \frac{n \cdot R_{\infty} - n \cdot R_{\infty}/c}{c^{k-1}} = n \cdot R_{\infty} \cdot \frac{1 - 1/c}{c^{k-1}},$$

 \uparrow by our assumption.

19 Feb 2016

Proof of Theorem 1 (part 1)

Adding Inequality (1) we have

$$R_{\infty} + (c-2) \cdot \sum_{k=2}^{\ell} c^{k-2} \cdot \left[R_{\infty} \cdot \frac{1-1/c}{c^{k-1}} \right] \leq R_{\ell} \cdot H_n$$

 $\begin{array}{ll} \Rightarrow & R_{\infty} + (\ell - 1) \cdot (1 - 2/c)(1 - 1/c) \cdot R_{\infty} \leq R_{\ell} \cdot H_{n} \\ \Rightarrow & R_{\infty} + (\ell - 1) \cdot (1 - 2/c)^{2} \cdot R_{\infty} \leq R_{\ell} \cdot H_{n} \\ \Rightarrow & R_{\infty} \cdot \ell \cdot (1 - 2/c)^{2} \leq R_{\ell} \cdot H_{n} \\ \Rightarrow & R_{\ell} \geq (1 - 2/c)^{2} \cdot \frac{\ell}{H_{n}} \cdot R_{\infty} = (1 - o(1)) \cdot \frac{\ell}{H_{n}} \cdot R_{\infty}. \end{array}$

Proof of Theorem 1 (part 2: the bound is tight)

• Consider an instance:

- uniform distribution over the impression types;
- single bidder;
- value for t_i is 1/i.

Clearly,

- $h_i = 1/i$ for every i.
- $R_{\infty} = \sum_{i=1}^{n} (1/i)/n = H_n/n.$

• Let's try to upper bound R_{ℓ} .

Proof of Theorem 1 (part 2: the bound is tight)

• Consider an instance:

- uniform distribution over the impression types;
- single bidder;
- value for t_i is 1/i.

Clearly,

•
$$h_i = 1/i$$
 for every *i*.
• $R_{\infty} = \sum_{i=1}^{n} (1/i)/n = H_n/n$

• Let's try to upper bound R_{ℓ} .

Proof of Theorem 1 (part 2: the bound is tight)

• Consider an instance:

- uniform distribution over the impression types;
- single bidder;
- value for t_i is 1/i.

Clearly,

- $h_i = 1/i$ for every *i*. • $R_{\infty} = \sum_{i=1}^{n} (1/i)/n = H_n/n$.
- Let's try to upper bound R_{ℓ} .

• Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.

- WLOG, assume that for each *i*, $r_i = h_j$ for some $1 \le j \le n$.
- Assume that every reserve price is unique.

T_k: a set containing all impression types which yield a revenue of r_k.
 R_ℓ = (1/n) · ∑^ℓ_{k=1} |T_k| · r_k.

If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2, ..., 1/i.
 |T_k| ⋅ r_k ≤ i ⋅ (1/i) = 1.

Thus,

$$R_{\ell} \leq \frac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = \frac{\ell}{n} = \frac{\ell}{H_n} \cdot R_{\infty}.$$

- Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.
 - WLOG, assume that for each i, $r_i = h_j$ for some $1 \le j \le n$.
 - Assume that every reserve price is unique.
- *T_k*: a set containing all impression types which yield a revenue of *r_k*.
 R_ℓ = (1/n) · ∑^ℓ_{k=1} |*T_k*| · *r_k*.
- If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2,..., 1/i.
 |T_k| ⋅ r_k ≤ i ⋅ (1/i) = 1.
 - Thus,

$$R_{\ell} \leq \frac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = \frac{\ell}{n} = \frac{\ell}{H_n} \cdot R_{\infty}.$$

- Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.
 - WLOG, assume that for each i, $r_i = h_j$ for some $1 \le j \le n$.
 - Assume that every reserve price is unique.
- *T_k*: a set containing all impression types which yield a revenue of *r_k*.
 R_ℓ = (1/*n*) · ∑^ℓ_{k=1} | *T_k*| · *r_k*.
- If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2,..., 1/i.
 |T_k| · r_k ≤ i · (1/i) = 1.

Thus,

$$R_{\ell} \leq \frac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = \frac{\ell}{n} = \frac{\ell}{H_n} \cdot R_{\infty}.$$

- Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.
 - WLOG, assume that for each i, $r_i = h_j$ for some $1 \le j \le n$.
 - Assume that every reserve price is unique.
- *T_k*: a set containing all impression types which yield a revenue of *r_k*.
 R_ℓ = (1/*n*) · ∑^ℓ_{k=1} | *T_k*| · *r_k*.
- If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2,..., 1/i.
 |T_k| · r_k ≤ i · (1/i) = 1.
 Thus.

$$R_{\ell} \leq \frac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = \frac{\ell}{n} = \frac{\ell}{H_n} \cdot R_{\infty}.$$

- Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.
 - WLOG, assume that for each i, $r_i = h_j$ for some $1 \le j \le n$.
 - Assume that every reserve price is unique.
- *T_k*: a set containing all impression types which yield a revenue of *r_k*.
 R_ℓ = (1/*n*) · ∑^ℓ_{k=1} | *T_k*| · *r_k*.
- If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2,..., 1/i.
 |T_k| ⋅ r_k ≤ i ⋅ (1/i) = 1.
 Thus.

$$R_{\ell} \leq \frac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = \frac{\ell}{n} = \frac{\ell}{H_n} \cdot R_{\infty}.$$

- Let r_1, r_2, \ldots, r_ℓ be the optimal choice of reserve prices.
 - WLOG, assume that for each i, $r_i = h_j$ for some $1 \le j \le n$.
 - Assume that every reserve price is unique.
- *T_k*: a set containing all impression types which yield a revenue of *r_k*.
 R_ℓ = (1/*n*) · ∑^ℓ_{k=1} | *T_k*| · *r_k*.
- If r_k = h_i for some i, then T_k can contain ≤ i elements 1, 1/2,..., 1/i.
 |T_k| · r_k ≤ i · (1/i) = 1.
 - Thus,

$$R_{\ell} \leq rac{1}{n} \cdot \sum_{k=1}^{\ell} 1 = rac{\ell}{n} = rac{\ell}{H_n} \cdot R_{\infty}.$$

• For large values of ℓ :

Theorem 2

Assume uniform probabilities. Then, for every $\omega(1) \leq \ell \leq$ n, we have

$${\it R}_\ell \geq (1-o(1))\cdot c\left(1-e^{-1/c}
ight)\cdot {\it R}_\infty,$$

where $c = \ell / \ln n$.

Moreover, there exists an instance for which

$$R_\ell \leq (1+o(1))\cdot \left(1-e^{-1/c}
ight)\cdot R_\infty.$$

Proof of Theorem 2

• Let
$$b = \left\lceil \ell \left(1 + \frac{\ln \ln n}{\ln n} \right) \right\rceil + 1.$$

• Try to bound R_b first.

• Let
$$B = \{t_i \mid h_i \leq h_1 \cdot e^{(1-b)/c}\}.$$

• Total contribution of B to R_∞ is bounded by

$$n \cdot \left(h_1 \cdot e^{(1-b)/c}\right) / n \le h_1 \cdot e^{-(\ln n + \ln \ln n)} = h_1 \cdot n^{-1} \cdot \ln^{-1} n \le R_\infty \cdot \ln^{-1} n.$$

Hence,

$$R_{\infty} \leq \sum_{i \notin B} h_i / n + R_{\infty} \cdot \ln^{-1} n$$

$$\Rightarrow R_{\infty} \leq \frac{\sum_{i \notin B} h_i / n}{1 - \ln^{-1} n}.$$

Proof of Theorem 2

• Let
$$b = \left\lceil \ell \left(1 + \frac{\ln \ln n}{\ln n} \right) \right\rceil + 1.$$

• Try to bound R_b first.

• Let
$$B = \{t_i \mid h_i \leq h_1 \cdot e^{(1-b)/c}\}.$$

• Total contribution of B to R_∞ is bounded by

$$n \cdot \left(h_1 \cdot e^{(1-b)/c}\right) / n \le h_1 \cdot e^{-(\ln n + \ln \ln n)} = h_1 \cdot n^{-1} \cdot \ln^{-1} n \le R_\infty \cdot \ln^{-1} n.$$

Hence,

$$R_{\infty} \leq \sum_{i \notin B} h_i / n + R_{\infty} \cdot \ln^{-1} n$$
$$\Rightarrow R_{\infty} \leq \frac{\sum_{i \notin B} h_i / n}{1 - \ln^{-1} n}.$$

- x: chosen uniformly at random from [0, 1].
- Define:

$$S_{j} = \{t_{i} \notin B \mid h_{1} \cdot e^{(2-j-x)/c} \ge h_{i} > h_{1} \cdot e^{(1-j-x)/c}\}.$$
$$r_{j} := h_{1} \cdot e^{(1-j-x)}/c, \text{ for } 1 \le j \le b.$$

- Note: every impression type OUTSIDE *B* belongs to exactly one *S_i*.
- Each $t_i \in S_j$ induces revenue $\geq r_j$.
- Let's define b reserve prices to lower bound R_b .

- x: chosen uniformly at random from [0, 1].
- Define:

$$S_j = \{t_i \notin B \mid h_1 \cdot e^{(2-j-x)/c} \ge h_i > h_1 \cdot e^{(1-j-x)/c}\}.$$

 $r_j := h_1 \cdot e^{(1-j-x)}/c, \text{ for } 1 \le j \le b.$

- Note: every impression type OUTSIDE *B* belongs to exactly one *S_i*.
- Each $t_i \in S_j$ induces revenue $\geq r_j$.
- Let's define b reserve prices to lower bound R_b .

 $S_j = \{t_i \notin B \mid h_1 \cdot e^{(2-j-x)/c} \ge h_i > h_1 \cdot e^{(1-j-x)/c}\}.$

• Assume that $h_i = h_1 \cdot e^{(1-y_i)/c}$ for some y_i .

• $t_i \in S_{\lceil y_i \rceil}$ if $x \le 1 + y_i - \lceil y_i \rceil$, and $t_i \in S_{\lceil y_i \rceil - 1}$ otherwise.

The expected contribution of t_i to R_b is:

$$\begin{aligned} \int_{0}^{1+y_{i}-\lceil y_{i}\rceil} h_{1} \cdot e^{(1-\lceil y_{i}\rceil-x)/c} dx + \int_{1+y_{i}-\lceil y_{i}\rceil}^{1} h_{1} \cdot e^{(2-\lceil y_{i}\rceil-x)/c} dx \\ &= -h_{1}c \cdot e^{(1-\lceil y_{i}\rceil-x)/c} \Big|_{0}^{1+y_{i}-\lceil y_{i}\rceil} - h_{1}c \cdot e^{(2-\lceil y_{i}\rceil-x)/c} \Big|_{1+y_{i}-\lceil y_{i}\rceil}^{1} \\ &= h_{1}c \cdot e^{-y_{i}/c} \cdot (e^{1/c}-1) = h_{i} \cdot c(1-e^{-1/c}). \end{aligned}$$

▷ Total expected contribution of $t_i \notin B$ to R_b is $\geq c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i / n$.

 $S_j = \{t_i \notin B \mid h_1 \cdot e^{(2-j-x)/c} \ge h_i > h_1 \cdot e^{(1-j-x)/c}\}.$

• Assume that $h_i = h_1 \cdot e^{(1-y_i)/c}$ for some y_i .

• $t_i \in S_{\lceil y_i \rceil}$ if $x \le 1 + y_i - \lceil y_i \rceil$, and $t_i \in S_{\lceil y_i \rceil - 1}$ otherwise.

• The expected contribution of t_i to R_b is:

$$\begin{aligned} \int_{0}^{1+y_{i}-\lceil y_{i}\rceil} h_{1} \cdot e^{(1-\lceil y_{i}\rceil-x)/c} dx + \int_{1+y_{i}-\lceil y_{i}\rceil}^{1} h_{1} \cdot e^{(2-\lceil y_{i}\rceil-x)/c} dx \\ &= -h_{1}c \cdot e^{(1-\lceil y_{i}\rceil-x)/c} \Big|_{0}^{1+y_{i}-\lceil y_{i}\rceil} - h_{1}c \cdot e^{(2-\lceil y_{i}\rceil-x)/c} \Big|_{1+y_{i}-\lceil y_{i}\rceil}^{1} \\ &= h_{1}c \cdot e^{-y_{i}/c} \cdot (e^{1/c}-1) = h_{i} \cdot c(1-e^{-1/c}). \end{aligned}$$

▷ Total expected contribution of $t_i \notin B$ to R_b is $\geq c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i / n$

 $S_{j} = \{t_{i} \notin B \mid h_{1} \cdot e^{(2-j-x)/c} \ge h_{i} > h_{1} \cdot e^{(1-j-x)/c}\}.$

- Assume that $h_i = h_1 \cdot e^{(1-y_i)/c}$ for some y_i .
 - $t_i \in S_{\lceil y_i \rceil}$ if $x \le 1 + y_i \lceil y_i \rceil$, and $t_i \in S_{\lceil y_i \rceil 1}$ otherwise.

• The expected contribution of t_i to R_b is:

$$\begin{aligned} \int_{0}^{1+y_{i}-\lceil y_{i}\rceil} h_{1} \cdot e^{(1-\lceil y_{i}\rceil-x)/c} dx + \int_{1+y_{i}-\lceil y_{i}\rceil}^{1} h_{1} \cdot e^{(2-\lceil y_{i}\rceil-x)/c} dx \\ &= -h_{1}c \cdot e^{(1-\lceil y_{i}\rceil-x)/c} \Big|_{0}^{1+y_{i}-\lceil y_{i}\rceil} - h_{1}c \cdot e^{(2-\lceil y_{i}\rceil-x)/c} \Big|_{1+y_{i}-\lceil y_{i}\rceil}^{1} \\ &= h_{1}c \cdot e^{-y_{i}/c} \cdot (e^{1/c}-1) = h_{i} \cdot c(1-e^{-1/c}). \end{aligned}$$

Dash Total expected contribution of $t_i \notin B$ to R_b is $\geq c(1-e^{-1/c}) \cdot \sum_{i \notin B} h_i/n$

$$S_j = \{t_i \notin B \mid h_1 \cdot e^{(2-j-x)/c} \ge h_i > h_1 \cdot e^{(1-j-x)/c}\}$$

• Assume that $h_i = h_1 \cdot e^{(1-y_i)/c}$ for some y_i .

- $t_i \in S_{\lceil y_i \rceil}$ if $x \le 1 + y_i \lceil y_i \rceil$, and $t_i \in S_{\lceil y_i \rceil 1}$ otherwise.
- The expected contribution of t_i to R_b is:

$$\int_{0}^{1+y_{i}-\lceil y_{i}\rceil} h_{1} \cdot e^{(1-\lceil y_{i}\rceil-x)/c} dx + \int_{1+y_{i}-\lceil y_{i}\rceil}^{1} h_{1} \cdot e^{(2-\lceil y_{i}\rceil-x)/c} dx$$

$$= -h_{1}c \cdot e^{(1-\lceil y_{i}\rceil-x)/c} \Big|_{0}^{1+y_{i}-\lceil y_{i}\rceil} - h_{1}c \cdot e^{(2-\lceil y_{i}\rceil-x)/c} \Big|_{1+y_{i}-\lceil y_{i}\rceil}^{1}$$

$$= h_{1}c \cdot e^{-y_{i}/c} \cdot (e^{1/c}-1) = h_{i} \cdot c(1-e^{-1/c}).$$

 \triangleright Total expected contribution of $t_i \notin B$ to R_b is $\geq c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i/n$

$S_j = \{t_i \notin B \mid h_1 \cdot e^{(2-j-x)/c} \ge h_i > h_1 \cdot e^{(1-j-x)/c}\}.$

- Assume that $h_i = h_1 \cdot e^{(1-y_i)/c}$ for some y_i .
 - $t_i \in S_{\lceil y_i \rceil}$ if $x \le 1 + y_i \lceil y_i \rceil$, and $t_i \in S_{\lceil y_i \rceil 1}$ otherwise.
- The expected contribution of t_i to R_b is:

$$\int_{0}^{1+y_{i}-\lceil y_{i}\rceil} h_{1} \cdot e^{(1-\lceil y_{i}\rceil-x)/c} dx + \int_{1+y_{i}-\lceil y_{i}\rceil}^{1} h_{1} \cdot e^{(2-\lceil y_{i}\rceil-x)/c} dx$$

$$= -h_{1}c \cdot e^{(1-\lceil y_{i}\rceil-x)/c} \Big|_{0}^{1+y_{i}-\lceil y_{i}\rceil} - h_{1}c \cdot e^{(2-\lceil y_{i}\rceil-x)/c} \Big|_{1+y_{i}-\lceil y_{i}\rceil}^{1}$$

$$= h_{1}c \cdot e^{-y_{i}/c} \cdot (e^{1/c}-1) = h_{i} \cdot c(1-e^{-1/c}).$$

Dash Total expected contribution of $t_i \notin B$ to R_b is $\geq c(1-e^{-1/c}) \cdot \sum_{i \notin B} h_i/n.$

Proof of Theorem 2 (contd.)

• Thus, there must exist a set of *b* reserve prices such that $R_b \ge c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i/n.$

By averaging we get:

$$\begin{aligned} R_{\ell} &\geq \frac{\ell}{b} \cdot c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i/n \\ &\geq \quad \frac{\ell \cdot c(1 - e^{-1/c})}{\lceil \ell (1 + \ln \ln n / \ln n) \rceil + 1} \cdot (1 - \ln^{-1} n) \cdot R_{\infty} \\ &\geq \quad \frac{\ell \cdot (1 - \ln^{-1} n)}{\ell (1 + \ln \ln n / \ln n) + 2} \cdot c(1 - e^{-1/c} n) \cdot R_{\infty} \\ &= \quad \frac{1 - o(1)}{1 + o(1) + 2/\ell} \cdot c(1 - e^{-1/c}) \cdot R_{\infty}. \end{aligned}$$

• We omit the second part of Theorem 2 (similar to that of Theorem 2)

Proof of Theorem 2 (contd.)

- Thus, there must exist a set of *b* reserve prices such that $R_b \ge c(1 e^{-1/c}) \cdot \sum_{i \notin B} h_i/n.$
- By averaging we get:

$$\begin{split} & R_{\ell} \geq \frac{\ell}{b} \cdot c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i/n \\ \geq & \frac{\ell \cdot c(1 - e^{-1/c})}{\lceil \ell (1 + \ln \ln n / \ln n) \rceil + 1} \cdot (1 - \ln^{-1} n) \cdot R_{\infty} \\ \geq & \frac{\ell \cdot (1 - \ln^{-1} n)}{\ell (1 + \ln \ln n / \ln n) + 2} \cdot c(1 - e^{-1/c} n) \cdot R_{\infty} \\ = & \frac{1 - o(1)}{1 + o(1) + 2/\ell} \cdot c(1 - e^{-1/c}) \cdot R_{\infty}. \end{split}$$

• We omit the second part of Theorem 2 (similar to that of Theorem 1

Proof of Theorem 2 (contd.)

- Thus, there must exist a set of *b* reserve prices such that $R_b \ge c(1 e^{-1/c}) \cdot \sum_{i \notin B} h_i/n.$
- By averaging we get:

$$\begin{split} R_{\ell} &\geq \frac{\ell}{b} \cdot c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i / n \\ &\geq \quad \frac{\ell \cdot c(1 - e^{-1/c})}{\lceil \ell (1 + \ln \ln n / \ln n) \rceil + 1} \cdot (1 - \ln^{-1} n) \cdot R_{\infty} \\ &\geq \quad \frac{\ell \cdot (1 - \ln^{-1} n)}{\ell (1 + \ln \ln n / \ln n) + 2} \cdot c(1 - e^{-1/c} n) \cdot R_{\infty} \\ &= \quad \frac{1 - o(1)}{1 + o(1) + 2/\ell} \cdot c(1 - e^{-1/c}) \cdot R_{\infty}. \end{split}$$

• We omit the second part of Theorem 2 (similar to that of Theorem 1)

Proof of Theorem 2 (contd.)

- Thus, there must exist a set of *b* reserve prices such that $R_b \ge c(1 e^{-1/c}) \cdot \sum_{i \notin B} h_i/n.$
- By averaging we get:

$$\begin{split} R_{\ell} &\geq \frac{\ell}{b} \cdot c(1 - e^{-1/c}) \cdot \sum_{i \notin B} h_i / n \\ &\geq \quad \frac{\ell \cdot c(1 - e^{-1/c})}{\lceil \ell (1 + \ln \ln n / \ln n) \rceil + 1} \cdot (1 - \ln^{-1} n) \cdot R_{\infty} \\ &\geq \quad \frac{\ell \cdot (1 - \ln^{-1} n)}{\ell (1 + \ln \ln n / \ln n) + 2} \cdot c(1 - e^{-1/c} n) \cdot R_{\infty} \\ &= \quad \frac{1 - o(1)}{1 + o(1) + 2/\ell} \cdot c(1 - e^{-1/c}) \cdot R_{\infty}. \end{split}$$

• We omit the second part of Theorem 2 (similar to that of Theorem 1).

Case II:

General Probability Distributions over the Impression Types

Theorem 3

Assume general probabilities. Then, for every $1 \le \ell \le n$, we have

 $R_{\ell} \geq (\ell/n) \cdot R_{\infty}.$

Moreover, there exists an instance for which

$$R_{\ell} \leq (1+o(1)) \cdot (\ell/n) \cdot R_{\infty}.$$

Proof of Theorem 3

• $R_{\infty} = \sum_{i=1}^{n} p_i \cdot h_i$.

 $\triangleright \exists S$ of size ℓ such that $R_{\infty} \leq (n/\ell) \cdot \sum_{t_i \in S} p_i \cdot h_i$

Choose {h_i | t_i ∈ S} as the set of ℓ reserve prices.
 R_ℓ ≥ ∑_{ti∈S} p_i · h_i ≥ (ℓ/n) · R_∞.

Prices in Prob. Single Item Auction Bounding R_{ℓ}/R_{∞}

Proof of Theorem 3

•
$$R_{\infty} = \sum_{i=1}^{n} p_i \cdot h_i.$$

 $\triangleright \exists S \text{ of size } \ell \text{ such that } R_{\infty} \leq (n/\ell) \cdot \sum_{t_i \in S} p_i \cdot h_i.$

Choose {h_i | t_i ∈ S} as the set of ℓ reserve prices.
 R_ℓ ≥ ∑_{ti∈S} p_i · h_i ≥ (ℓ/n) · R_∞.

Prices in Prob. Single Item Auction Bounding R_{ℓ}/R_{∞}

Proof of Theorem 3

•
$$R_{\infty} = \sum_{i=1}^{n} p_i \cdot h_i.$$

 $\triangleright \exists S \text{ of size } \ell \text{ such that } R_{\infty} \leq (n/\ell) \cdot \sum_{t_i \in S} p_i \cdot h_i.$

• Choose $\{h_i \mid t_i \in S\}$ as the set of ℓ reserve prices. $\rhd \ R_\ell \ge \sum_{t_i \in S} p_i \cdot h_i \ge (\ell/n) \cdot R_\infty.$

Prices in Prob. Single Item Auction Bounding R_{ℓ}/R_{∞}

Proof of Theorem 3

•
$$R_{\infty} = \sum_{i=1}^{n} p_i \cdot h_i.$$

 $\triangleright \exists S \text{ of size } \ell \text{ such that } R_{\infty} \leq (n/\ell) \cdot \sum_{t_i \in S} p_i \cdot h_i.$

• Choose
$$\{h_i \mid t_i \in S\}$$
 as the set of ℓ reserve prices.
 $\triangleright R_\ell \ge \sum_{t_i \in S} p_i \cdot h_i \ge (\ell/n) \cdot R_\infty.$

Proof of Theorem 3 (second part)

- Let f₀, f₁, f₂,..., f_n be a set of values such that:
 ∀1 ≤ i ≤ n, f(i) = ω(n) ⋅ f(i − 1).
- Consider the instance with single bidder.
 - The value for impression type t_i is $v(i, 1) = 1/f_i$.
 - The prob. of t_i is $p_i := f_i / [\sum_{j=1}^n f_j]$.

•
$$R_{\infty} = \sum_{i=1}^{n} p_i / f_i = \sum_{i=1}^{n} \frac{f_i}{\sum_{i=1}^{n} f_i} \cdot \frac{1}{f_i} = \frac{n}{\sum_{i=1}^{n} f_i}$$
.

• Now we consider R_{ℓ} .

Proof of Theorem 3 (second part)

- Let f₀, f₁, f₂,..., f_n be a set of values such that:
 ∀1 ≤ i ≤ n, f(i) = ω(n) ⋅ f(i − 1).
- Consider the instance with single bidder.
 - The value for impression type t_i is $v(i, 1) = 1/f_i$.
 - The prob. of t_i is $p_i := f_i / [\sum_{j=1}^n f_j]$.

•
$$R_{\infty} = \sum_{i=1}^{n} p_i / f_i = \sum_{i=1}^{n} \frac{f_i}{\sum_{j=1}^{n} f_j} \cdot \frac{1}{f_i} = \frac{n}{\sum_{i=1}^{n} f_i}.$$

• Now we consider R_{ℓ} .

37 / 47

19 Feb 2016

Proof of Theorem 3 (second part)

- Let f₀, f₁, f₂,..., f_n be a set of values such that:
 ∀1 ≤ i ≤ n, f(i) = ω(n) ⋅ f(i − 1).
- Consider the instance with single bidder.
 - The value for impression type t_i is $v(i, 1) = 1/f_i$.
 - The prob. of t_i is $p_i := f_i / [\sum_{j=1}^n f_j]$.

•
$$R_{\infty} = \sum_{i=1}^{n} p_i / f_i = \sum_{i=1}^{n} \frac{f_i}{\sum_{j=1}^{n} f_j} \cdot \frac{1}{f_i} = \frac{n}{\sum_{i=1}^{n} f_i}.$$

• Now we consider R_{ℓ} .

Proof of Theorem 3 (second part contd.)

- Let r_1, r_2, \ldots, r_ℓ be the best set of ℓ (unique) reserve prices.
- WLOG, $r_k = 1/f_i$ for some i(k).
- T_k : a set containing all impression types which contribute r_k to R_ℓ .

•
$$R_{\ell} = \sum_{k=1}^{\ell} \left(r_k \cdot \sum_{t_i \in T_k} p_i \right).$$

• Every $t_i \in T_k \setminus \{t_{i(k)}\}$ must have i < i(k).

Proof of Theorem 3 (second part contd.)

• Hence,

$$\begin{aligned} r_k \cdot \sum_{t_i \in T_k} p_i &\leq r_k \cdot (p_{i(k)} + n \cdot p_{i(k)-1}) = \frac{p_{i(k)}}{f_{i(k)}} + \frac{n \cdot p_{i(k)-1}}{f_{i(k)}} \\ &= \frac{1}{\sum_{j=1}^n f_j} + \frac{n \cdot f_{i(k)-1}/f_{i(k)}}{\sum_{j=1}^n f_j} = \frac{1 + o(1)}{\sum_{j=1}^n f_j}. \end{aligned}$$

Therefore,

$$R_{\ell} \leq \sum_{k=1}^{\ell} \left(r_k \cdot \sum_{t_i \in T_k} p_i \right) = \ell \cdot \frac{1 + o(1)}{\sum_{j=1}^n f_j} = (1 + o(1)) \cdot \frac{\ell}{n} \cdot R_{\infty}.$$

990

Computing Optimal Reserve Prices

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction

19 Feb 2016 40

Theorem 4

The optimal set of reserve prices can be calculated efficiently by dynamic programming of filling up a table of size $n \cdot \ell$.

- $T(n', \ell')$: the optimal set of reserve values where only the types $t_{n-n'+1}, t_{n-n'+2}, \ldots, t_n$ and only ℓ reserve prices are allowed.
- $\star\,$ The following discussion focuses on the case of a single bidder.

Lemma 3

For every $1 \le n' \le n$, T(n', 1) can be efficiently computed.

• Check the values $h_{n-n'+1}, h_{n-n'+2}, \ldots, h_n$.

Lemma 4

For every $1 \le n' \le n$ and $1 < \ell' \le \ell$. Given that $T(n'', \ell - 1)$ is known for every $1 \le n'' \le n$, then $T(n', \ell')$ can be efficiently computed.

Illustration of the DP

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

- r₁ ≤ r₂ ≤ ... ≤ r_{ℓ'}: the set of optimal reserve prices for the auction represented by T(n', ℓ').
- S_k: the set of impression types giving revenue of r_k, 1 ≤ k ≤ ℓ'.

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

Consider T(4, 1):

- r_1 could only be 5, 3 or 2.
- The corresponding values are 5, 6, and 8.
- So we choose {2}.

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

Consider T(4, 1):

- r_1 could only be 5, 3 or 2.
- The corresponding values are 5, 6, and 8.

• So we choose {2}.

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

Consider T(4, 1):

- r_1 could only be 5, 3 or 2.
- The corresponding values are 5, 6, and 8.
- So we choose {2}.

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(3, 2):

- The size of *S*₂: 1, 2, or 3.
- If $S_2 = \{t_2\}$, then $r_2 = h_2 = 3$. $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 7).

• If
$$S_2 = \{t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 6).

• If
$$S_2 = \{t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 6).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(3, 2):

- The size of *S*₂: 1, 2, or 3.
- If $S_2 = \{t_2\}$, then $r_2 = h_2 = 3$. $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 7).

• If
$$S_2 = \{t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 6).

• If
$$S_2 = \{t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 6).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(3, 2):

- The size of *S*₂: 1, 2, or 3.
- If $S_2 = \{t_2\}$, then $r_2 = h_2 = 3$. $arphi \ \{3\} \cup T(2,1) = \{2,3\}$ (value: 7).
- If $S_2 = \{t_2, t_3\}$, then $r_2 = h_3 = 2$. $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 6).

• If
$$S_2 = \{t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 6).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(3, 2):

• The size of *S*₂: 1, 2, or 3.

• If
$$S_2 = \{t_2\}$$
, then $r_2 = h_2 = 3$.
 $(3) \cup T(2, 1) = \{2, 3\}$ (value: 7).

• If
$$S_2 = \{t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 6).

• If
$$S_2 = \{t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 6).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(3, 2):

• The size of *S*₂: 1, 2, or 3.

• If
$$S_2 = \{t_2\}$$
, then $r_2 = h_2 = 3$.
 $(3) \cup T(2, 1) = \{2, 3\}$ (value: 7).

• If
$$S_2 = \{t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 6).

• If
$$S_2 = \{t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 6).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \ \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).
- If $S_2 = \{t_1, t_2\}$, then $r_2 = h_2 = 3$. $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).
- If $S_2 = \{t_1, t_2, t_3\}$, then $r_2 = h_3 = 2$. $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).
- If $S_2 = \{b_1, b_2, b_3, b_4\}$, then $c_2 = b_1 = 2$ $(2) \cup T(0, 1) = (2)$ (values 8)

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \ \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).

• If
$$S_2 = \{t_1, t_2\}$$
, then $r_2 = h_2 = 3$.
 $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).

• If
$$S_2 = \{t_1, t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).

• If $S_2 = \{t_1, t_2, t_3, t_4\}$, then $r_2 = h_4 = 2$. $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 8).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'			
	1	2	3	4
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \ \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).

• If
$$S_2 = \{t_1, t_2\}$$
, then $r_2 = h_2 = 3$.
 $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).

• If
$$S_2 = \{t_1, t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).

• If $S_2 = \{t_1, t_2, t_3, t_4\}$, then $r_2 = h_4 = 2$. $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 8).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'					
	1	2	3	4		
1	$\{2\}$	$\{2\}$	$\{2\}$	{2}		
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$		
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$		

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \ \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).

• If
$$S_2 = \{t_1, t_2\}$$
, then $r_2 = h_2 = 3$.
 $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).

• If $S_2 = \{t_1, t_2, t_3\}$, then $r_2 = h_3 = 2$. $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).

• If $S_2 = \{t_1, t_2, t_3, t_4\}$, then $r_2 = h_4 = 2$. $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 8).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	n'					
	1	2	3	4		
1	$\{2\}$	$\{2\}$	$\{2\}$	$\{2\}$		
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$		
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$		

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \ \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).

• If
$$S_2 = \{t_1, t_2\}$$
, then $r_2 = h_2 = 3$.
 $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).

• If
$$S_2 = \{t_1, t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).

• If
$$S_2 = \{t_1, t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 8).

Illustration of the DP (contd.)

$$\begin{array}{ccccc} h_i : & 5 & 3 & 2 & 2 \\ & \left(\begin{array}{cccc} 5 & 0 & 1 & 2 \\ 1 & 3 & 2 & 0 \end{array}\right) \end{array}$$

l	<i>n</i> ′					
	1	2	3	4		
1	$\{2\}$	$\{2\}$	$\{2\}$	$\{2\}$		
2	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 5\}$		
3	$\{2\}$	$\{2\}$	$\{2, 3\}$	$\{2, 3, 5\}$		

Consider T(4, 2):

- The size of *S*₂: 1, 2, 3, or 4.
- If $S_2 = \{t_1\}$, then $r_2 = h_1 = 5$. $\triangleright \{5\} \cup T(3,1) = \{2,5\}$ (value: 11).

• If
$$S_2 = \{t_1, t_2\}$$
, then $r_2 = h_2 = 3$.
 $\triangleright \{3\} \cup T(2, 1) = \{2, 3\}$ (value: 10).

• If
$$S_2 = \{t_1, t_2, t_3\}$$
, then $r_2 = h_3 = 2$.
 $\triangleright \{2\} \cup T(1, 1) = \{2\}$ (value: 8).

• If
$$S_2 = \{t_1, t_2, t_3, t_4\}$$
, then $r_2 = h_4 = 2$.
 $\triangleright \{2\} \cup T(0, 1) = \{2\}$ (value: 8).

Prices in Prob. Single Item Auction

Thank you.

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction

19 Feb 2016 47 / 47