Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)

O. Solomon, S. Oren, M. Safran, N. Deshet-Unger, P. Akiva, J. Jacob-Hirsch, K. Cesarkas, R. Kabesa, N. Amariglio, R. Unger, G. Rechavi, and E. Eyal

RNA 19 (2013) 1-14.

Speaker: Joseph Chuang-Chieh Lin

The Comparative & Evolutionary Genomics/Transcriptomics Lab. Genomics Research Center, Academia Sinica Taiwan

9 October 2013 (3 July 2013)

Image: A math a math

Outline

Introduction

2 Materials

Results

- Collection of editing sites
- A-to-I editing sites rarely fall within the canonical splicing motifs
- In silico assay suggesting A-to-I RNA editing modifies SREs
- ADAR has prominent influence on global splicing pattern
- Splicing pattern changes by ADAR KD ⇔ enrichment of A-to-I editing?
- ADAR KD shows significant changes in splicing and RNA processing genes

4 Summary

• • • • • • • • • • •

Alternative splicing

- A major mechanism for gene regulation and transcriptome diversity.
- Yet the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood.

• • • • • • • • • • •

ADAR enzymes

- ADAR: Adenosine Deaminase Acting on RNA.
- Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes, which bind double strand RNAs.
 - ADAR (ADAR1): two distinct prevalent isoforms: p110 & p150.
 - ADARB1 (ADAR2).
 - ADARB2 (ADAR3).
- Crucial for development [Higuchi *et al. Nature* 2000 & Paz-Yaacov *et al. Proc. Natl. Acad. Sci.* 2010].
 - ADAR1 knockout: mice die in the embryonic stage.
 - ADAR2 knockout: mice suffer from seizures and die at an early age.
- Cytosine is base-paired by reverse transcriptase with inosine during cDNA synthesis.

・ロト ・回ト ・ヨト ・

Editing & pre-mRNA splicing

- A-to-I RNA editing and mRNA splicing are indeed coordinated in specific genes.
- This coordination may be governed by the RNA Pol II carboxy-terminal -domain (CTD) [Laurencikiene *et al. EMBO report* 2006; Ryman *et al., RNA* 2007].
 - CTD helps ensure that editing precedes splicing of the GluR-B transcript.
- Efficient exonic RNA editing often depends on intronic editing complementary sequences (ECS) for duplex formation.
- Examples for interrelations between editing and splicing are evident early in evolution [Jin *et al.*, *BMC Evol. Biol.* 2007; Agrawal & Stormo, *RNA* 2005].

・ロト ・日下・ ・ ヨト・

Editing & pre-mRNA splicing

- A-to-I RNA editing and mRNA splicing are indeed coordinated in specific genes.
- This coordination may be governed by the RNA Pol II carboxy-terminal -domain (CTD) [Laurencikiene *et al. EMBO report* 2006; Ryman *et al., RNA* 2007].
 - CTD helps ensure that editing precedes splicing of the GluR-B transcript.
- Efficient exonic RNA editing often depends on intronic editing complementary sequences (ECS) for duplex formation.
- Examples for interrelations between editing and splicing are evident early in evolution [Jin *et al.*, *BMC Evol. Biol.* 2007; Agrawal & Stormo, *RNA* 2005].

• • • • • • • • • • • •

Editing & pre-mRNA splicing (contd.)

- An editing site strengthens an enhancer signal within the exon [Agrawal & Stormo, *RNA* 2005].
- Exonization of intronic sequences:
 - RNA editing in the NARF gene in human might lead to exonization of an intronic sequence and the birth of the eighth exon of this gene [Lev-Maor *et al.*, *Genome Biol.* 2007].
- Editing at the branch site of PTPN6 gene in AML patients was found to impair splicing of the intron, with a probable role in leukemogenesis [Beghini *et al.*, *Hum. Mol. Genet.* 2000].

• • • • • • • • • • • •

Contribution of this paper

To analyze how ADAR globally affects alternative mRNA splicing.

- A systematic approach;
- High-throughput expression analysis (exon-specific microarray) & sequencing of transcript data sets (ESTs/mRNA);
- Massively parallel sequencing (MPS; NGS).

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Brief summary of the results

- A-to-I RNA editing rarely targets canonical splicing motifs.
 - Yet it was found to affect splicing regulatory elements (SREs) within exons.
- Cassette exons were found to be significantly enriched with A-to-I editing sites compared with constitutive exons.

• • • • • • • • • • •

- RNA-seq & exon-specific microarray revealed that ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression.
 - Hundreds of genes change their splicing patterns.
 - This cannot be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- Direct A-to-I RNA editing is NOT likely to be the primary mechanism for ADAR-mediated regulation of AS.
 - The regulation is suggested to be achieved by modulating trans-acting factors.

- RNA-seq & exon-specific microarray revealed that ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression.
 - Hundreds of genes change their splicing patterns.
 - This cannot be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- Direct A-to-I RNA editing is NOT likely to be the primary mechanism for ADAR-mediated regulation of AS.
 - The regulation is suggested to be achieved by modulating trans-acting factors.

• • • • • • • • • • • •

- RNA-seq & exon-specific microarray revealed that ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression.
 - Hundreds of genes change their splicing patterns.
 - This **cannot** be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- Direct A-to-I RNA editing is NOT likely to be the primary mechanism for ADAR-mediated regulation of AS.
 - The regulation is suggested to be achieved by modulating *trans*-acting factors.

• • • • • • • • • • • •

- RNA-seq & exon-specific microarray revealed that ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression.
 - Hundreds of genes change their splicing patterns.
 - This cannot be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- Direct A-to-I RNA editing is NOT likely to be the primary mechanism for ADAR-mediated regulation of AS.

• The regulation is suggested to be achieved by modulating *trans*-acting factors.

A D > A P > A B > A

- RNA-seq & exon-specific microarray revealed that ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression.
 - Hundreds of genes change their splicing patterns.
 - This cannot be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- Direct A-to-I RNA editing is NOT likely to be the primary mechanism for ADAR-mediated regulation of AS.
 - The regulation is suggested to be achieved by modulating *trans*-acting factors.

A D > A P > A B > A

Genomic data

• hg19/GRCh37 (UCSC ftp site): DNA reference for detection of editing sites.

• RefSeq:

- To define genes and exon-intron boundaries.
- To determine 5'-SS and 3'-ss consensus motifs.
- dbSNP 132 (from UCSC table browser): SNP sites.
- Repeat data: taken from RepeatMasker.

• • • • • • • • • • • •

Transcript data

• EST & mRNA data and their alignments to hg19:

- EST: 249,717 reads; mRNA: 7,510,566 reads.
- Taken from UCSC table browser.
- 454 Life Science RNA-seq data: SRA003647/SRP000614.
 - Including:
 - HBRR (Human Brain Reference RNA);
 - UHRR: Universal Human Reference RNA.
 - Alignment against hg19 using **BLAT**.
- RNA-Seq data (short reads):
 - U87MG cell line:
 - 2 x control + 2 x ADAR KD.
 - Downloaded (Bahn et al. Genome Res. 2012).
 - HepG2 & K562 cell line
 - Illumina GAIIX (76bp; paired-end; alignment: using TopHat).

• • • • • • • • • • • •

Microarray experiment setting

- Using an exon-specific microarray (Affymetrix exon 1.0 st).
 - A probe set for each annotated exon.
 - $\star\,$ Feasible to compare expression levels of individual exons and thus to evaluate AS.
- For each cell line, control samples and ADAR KD samples were tested.

• Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).

- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - $\geq 2~\text{ESTs}$ or $\geq 1~\text{mRNA}$
 - Others specific to ADAR enzymes:
 - Clustering: $[\dots A-to-G \dots A-to-G \dots] \leftarrow 32$ bases. Double strand: $(2bp A to-G)^{12} = 000 \text{ bp} A to-G^{1000 \text{ bp}}$
- Including previous published (putative) editing sites (e.g., DARNED).

・ロト ・日下・ ・ ヨト・

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - $\geq 2~\text{ESTs}$ or $\geq 1~\text{mRNA}$
 - Others specific to ADAR enzymes:
 - Image: Second secon
- Including previous published (putative) editing sites (e.g., DARNED).

・ロト ・回ト ・ヨト ・

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:

- Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - \geq 2 ESTs or \geq 1 mRNA.
- Others specific to ADAR enzymes:
 - S Clustering: [... A-to-G ... A-to-H A-t

Including previous published (putative) editing sites (e.g., DARNED).

・ロト ・回ト ・ヨト ・

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - ≥ 2 ESTs or ≥ 1 mRNA.
 - Others specific to ADAR enzymes:

Including previous published (putative) editing sites (e.g., DARNED)

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - ≥ 2 ESTs or ≥ 1 mRNA.
 - Others specific to ADAR enzymes:

Including previous published (putative) editing sites (e.g., DARNED)

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - ≥ 2 ESTs or ≥ 1 mRNA.
 - Others specific to ADAR enzymes:

• Including previous published (putative) editing sites (e.g., DARNED).

・ロト ・回ト ・ヨト ・

- Comparison of mRNA/EST/RNA-seq reads and the reference genome (preliminary SNV sites).
- Then process the following filters:
 - Quality assurance:
 - The SNV site must be distal (20 bases) from sequence ends.
 - Exclude known SNP sites.
 - Enough support:
 - \geq 5% of all aligned reads that cover the site;
 - ≥ 2 ESTs or ≥ 1 mRNA.
 - Others specific to ADAR enzymes:

 $I = Clustering: [...,A-to-G, ...,A-to-G, ..., A-to-G, ...] \leftarrow 32 \text{ bases.}$

• Including previous published (putative) editing sites (e.g., DARNED).

・ロト ・回ト ・ヨト ・

Verification of editing sites from RNA-seq analysis

- To verify editing sites predicted based on mRNA/EST, using:
 - SAMtools pileup and varScan [Koboldt *et al. Bioinformatics* 2009] on the RNA-seq alignment and scanning for A-to-G or T-to-C.
 - Only sites in both replicates were considered.

Image: A math a math

Category of editing sites predicted based on mRNA/EST

Sites passed all filters:

- 33,687 A-to-G sites (42%; total: 80,127 sites).
- 20,283 A-to-G sites in 3,630 genes (the rest: poorly annotated regions?)
 - 156 in CDS;
 - 14,958 in intronic regions;
 - 513 in non-coding exonic regions;
 - 1,115 in non-coding introns;
 - 3,452 in 3'UTR;
 - 89 in 5'UTR;

Image: A math a math

Category of editing sites predicted based on mRNA/EST (contd.)

Reduction in editing level following ADAR KD based on RNA-seq

Reduction in editing level following ADAR KD (contd.)

• Adenosines not known to be edited (in edited genes).

Constitutive exons vs. cassette exons

- $\bullet\,$ Categorize the editing sites in exons $\rightarrow\,$
 - constitutive;
 - Cassette;
 - other (e.g., retained introns, alternative 5' ss and 3' ss).

Image: A math a math

• Enriched in cassette exons over constitutive exons.

TABLE 1. A-to-I editing in constitutive and cassette exons						
No. ofExon lengthsA-to-I perExon typeA-to-I sites ^a (bases)base						
Constitutive Cassette Other	363 114 56	22,119,390 2,380,193 1,171,293	1.64×10^{-5} 4.8×10^{-5} 4.8×10^{-5}			

Overall, editing sites are enriched in cassette exons when normalized to the combined exon lengths (χ^2 *P*-value < 10⁻¹⁰). Similar results were found using different editing sites sets (see Supplement 1, Supplemental Table S4).

^aEditing sites were taken from DARNED (Kiran and Baranov 2010).

- Mismatches in exons (mRNA/EST).
- Mismatches at 150-base intronic regions flanking exons (mRNA/EST).

- A possible explanation:
 - Cassette and their flanking introns contain more Alu repeats.
- Nevertheless, counting only non-Alu editing sites:
 - cassette vs. constitutive: 1.52×10^{-5} sites/base vs. 1.29×10^{-5} sites/base. (not significant)

- A possible explanation:
 - Cassette and their flanking introns contain more Alu repeats.
- Nevertheless, counting only non-Alu editing sites:
 - cassette vs. constitutive: 1.52×10^{-5} sites/base vs. 1.29×10^{-5} sites/base. (not significant)

Image: A math a math

- A possible explanation:
 - Cassette and their flanking introns contain more Alu repeats.
- Nevertheless, counting only non-Alu editing sites:
 - cassette vs. constitutive: 1.52×10^{-5} sites/base vs. 1.29×10^{-5} sites/base. (not significant)

Regulation of AS by ADAR Results A-to-I editing sites rarely fall within the canonical splicing motifs

Fundamental sequence motifs required for canonical splicing

- 1: 3' splice site (5' ss);
- 2: poly-pyrimidine-tract (PPT);
- 3: branch point
 - branch site (BS) consensus motif: yUnAy);
- 4: 5' splice site (5' ss).

Editing sites rarely fall within the primary consensus sites of canonical splicing

- For editing sites within 5' ss or 3' ss consensus motifs:
 - Only 3 and 2 are within 5' ss and 3' ss resp (mRNA/EST).
 - Only 24 are within 5' ss or 3' ss for ALL data.
- For editing sites overlapping the branch-site consensus motif yUnAy:
 - None.

4 A 1

Splicing regulatory elements (Data preparation)

- Experimentally proved SREs:
 - Akerman et al. [Genome Biol. 2009].
 - Piva et al. [Bioinformatics 2009].
- Computationl verification:
 - Skippy [Woolfe et al. Genome Biol. 2010].

Image: A math a math

- Splicing factor proteins (e.g., hnRNPs and SR-proteins) bind to SREs in mRNA and regulate the type and the level of intron inclusion/exclusion.
- $\bullet\,$ The approach: Searching for potential SREs in exons that have ≥ 1 putative editing site.
 - <u>Control</u>: randomly select adenosines in the exon and then change them to guanosines.
 - Count the cases where the changes create or abolish SREs.
 - Repeat the process for 1,000 times.
- The same procedure was applied for SREs located within the 150-base intronic regions flanking the exons.

• • • • • • • • • • • •

- Splicing factor proteins (e.g., hnRNPs and SR-proteins) bind to SREs in mRNA and regulate the type and the level of intron inclusion/exclusion.
- $\bullet\,$ The approach: Searching for potential SREs in exons that have ≥ 1 putative editing site.
 - <u>Control</u>: randomly select adenosines in the exon and then change them to guanosines.
 - Count the cases where the changes create or abolish SREs.
 - Repeat the process for 1,000 times.
- The same procedure was applied for SREs located within the 150-base intronic regions flanking the exons.

• • • • • • • • • • • •

 <u>Note:</u> Only 244 editing sites within 193 exons of 188 genes, while AS analysis of RNA-seq and microarray data revealed thousands of AS region

nac

Microarray analysis

- Tools:
 - Partek genomic suite (for microarray data).
 - AS ANOVA (for splicing analysis) & express ANOVA (for total gene expression level).
- $\bullet\,$ Only genes without a large change in expression (fold-change $\leq 1.5)$ were considered in the AS analysis.
- Lists of AS genes were extracted using four different significant thresholds (AS ANOVA *P*-values of 0.001, 0.01, 0.015, 0.025).
- Under the independence assumption:

$$N_{\mathrm{exp}} = \left(rac{N_{\mathrm{HepG2}}}{N}
ight) imes \left(rac{N_{\mathrm{K562}}}{N}
ight) imes N.$$

- N: the total number of genes represented on the array.
- N_{HepG2}: the number of detected genes in HepG2.
- $N_{\rm K562}$: the number of detected genes in K562.

・ロト ・回ト ・ヨト ・

Regulation of AS by ADAR Results ADAR has prominent influence on global splicing pattern

Microarray analysis (contd.)

・ロト ・回ト ・ヨト

Differential expression & alternative splicing analysis of RNA-seq

• Both are done using AltAnalyze.

Emig et al. Nucleic Acids Research 2010 & Salomonis et al. Proc. Natl. Acad. Sci. 2010.

- Differential expression analysis:
 - Count the reads for each constitutive exons in Ensembl genes (V.62) and use AltAnalyze quintile normalization.
 - Use fold-change ratios of 1.4, 2, and 2.5.
 - # DE genes in both cell lines (as they did in the microarray analysis).

Regulation of AS by ADAR

Results

ADAR has prominent influence on global splicing pattern

A simple exmaple of quintitle normalization

A B C D	5 2 3 4	4 1 4 2	3 4 6 8	°⇔>,	A B C D	iv i ii iii	iii i iii ii	i ii iii iv
A B C D	5 2 3 4	4 1 4 2	3 4 6 8	becom becom becom becom	es A : es B : es C : es D !	2 1 3 3 2 4 4 4 6 5 4 8		
A B C D	(2 1 3 (3 2 4 (4 4 6 (5 4 8)/3 =)/3 =)/3 =)/3 =	2.00 3.00 4.67 5.67	= rank = rank = rank = rank	i ii iii iv			
A B C D	5.6 2.0 3.0 4.6	7 0 0 7	4.67 2.00 4.67 3.00	2.00 3.00 4.67 5.67				

Differential expression & alternative splicing analysis of RNA-seq (contd.)

• Alternative splicing analysis:

- Base on alignment and junctions obtained by TopHat.
- Using AltAnalyze
 - Splice-index (SI).
 - \star Expression of a given exon relative to the total gene expression.
 - Analysis of splicing by isoform reciprocity (ASPIRE) [Ule *et al. Nature Genetics* 2005].
 - \star Using reads mapped to junctions.
- Only exons detected as AS by both methods and whose genes were NOT found to be differentially expressed ($|fold-change| \le 2$) were considered as AS exons.
 - Genes with ≥ 1 AS exon were considered as AS genes.

・ロト ・四ト ・ヨト ・ヨト

Are genes that significantly change their splicing pattern in ADAR KD cells enriched with A-to-I RNA editing sites?

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

TABLE 2.	Editing in	n AS g	genes	detected	by	RNA-seq
----------	------------	--------	-------	----------	----	---------

Cell	Splicing	Number of	Genomic	A-to-l
line	pattern	A-to-I sites ^a	size (bases)	per base
HepG2	Changed	12,043	338,829,808	3.5×10^{-5}
HepG2	Unchanged	15,973	731,790,993	2.18×10^{-5}
K562	Changed	12,971	343,111,651	3.78×10^{-5}
K562	Unchanged	14,897	679,627,158	2.19×10^{-5}

Editing sites are enriched in AS genes ($\chi^2 P$ -value < 10⁻¹⁰ for both HepG2 and K562).

^aEditing sites were taken from DARNED (Kiran and Baranov 2010).

・ロト ・回ト ・ヨト ・

- It is still difficult to determine if editing mediates the AS regulation, or whether other ADAR-dependent events are responsible for this effect on AS.
 - Based on the RNA-seq experiments, only 17 verified editing sites in the vicinity (1,000 bases flanking) of the detected AS cassette exons are detected.
- $\star\,$ Direct editing is not the sole explanation for AS.

Significant changes in RNA processing and splicing machinery genes?

GO		HepG2		K562		U87MG	
ID	Term	No. of AS genes	FDR	No. of AS genes	FDR	No. of AS genes	FDR
6396	RNA processing	229	1.2×10^{-17}	246	2.8×10^{-19}	130	5.4×10^{-9}
16071	mRNA metabolic process	153	2.9×10^{-10}	168	1.0×10^{-12}	95	7.8×10^{-9}
3723	RNA binding	290	6.0×10^{-20}	305	2.1×10^{-20}	152	8.8×10^{-7}
8380	RNA splicing	123	2.0×10^{-9}	128	8.4×10^{-9}	80	2.5×10^{-8}
398	Nuclear mRNA splicing, via spliceosome	71	5.6×10^{-6}	71	1.8×10^{-4}	43	0.002

All three RNA-seq data sets (HepG2, K562, and U87MG) show significant enrichment for these functions.

Image: A math a math

Significant changes in RNA processing and splicing machinery genes?

• ADAR-dependent AS in *HNRNPR* based on U87MG RNA seq [Bahn et al. *Genome Res.* 2012].

• • • • • • • • • • •

Regulation of AS by ADAR Results ADAR KD shows significant changes in splicing and RNA processing genes

Joseph C.-C. Lin (GRC, Academia Sinica)

9 October 2013 40 / 43

• The KD sample contains more reads supporting inclusion of the second exon than reads supporting its exclusion (*P*-value: 0.0075).

・ロト ・回ト ・ヨト

Summary of the results

- A-to-I RNA editing rarely targets canonical splicing motifs, yet it affects SREs within exons.
- Cassette exons were found to be significantly enriched with A-to-I editing sites compared with constitutive exons.
- ADAR knockdown in HepG2 & K562 cell lines leads to global changes in gene expression and hundreds of genes changing their splicing pattern, yet this cannot be explained by putative editing sites alone.
- Genes showing significant changes in their splicing pattern are frequently involved in RNA processing & splicing activity.
- The primary mechanism for ADAR-mediated regulation of AS is suggested to be achieved by modulating *trans*-acting factors.

Thank you.

Joseph C.-C. Lin (GRC, Academia Sinica)

イロト イヨト イヨト イヨ