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Prices in Prob. Single Item Auction

Introduction

Motivations

Real-time bidding in advertising.

ad exchanges.

Publishers (like MSN and Yahoo) attempt to maximize the revenue
they collect from the advertisers.

Doing so by wisely targeting their ads at right users.
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Introduction

Probabilistic single-item auction

Probabilistic single-item auction

⋆ Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz:
Signaling schemes for revenue maximaization. EC’14.

⋆ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC’12.

Probabilistic single-item auction (in general):

Single item, m bidders.

The item is chosen randomly from a set of n indivisible goods according to a

distribution p ∈ ∆(n).

Second-price auction.

Reserve price: a minimum price set by the auctioneer.
⋆ If no bid exceeds the reserve price, the item is left unsold.
⋆ The player with the highest bid gets the item.

The price: second highest bid (no less than the reserve price).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 4 / 47



Prices in Prob. Single Item Auction

Introduction

Probabilistic single-item auction

Probabilistic single-item auction

⋆ Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz:
Signaling schemes for revenue maximaization. EC’14.

⋆ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC’12.

Probabilistic single-item auction (in general):

Single item, m bidders.

The item is chosen randomly from a set of n indivisible goods according to a

distribution p ∈ ∆(n).

Second-price auction.

Reserve price: a minimum price set by the auctioneer.
⋆ If no bid exceeds the reserve price, the item is left unsold.
⋆ The player with the highest bid gets the item.

The price: second highest bid (no less than the reserve price).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 4 / 47



Prices in Prob. Single Item Auction

Introduction

Probabilistic single-item auction

Probabilistic single-item auction

⋆ Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz:
Signaling schemes for revenue maximaization. EC’14.

⋆ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC’12.

Probabilistic single-item auction (in general):

Single item, m bidders.

The item is chosen randomly from a set of n indivisible goods according to a

distribution p ∈ ∆(n).

Second-price auction.

Reserve price: a minimum price set by the auctioneer.
⋆ If no bid exceeds the reserve price, the item is left unsold.
⋆ The player with the highest bid gets the item.

The price: second highest bid (no less than the reserve price).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 4 / 47



Prices in Prob. Single Item Auction

Introduction

Probabilistic single-item auction

Probabilistic single-item auction

⋆ Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz:
Signaling schemes for revenue maximaization. EC’14.

⋆ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC’12.

Probabilistic single-item auction (in general):

Single item, m bidders.

The item is chosen randomly from a set of n indivisible goods according to a

distribution p ∈ ∆(n).

Second-price auction.

Reserve price: a minimum price set by the auctioneer.
⋆ If no bid exceeds the reserve price, the item is left unsold.
⋆ The player with the highest bid gets the item.

The price: second highest bid (no less than the reserve price).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 4 / 47



Prices in Prob. Single Item Auction

Introduction

Probabilistic single-item auction

Probabilistic single-item auction

⋆ Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, & M. Tenneholtz:
Signaling schemes for revenue maximaization. EC’14.

⋆ P. B. Miltersen & O. Sheffet:

Send mixed signals: earn more, work less. EC’12.

Probabilistic single-item auction (in general):

Single item, m bidders.

The item is chosen randomly from a set of n indivisible goods according to a

distribution p ∈ ∆(n).

Second-price auction.

Reserve price: a minimum price set by the auctioneer.
⋆ If no bid exceeds the reserve price, the item is left unsold.
⋆ The player with the highest bid gets the item.

The price: second highest bid (no less than the reserve price).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 4 / 47



Prices in Prob. Single Item Auction

Introduction

Contribution of this paper

Extend the previous framework by allowing actions with reserved

prices.

Investigate the effect of limiting # different reserve prices on the
revenue.

Bounding Rℓ/R∞.
⋄ Rℓ: the max. possible expected revenue using ℓ different reserve prices.

Efficient algorithms for computing the optimal set of reserve prices.
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The Model

The Model

n impression types.

m bidders.

Each bidder dj has a value v(i , j) ≥ 0 for impression type ti .

Each impression of type ti arrives with prob. pi .

The auction mechanism can set up to ℓ reserve prices r1, r2, . . . , rℓ.

Every ti is assigned r ′i = maxk∈[ℓ]{rk | rk ≤ v(i , j) for some j ∈ [m]}.

0 if there is no such reserve price.

⋆ The auctioneer is familiar with bidders’ values.
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The Model

The Model (contd.)

Whenever an impression of type ti arrives, bidders are notified about its
exact type and then bidder dj declares a bid b(i , j).

dh, ds : the bidders with the 1st & the 2nd highest bids, resp.

The bidder winning the good and the payment are determined by:

⋄ if b(i , h) < r ′i , no bidder gets the item;

⋄ if b(i , s) < r ′i ≤ b(i , h), bidder dh gets the item and pays r ′i ;

⋄ if r ′i ≤ b(i , s), bidder dh gets the item and pays b(i , s).

⋄ Truthful for every given choice of reserve prices.

⋄ Declaring b(i , j) = v(i , j) is a weakly dominant strategy for bidder dj .
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The Model

An Example

Rℓ: the expected revenue when the best choice of ≤ ℓ reserve prices are used.

hi : the maximal value given by any bidder for impression of type ti .

Observation 1

R∞ =
∑n

i=1 hi · pi .
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The Model

Bounds on Rℓ/R∞
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Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 15 / 47



Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Case I:

Uniform Probability Distribution over the Impression Types
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Bounding Rℓ/R∞

Lemma 1

Assume uniform probabilities, we have that

R1 ≥ R∞/Hn,

where Hn is the nth harmonic number.
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Bounding Rℓ/R∞

Proof of Lemma 1

Choose a single reserve price hi ⇒ the auctioneer can get a revenue
of ≥ hi from impression types t1, t2, . . . , ti .

Total revenue ≥ i · hi/n.

If i · hi/n ≥ R∞/Hn for some i , then we are done.

Assume the contrary then we get:

R∞ =

n
∑

i=1

hi/n <

n
∑

i=1

R∞/(i · Hn) =
R∞

Hn
·

n
∑

i=1

1

i
= R∞

(contradiction)
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Bounding Rℓ/R∞

We can change Lemma 1 a little bit...
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Bounding Rℓ/R∞

Let
∑n′

i=1 hi/n = R̂n′ , where n′ ≤ n.

Assume that i · hi/n < R̂n′/Hn′ for all i , then we get:

R̂n′ =
n′
∑

i=1

hi/n <
n′
∑

i=1

R̂n′/(i · Hn′) =
R̂n′

Hn′
·

n′
∑

i=1

1

i
= R̂n′

(contradiction)

∴ ∃i such that

R1 ≥
i · hi
n

≥

∑n′

i=1 hi/n

Hn′
.
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Bounding Rℓ/R∞

When ℓ is not too large:

Theorem 1

Assume uniform probabilities. Then, for every 1 ≤ ℓ ≤ ln1/2−ǫ n and an
arbitrarily small ǫ > 0, it always holds that

Rℓ ≥ (1− o(1)) · ℓ/Hn · R∞.

Moreover, there exists an instance with uniform probabilities for which

Rℓ ≤ ℓ/Hn · R∞.
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Bounding Rℓ/R∞

Proof of Theorem 1 (part 1)

Define c = lnǫ n (Note: cℓ ≤ n). ∵ ℓ ≤ ln1/2−ǫ n

If
∑cℓ

i=1 hi/n ≥ R∞/c , then by Lemma 1, R1 is at least:

∑cℓ

i=1 hi/n

Hcℓ
≥ (1− o(1)) ·

R∞/c

ℓ ln c
≥ (1− o(1)) ·

ℓ · R∞

ln1−2ǫ n · c · ln c

= (1− o(1)) ·
ℓ · R∞

ln1−ǫ n · ln lnǫ n
= (1− o(1)) ·

lnǫ n

ln lnǫ n
·

ℓ

ln n
· R∞

≥ (1− o(1)) ·
ℓ

Hn

· R∞,

This case is complete because Rℓ ≥ R1.

Consider the case:
∑cℓ

i=1 hi/n < R∞/c .
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Bounding Rℓ/R∞

Proof of Theorem 1 (part 1) (contd.)

Define:

rk,i =

{

h⌊i·ck−1⌋ if i · ck−1 ≤ n,
0 otherwise.

The ith set of reserve prices: {rk,i | 1 ≤ k ≤ ℓ}.

Note that
∑n

i=1 r1,i =
∑n

i=1 hi = n · R∞.
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Bounding Rℓ/R∞

Proof of Theorem 1 (part 1) (contd.)

rk,i =

{

h⌊i·ck−1⌋ if i · ck−1 ≤ n,

0 otherwise.

For every 1 ≤ i ≤ n:

⌊i · c0⌋ · r1,i
n

+
ℓ

∑

k=2

[⌊i · ck−1⌋ − ⌊i · ck−2⌋] · rk,i
n

≤ Rℓ

⇒
i · r1,i
n

+
i · (c − 2)

n
·

ℓ
∑

k=2

c
k−2 · rk,i ≤ Rℓ

⇒
r1,i

n
+

c − 2

n
·

ℓ
∑

k=2

c
k−2 · rk,i ≤

Rℓ

i

∴ R∞ +
c − 2

n
·

ℓ
∑

k=2

c
k−2 ·

n
∑

i=1

rk,i ≤ Rℓ · Hn. (1)
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 1 (part 1) (contd.)
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 1 (part 1) (contd.)

∵ h’s are non-increasing, for every 2 ≤ k ≤ ℓ:

n
∑

i=1

rk,i =

⌊n/ck−1⌋
∑

i=1

h⌊i·ck−1⌋ ≥

∑n
i=ck−1 hi

ck−1
=

∑n
i=1 hi −

∑ck−1−1
i=1 hi

ck−1

≥
n · R∞ − n · R∞/c

ck−1
= n · R∞ ·

1− 1/c

ck−1
,

↑ by our assumption.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 1 (part 1)

Adding Inequality (1) we have

R∞ + (c − 2) ·
ℓ
∑

k=2

ck−2 ·

[

R∞ ·
1− 1/c

ck−1

]

≤ Rℓ · Hn

⇒ R∞ + (ℓ− 1) · (1− 2/c)(1− 1/c) · R∞ ≤ Rℓ · Hn

⇒ R∞ + (ℓ− 1) · (1− 2/c)2 · R∞ ≤ Rℓ · Hn

⇒ R∞ · ℓ · (1− 2/c)2 ≤ Rℓ · Hn

⇒ Rℓ ≥ (1− 2/c)2 ·
ℓ

Hn
· R∞ = (1− o(1)) ·

ℓ

Hn
· R∞.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 1 (part 2: the bound is tight)

Consider an instance:

uniform distribution over the impression types;
single bidder;
value for ti is 1/i .

Clearly,

hi = 1/i for every i .
R∞ =

∑n
i=1(1/i)/n = Hn/n.

Let’s try to upper bound Rℓ.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 1 (part 2) (contd.)

Let r1, r2, . . . , rℓ be the optimal choice of reserve prices.

WLOG, assume that for each i , ri = hj for some 1 ≤ j ≤ n.

Assume that every reserve price is unique.

Tk : a set containing all impression types which yield a revenue of rk .

Rℓ = (1/n) ·
∑ℓ

k=1 |Tk | · rk .

If rk = hi for some i , then Tk can contain ≤ i elements 1, 1/2, . . . , 1/i .

|Tk | · rk ≤ i · (1/i) = 1.

Thus,

Rℓ ≤
1

n
·

ℓ
∑

k=1

1 =
ℓ

n
=

ℓ

Hn

· R∞.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

For large values of ℓ:

Theorem 2

Assume uniform probabilities. Then, for every ω(1) ≤ ℓ ≤ n, we have

Rℓ ≥ (1− o(1)) · c
(

1− e−1/c
)

· R∞,

where c = ℓ/ ln n.

Moreover, there exists an instance for which

Rℓ ≤ (1 + o(1)) ·
(

1− e−1/c
)

· R∞.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 2

Let b =
⌈

ℓ
(

1 + ln ln n
ln n

)⌉

+ 1.

Try to bound Rb first.

Let B = {ti | hi ≤ h1 · e
(1−b)/c}.

Total contribution of B to R∞ is bounded by

n·
(

h1 · e
(1−b)/c

)

/n ≤ h1·e
−(ln n+ln ln n) = h1·n

−1·ln−1 n ≤ R∞·ln−1 n.

Hence,

R∞ ≤
∑

i /∈B

hi/n + R∞ · ln−1 n

⇒ R∞ ≤

∑

i /∈B hi/n

1− ln−1 n
.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 2 (contd.)

x : chosen uniformly at random from [0, 1].

Define:

Sj = {ti /∈ B | h1 · e
(2−j−x)/c ≥ hi > h1 · e

(1−j−x)/c}.

rj := h1 · e
(1−j−x)/c , for 1 ≤ j ≤ b.

Note: every impression type OUTSIDE B belongs to exactly one Sj .
Each ti ∈ Sj induces revenue ≥ rj .

Let’s define b reserve prices to lower bound Rb.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 2 (contd.)

Sj = {ti /∈ B | h1 · e
(2−j−x)/c ≥ hi > h1 · e

(1−j−x)/c}.

Assume that hi = h1 · e
(1−yi )/c for some yi .

ti ∈ S⌈yi⌉ if x ≤ 1 + yi − ⌈yi⌉, and ti ∈ S⌈yi⌉−1 otherwise.

The expected contribution of ti to Rb is:
∫ 1+yi−⌈yi⌉

0

h1 · e
(1−⌈yi⌉−x)/c

dx +

∫ 1

1+yi−⌈yi⌉

h1 · e
(2−⌈yi⌉−x)/c

dx

= −h1c · e(1−⌈yi⌉−x)/c
∣

∣

∣

1+yi−⌈yi⌉

0
− h1c · e(2−⌈yi⌉−x)/c

∣

∣

∣

1

1+yi−⌈yi⌉

= h1c · e−yi/c · (e1/c − 1) = hi · c(1− e
−1/c).

✄ Total expected contribution of ti /∈ B to Rb is ≥ c(1− e−1/c) ·
∑

i /∈B hi/n.
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Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Proof of Theorem 2 (contd.)

Thus, there must exist a set of b reserve prices such that
Rb ≥ c(1− e−1/c) ·

∑

i /∈B hi/n.

By averaging we get:

Rℓ ≥
ℓ

b
· c(1− e

−1/c) ·
∑

i /∈B

hi/n

≥
ℓ · c(1− e−1/c)

⌈ℓ(1 + ln ln n/ ln n)⌉+ 1
· (1− ln−1

n) · R∞

≥
ℓ · (1− ln−1 n)

ℓ(1 + ln ln n/ ln n) + 2
· c(1− e

−1/c
n) · R∞

=
1− o(1)

1 + o(1) + 2/ℓ
· c(1− e

−1/c) · R∞.

We omit the second part of Theorem 2 (similar to that of Theorem 1).
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Bounding Rℓ/R∞

Proof of Theorem 2 (contd.)
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∑

i /∈B hi/n.

By averaging we get:

Rℓ ≥
ℓ

b
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−1/c) ·
∑

i /∈B

hi/n
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ℓ · c(1− e−1/c)

⌈ℓ(1 + ln ln n/ ln n)⌉+ 1
· (1− ln−1
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· c(1− e
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=
1− o(1)

1 + o(1) + 2/ℓ
· c(1− e

−1/c) · R∞.

We omit the second part of Theorem 2 (similar to that of Theorem 1).

Joseph C.-C. Lin (Academia Sinica, TW) Prices in Prob. Single Item Auction 19 Feb 2016 33 / 47



Prices in Prob. Single Item Auction

Bounding Rℓ/R∞

Case II:

General Probability Distributions over the Impression Types
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Bounding Rℓ/R∞

Theorem 3

Assume general probabilities. Then, for every 1 ≤ ℓ ≤ n, we have

Rℓ ≥ (ℓ/n) · R∞.

Moreover, there exists an instance for which

Rℓ ≤ (1 + o(1)) · (ℓ/n) · R∞.
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Bounding Rℓ/R∞

Proof of Theorem 3

R∞ =
∑n

i=1 pi · hi .

✄ ∃ S of size ℓ such that R∞ ≤ (n/ℓ) ·
∑

ti∈S pi · hi .

Choose {hi | ti ∈ S} as the set of ℓ reserve prices.

✄ Rℓ ≥
∑

ti∈S pi · hi ≥ (ℓ/n) · R∞.
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Bounding Rℓ/R∞

Proof of Theorem 3 (second part)

Let f0, f1, f2, . . . , fn be a set of values such that:

∀1 ≤ i ≤ n, f (i) = ω(n) · f (i − 1).

Consider the instance with single bidder.

The value for impression type ti is v(i , 1) = 1/fi .
The prob. of ti is pi := fi/[

∑n
j=1 fj ].

R∞ =
∑n

i=1 pi/fi =
∑n

i=1
fi∑n
j=1 fj

· 1
fi
= n∑n

i=1 fi
.

Now we consider Rℓ.
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Bounding Rℓ/R∞

Proof of Theorem 3 (second part contd.)

Let r1, r2, . . . , rℓ be the best set of ℓ (unique) reserve prices.

WLOG, rk = 1/fi for some i(k).

Tk : a set containing all impression types which contribute rk to Rℓ.

Rℓ =
∑ℓ

k=1

(

rk ·
∑

ti∈Tk
pi

)

.

Every ti ∈ Tk \ {ti(k)} must have i < i(k).
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Bounding Rℓ/R∞

Proof of Theorem 3 (second part contd.)

Hence,

rk ·
∑

ti∈Tk

pi ≤ rk · (pi(k) + n · pi(k)−1) =
pi(k)

fi(k)
+

n · pi(k)−1

fi(k)

=
1

∑n
j=1 fj

+
n · fi(k)−1/fi(k)
∑n

j=1 fj
=

1 + o(1)
∑n

j=1 fj
.

Therefore,

Rℓ ≤
ℓ
∑

k=1

(

rk ·
∑

ti∈Tk

pi

)

= ℓ ·
1 + o(1)
∑n

j=1 fj
= (1 + o(1)) ·

ℓ

n
· R∞.
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Computing Optimal Reserve Prices
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Computing Optimal Reserve Prices

Theorem 4

The optimal set of reserve prices can be calculated efficiently by dynamic
programming of filling up a table of size n · ℓ.
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Computing Optimal Reserve Prices

T (n′, ℓ′): the optimal set of reserve values where only the types
tn−n′+1, tn−n′+2, . . . , tn and only ℓ reserve prices are allowed.

⋆ The following discussion focuses on the case of a single bidder.

Lemma 3

For every 1 ≤ n′ ≤ n, T (n′, 1) can be efficiently computed.

Check the values hn−n′+1, hn−n′+2, . . . , hn.

Lemma 4

For every 1 ≤ n′ ≤ n and 1 < ℓ′ ≤ ℓ. Given that T (n′′, ℓ− 1) is known for
every 1 ≤ n′′ ≤ n, then T (n′, ℓ′) can be efficiently computed.
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Computing Optimal Reserve Prices

Illustration of the DP

hi : 5 3 2 2
(

5 0 1 2
1 3 2 0

)

r1 ≤ r2 ≤ . . . ≤ rℓ′ : the set of optimal
reserve prices for the auction represented
by T (n′, ℓ′).

Sk : the set of impression types giving

revenue of rk , 1 ≤ k ≤ ℓ′.
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Computing Optimal Reserve Prices

Illustration of the DP (contd.)

hi : 5 3 2 2
(

5 0 1 2
1 3 2 0

)

Consider T (4, 1):

r1 could only be 5, 3 or 2.

The corresponding values are 5, 6, and 8.

So we choose {2}.
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Computing Optimal Reserve Prices

Illustration of the DP (contd.)

hi : 5 3 2 2
(

5 0 1 2
1 3 2 0

)

Consider T (3, 2):

The size of S2: 1, 2, or 3.

If S2 = {t2}, then r2 = h2 = 3.

✄ {3} ∪ T (2, 1) = {2, 3} (value: 7).

If S2 = {t2, t3}, then r2 = h3 = 2.

✄ {2} ∪ T (1, 1) = {2} (value: 6).

If S2 = {t2, t3, t4}, then r2 = h4 = 2.

✄ {2} ∪ T (0, 1) = {2} (value: 6).
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Illustration of the DP (contd.)
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Illustration of the DP (contd.)
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Illustration of the DP (contd.)
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Illustration of the DP (contd.)
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Computing Optimal Reserve Prices

Illustration of the DP (contd.)

hi : 5 3 2 2
(

5 0 1 2
1 3 2 0

)

Consider T (4, 2):

The size of S2: 1, 2, 3, or 4.

If S2 = {t1}, then r2 = h1 = 5.

✄ {5} ∪ T (3, 1) = {2, 5} (value: 11).

If S2 = {t1, t2}, then r2 = h2 = 3.

✄ {3} ∪ T (2, 1) = {2, 3} (value: 10).

If S2 = {t1, t2, t3}, then r2 = h3 = 2.

✄ {2} ∪ T (1, 1) = {2} (value: 8).

If S2 = {t1, t2, t3, t4}, then r2 = h4 = 2.

✄ {2} ∪ T (0, 1) = {2} (value: 8).
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Thank you.
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