### Sampling Correctors

Clément L. Canonne, Themis Gouleakis, Ronitt Rubinfeld

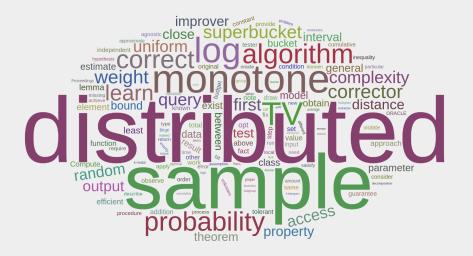
The 7th Annual Innovations in Theoretical Computer Science conference (ITCS'16)

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

28 April 2017





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Outline

### Introduction

• Terminologies and tools

### Connections to learning

- From learning to correcting
- 3 Example: correcting monotonicity
  - A natural approach (correcting by learning)
  - Oblivious correcting of distributions very close to monotone

### 4 Correcting uniformity with scarce randomness

- Von Neumann sampling corrector
- Convolution improver
- Hybrid improver



### Motivations

### • Data consisting of samples from distributions has reliability issues.

- If you know that the uncorrupted distribution is Gaussian, it would be natural to *correct* the samples to the nearest Gaussian.
- How do you correct the samples if you do NOT know much about the original uncorrupted distribution?



### Motivations

- Data consisting of samples from distributions has reliability issues.
- If you know that the uncorrupted distribution is Gaussian, it would be natural to *correct* the samples to the nearest Gaussian.
- How do you correct the samples if you do NOT know much about the original uncorrupted distribution?



### Motivations

- Data consisting of samples from distributions has reliability issues.
- If you know that the uncorrupted distribution is Gaussian, it would be natural to *correct* the samples to the nearest Gaussian.
- How do you correct the samples if you do NOT know much about the original uncorrupted distribution?



### Contribution in general

• A methodology based on using *known structural properties* of the distribution to design sampling correctors which "correct" the sample data.

• Question: How best one can output samples of a distribution such that

- on one hand, the structural properties are restored,
- on the other hand, the corrected distribution, say D
   is close to the original distribution, say D.
- We wish to optimize the two parameters:
  - # samples of D needed to output samples of  $\tilde{D}$ ;
  - # additional truly random bits needed to output samples of  $\tilde{D}$ .
  - For any property *P*, can one achieve improved query complexity in terms of these parameters over the use of the naïve learning approach for *P*?



### Contribution in general

• A methodology based on using *known structural properties* of the distribution to design sampling correctors which "correct" the sample data.

• Question: How best one can output samples of a distribution such that

- on one hand, the structural properties are restored,
- on the other hand, the corrected distribution, say D
   is close to the original distribution, say D.
- We wish to optimize the two parameters:
  - # samples of D needed to output samples of  $\tilde{D}$ ;
  - # additional truly random bits needed to output samples of  $\tilde{D}$ .
  - For any property *P*, can one achieve improved query complexity in terms of these parameters over the use of the naïve learning approach for *P*?



### Contribution in general

• A methodology based on using *known structural properties* of the distribution to design sampling correctors which "correct" the sample data.

• Question: How best one can output samples of a distribution such that

- on one hand, the structural properties are restored,
- on the other hand, the corrected distribution, say D
   is close to the original distribution, say D.
- We wish to optimize the two parameters:
  - # samples of D needed to output samples of  $\tilde{D}$ ;
  - # additional truly random bits needed to output samples of  $\tilde{D}$ .
  - For any property *P*, can one achieve improved query complexity in terms of these parameters over the use of the naïve learning approach for *P*?



### Sampling Corrector

- $\mathcal{P}$ : a fixed and given distributions on  $\Omega$ .
- A distribution D over [n],  $d_{TV}(D, \mathcal{P}) \leq \epsilon$ .

An  $(\epsilon,\epsilon_1)$ -sampling corrector for  $\mathcal P$  is a randomized algorithm which is given

• 
$$\epsilon, \epsilon_1 \in (0, 1]$$
 s.t.  $\epsilon_1 \geq \epsilon$ , and  $\delta \in [0, 1]$ ,

• sampling access to D.

provides sampling access to a distribution  $\tilde{D}$  such that

(i) 
$$d_{TV}(\tilde{D}, D) \leq \epsilon_1$$

(ii) 
$$\tilde{D} \in \mathcal{P}$$
.

with probability  $\geq 1-\delta$  over the samples it draws and its internal randomness.

- \* The query complexity:  $q = q(\epsilon, \epsilon_1, \delta, \Omega)$ .
  - # samples from D it takes per query (to  $\tilde{D}$ ) in the worst case.



### Sampling Improver

- $\mathcal{P}$ : a fixed and given distributions on  $\Omega$ .
- A distribution D over [n],  $d_{TV}(D, \mathcal{P}) \leq \epsilon$ .

An  $(\epsilon, \epsilon_1, \epsilon_2)$ -sampling improver for  $\mathcal P$  is a randomized algorithm, which is given

- $\epsilon \in (0,1]$ ,  $\epsilon_1, \epsilon_2 \in [0,1]$  s.t.  $\epsilon_1 + \epsilon_2 \geq \epsilon$ , and  $\delta \in [0,1]$
- ORACLE<sub>1</sub> access to D,

provides  $ORACLE_2$  access to a distribution  $\tilde{D}$  such that

```
(i) d_{TV}(\tilde{D}, D) \leq \epsilon_1;
```

(ii)  $d_{TV}(\tilde{D}, \mathcal{P}) \leq \epsilon_2$ .

with probability  $\geq 1-\delta$  over the answers from  $\texttt{ORACLE}_1$  and its internal randomness.

- \* The query complexity:  $q = q(\epsilon, \epsilon_1, \epsilon_2, \delta, \Omega)$ .
  - # queries the algorithm makes to ORACLE<sub>1</sub> in the worst case.



### Learning Algorithms (for a class of distributions C)

An algorithm  ${\mathcal L}$  which

- $\bullet\,$  gets independent samples from an unknown distribution  $D\in \mathcal{C}$
- has input  $\epsilon > 0$ ;

output, with high probability, a hypothesis  $\tilde{D}$  such that  $d_{TV}(D, \tilde{D}) \leq \epsilon$ .

• If  $\tilde{D} \in \mathcal{C}$ , then we said  $\mathcal{L}$  is proper.



# Connections to learning



Joseph C.-C. Lin (Academia Sinica, TW)

Sampling Correctors

28 Apr 2017 9 / 31

Sampling Correctors Connections to learning From learning to correcting

### From learning to correcting

#### Theorem 4.1

Let C be a class of distributions over  $\Omega$  and  $D \in C$ .

Suppose that there exists a learning algorithm  $\mathcal{L}$  for  $\mathcal{C}$  with sample complexity  $q_{\mathcal{L}}$ .

Then, for any property  $\mathcal{P}$  of distributions, there exists a sampling corrector for  $\mathcal{P}$  with sample complexity  $q(\epsilon, \epsilon_1, \delta) = q_{\mathcal{L}}(\frac{\epsilon_1 - \epsilon}{2}, \delta)$ .

- Run  $\mathcal{L}$  on the unknown  $D \in \mathcal{C}$  to learn (whp) hypothesis  $\hat{D}$  such that  $D_{TV}(D, \hat{D}) \leq \frac{\epsilon_1 \epsilon}{2} \Rightarrow d_{TV}(\hat{D}, \mathcal{P}) \leq \frac{\epsilon_1 + \epsilon}{2}$ .
- Find (e.g., exhaustive search) a distribution D

   *D* ∈ P closest to D
   *D*, and use it to
   produce "corrected samples".



# Example: correcting monotonicity



Joseph C.-C. Lin (Academia Sinica, TW)

Sampling Correctors

28 Apr 2017 11 / 31

#### Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing, that is, if  $D(1) \ge D(2) \ge \ldots \ge D(n)$ .

#### Birgé decomposition [Birgé 1987]

Given  $\alpha > 0$ , the corresponding Birgé-decomposition of [n] is the partition

 $\mathcal{I}_{\alpha}=(I_1,I_2,\ldots,I_{\ell}),$ 

where 
$$\ell = \Theta\left(\frac{\ln(\alpha n+1)}{\alpha}\right) = \Theta\left(\frac{\log n}{\alpha}\right), \ |I_k| = \lfloor (1+\alpha)^k \rfloor, \ 1 \le k \le \ell.$$

Flattened distribution

For a distribution D and parameter  $\alpha > 0$ ,

$$\Phi_{\alpha}(D)(i) \triangleq D(I_k)/|I_k|,$$

for all  $k \in [\ell]$  and  $i \in I_k$ .

Joseph C.-C. Lin (Academia Sinica, TW)

#### Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing, that is, if  $D(1) \ge D(2) \ge \ldots \ge D(n)$ .

### Birgé decomposition [Birgé 1987]

Given  $\alpha > 0$ , the corresponding Birgé-decomposition of [n] is the partition

$$\mathcal{I}_{\alpha}=(I_1,I_2,\ldots,I_{\ell}),$$

where 
$$\ell = \Theta\left(\frac{\ln(\alpha n+1)}{\alpha}\right) = \Theta\left(\frac{\log n}{\alpha}\right)$$
,  $|I_k| = \lfloor (1+\alpha)^k \rfloor$ ,  $1 \le k \le \ell$ .

#### Flattened distribution

For a distribution D and parameter  $\alpha > 0$ ,

$$\Phi_{\alpha}(D)(i) \triangleq D(I_k)/|I_k|,$$

for all  $k \in [\ell]$  and  $i \in I_k$ .

Joseph C.-C. Lin (Academia Sinica, TW)

#### Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing, that is, if  $D(1) \ge D(2) \ge \ldots \ge D(n)$ .

### Birgé decomposition [Birgé 1987]

Given  $\alpha > 0$ , the corresponding Birgé-decomposition of [n] is the partition

$$\mathcal{I}_{\alpha}=(I_1,I_2,\ldots,I_{\ell}),$$

where 
$$\ell = \Theta\left(\frac{\ln(\alpha n+1)}{\alpha}\right) = \Theta\left(\frac{\log n}{\alpha}\right)$$
,  $|I_k| = \lfloor (1+\alpha)^k \rfloor$ ,  $1 \le k \le \ell$ .

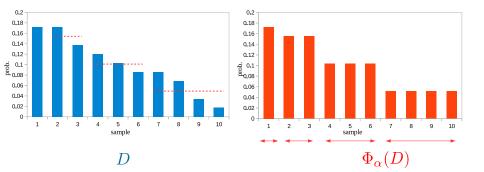
#### Flattened distribution

For a distribution D and parameter  $\alpha > 0$ ,

$$\Phi_{\alpha}(D)(i) \triangleq D(I_k)/|I_k|,$$

for all  $k \in [\ell]$  and  $i \in I_k$ .

#### Sampling Correctors Example: correcting monotonicity





# Sampling from $\Phi_{\alpha}(D)$

Sampling from  $\Phi_{\alpha}(D)$  needs only one sample from D.

- We have the explicit Birgé decomposition  $I_1, \ldots, I_\ell$  of [n] at hand.
- Draw a sample x from D. Once you get it, find in which of these intervals it fell, say  $I_{49}$ . Forget now about x, and output a sample y drawn uniformly at random from  $I_{49}$ .

• **Claim:** *y* is exactly distributed according to  $\Phi_{\alpha}(D)$ .

- For any given  $i \in [\ell]$ , we have that x belongs to  $I_i$  with prob.  $D(I_i)$ .
- Conditioned on  $i \in [\ell]$ , y is uniformly distributed in  $I_i$ .
- We only need one sample from D to output a sample from Φ<sub>α</sub>(D) (along with some internal randomness for the second step).



# Sampling from $\Phi_{\alpha}(D)$

Sampling from  $\Phi_{\alpha}(D)$  needs only one sample from D.

- We have the explicit Birgé decomposition  $I_1, \ldots, I_\ell$  of [n] at hand.
- Draw a sample x from D. Once you get it, find in which of these intervals it fell, say  $I_{49}$ . Forget now about x, and output a sample y drawn uniformly at random from  $I_{49}$ .
- **Claim:** *y* is exactly distributed according to  $\Phi_{\alpha}(D)$ .
  - For any given  $i \in [\ell]$ , we have that x belongs to  $I_i$  with prob.  $D(I_i)$ .
  - Conditioned on  $i \in [\ell]$ , y is uniformly distributed in  $I_i$ .
- We only need one sample from D to output a sample from Φ<sub>α</sub>(D) (along with some internal randomness for the second step).



# Sampling from $\Phi_{\alpha}(D)$

Sampling from  $\Phi_{\alpha}(D)$  needs only one sample from D.

- We have the explicit Birgé decomposition  $I_1, \ldots, I_\ell$  of [n] at hand.
- Draw a sample x from D. Once you get it, find in which of these intervals it fell, say  $I_{49}$ . Forget now about x, and output a sample y drawn uniformly at random from  $I_{49}$ .
- **Claim:** *y* is exactly distributed according to  $\Phi_{\alpha}(D)$ .
  - For any given  $i \in [\ell]$ , we have that x belongs to  $I_i$  with prob.  $D(I_i)$ .
  - Conditioned on  $i \in [\ell]$ , y is uniformly distributed in  $I_i$ .
- We only need one sample from D to output a sample from Φ<sub>α</sub>(D) (along with some internal randomness for the second step).



### Birgé flattening doesn't increase TV of two distributions

### Claim 2.1

 $d_{TV}(\Phi_{\alpha}(D_1),\Phi_{\alpha}(D_2))\leq d_{TV}(D_1,D_2).$ 

$$2d_{TV}(\Phi_{\alpha}(D_{1}), \Phi_{\alpha}(D_{2})) = \sum_{i=1}^{n} |\Phi_{\alpha}(D_{1})(i) - \Phi_{\alpha}(D_{2})(i)|$$

$$= \sum_{k=1}^{\ell} \sum_{i \in I_{k}} \left| \frac{D_{1}(I_{k})}{|I_{k}|} - \frac{D_{2}(I_{k})}{|I_{k}|} \right|$$

$$= \sum_{k=1}^{\ell} |D_{1}(I_{k}) - D_{2}(I_{k})| = \sum_{k=1}^{\ell} \left| \sum_{i \in I_{k}} (D_{1}(i) - D_{2}(i)) \right|$$

$$\leq \sum_{k=1}^{\ell} \sum_{i \in I_{k}} |D_{1}(i) - D_{2}(i)|$$

$$= \sum_{i=1}^{n} |D_{1}(i) - D_{2}(i)| = 2d_{TV}(D_{1}, D_{2}).$$

# More facts on the flattened distribution

### Theorem 2.4 [Birgé 1987]

If D is monotone, then  $d_{TV}(D, \Phi_{\alpha}(D)) \leq \alpha$ .

### Corollary 2.5

Suppose D is  $\epsilon$ -close to monotone, and  $\alpha > 0$ . Then,

- $d_{TV}(D, \Phi_{\alpha}(D)) \leq 2\epsilon + \alpha$ .
- $\Phi_{\alpha}(D)$  is also  $\epsilon$ -close to monotone.
- Let D' be a monotone distribution s.t.  $d_{TV}(D, D') = \eta \leq \epsilon$ .
- $d_{TV}(\Phi_{\alpha}(D) \Phi_{\alpha}(D')) \leq d_{TV}(D, D') = \eta$  (Claim 2.1).
  - Note:  $\Phi_{\alpha}(D')$  is monotone.
- $d_{TV}(D, \Phi_{\alpha}(D)) \leq d_{TV}(D, D') + d_{TV}(D', \Phi_{\alpha}(D')) + d_{TV}(\Phi_{\alpha}(D'), \Phi_{\alpha}(D)).$



<ロト <四ト < 回ト < 回

# More facts on the flattened distribution

### Theorem 2.4 [Birgé 1987]

If D is monotone, then  $d_{TV}(D, \Phi_{\alpha}(D)) \leq \alpha$ .

### Corollary 2.5

Suppose D is  $\epsilon$ -close to monotone, and  $\alpha > 0$ . Then,

- $d_{TV}(D, \Phi_{\alpha}(D)) \leq 2\epsilon + \alpha$ .
- $\Phi_{\alpha}(D)$  is also  $\epsilon$ -close to monotone.
- Let D' be a monotone distribution s.t.  $d_{TV}(D, D') = \eta \leq \epsilon$ .
- $d_{TV}(\Phi_{\alpha}(D) \Phi_{\alpha}(D')) \leq d_{TV}(D,D') = \eta$  (Claim 2.1).
  - Note: Φ<sub>α</sub>(D') is monotone.
- $d_{TV}(D, \Phi_{\alpha}(D)) \leq d_{TV}(D, D') + d_{TV}(D', \Phi_{\alpha}(D')) + d_{TV}(\Phi_{\alpha}(D'), \Phi_{\alpha}(D)).$



Image: A math a math

# Correcting by learning

#### Lemma 5.1

Fix any constant c > 0. For any  $\epsilon, \epsilon_1 \ge (3 + c)\epsilon$  and  $\epsilon_2 = 0$ , any type of oracle ORACLE and any number of queries m, there exists a sampling corrector for monotonicity from sampling to ORACLE with sample complexity  $O(\log n/\epsilon^3)$ .

- Learn a good approximation of the distribution to correct.
- Use this approximation to build a good monotone distribution offline (+searching via linear programming).



# Sketch of the Proof of Lemma 5.1

Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).

• Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).

- Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon$ 
  - *M*: the closest monotone distribution to *D*.
  - $\star \ ar{D}'$  is  $(\epsilon + lpha)$ -close to monotone.

• Find  $M' \in \mathcal{M}$  closest to  $\overline{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - rac{ar{D}'(l_j)}{|l_j|} \right| \cdot |l_j|$$

subject to  $1 \ge x_1 \ge x_2 \ge \ldots \ge x_\ell \ge 0, \ \sum x_j |l_j| = 1.$ 

 $M'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

 $\bullet \ d_{TV}(D,M') \leq d_{TV}(D,\bar{D}) + d_{TV}(\bar{D},\bar{D}') + d_{TV}(\bar{D}',M') \leq 3\epsilon + 3\alpha = (3 - 1)$ 



Image: Image:

# Sketch of the Proof of Lemma 5.1

- Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).
- Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).
  - Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon$ 
  - *M*: the closest monotone distribution to *D*.
  - $\star \ \bar{D}'$  is  $(\epsilon + lpha)$ -close to monotone.

• Find  $M' \in \mathcal{M}$  closest to  $\bar{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - \frac{\bar{D}'(l_j)}{|l_j|} \right| \cdot |l_j|$$

subject to  $1 \ge x_1 \ge x_2 \ge \ldots \ge x_\ell \ge 0, \ \sum x_j |l_j| = 1.$ 

 $M'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

 $d_{TV}(D,M') \leq d_{TV}(D,\bar{D}) + d_{TV}(\bar{D},\bar{D}') + d_{TV}(\bar{D}',M') \leq 3\epsilon + 3\alpha = (3 + 2\epsilon)$ 



Image: A matrix and a matrix

# Sketch of the Proof of Lemma 5.1

- Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).
- Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).
  - Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon.$ 
  - M: the closest monotone distribution to D.
  - \*  $\overline{D}'$  is  $(\epsilon + \alpha)$ -close to monotone.

• Find  $M' \in \mathcal{M}$  closest to  $\bar{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - \frac{\bar{D}'(l_j)}{|l_j|} \right| \cdot |l_j|$$

subject to 
$$1 \ge x_1 \ge x_2 \ge \ldots \ge x_\ell \ge 0, \ \sum_{i=1} x_j |l_j| = 1.$$

 $M'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

•  $d_{TV}(D, M') \le d_{TV}(D, \bar{D}) + d_{TV}(\bar{D}, \bar{D}') + d_{TV}(\bar{D}', M') \le 3\epsilon + 3\alpha = (3 + \epsilon)$ 



Image: A math a math

# Sketch of the Proof of Lemma 5.1

- Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).
- Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).
  - Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon.$ 
  - *M*: the closest monotone distribution to *D*.
  - \*  $\overline{D}'$  is  $(\epsilon + \alpha)$ -close to monotone.

• Find  $M' \in \mathcal{M}$  closest to  $\overline{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - \frac{\bar{D}'(l_j)}{|l_j|} \right| \cdot |l_j|$$

subject to 
$$1 \ge x_1 \ge x_2 \ge \ldots \ge x_\ell \ge 0$$
,  $\sum_{i=1}^{j} x_i |l_i| = 1$ .

 $M'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

•  $d_{TV}(D, M') \le d_{TV}(D, \bar{D}) + d_{TV}(\bar{D}, \bar{D}') + d_{TV}(\bar{D}', M') \le 3\epsilon + 3\alpha = (3 + \epsilon)$ 



# Sketch of the Proof of Lemma 5.1

- Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).
- Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).
  - Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon.$ 
  - *M*: the closest monotone distribution to *D*.
  - \*  $\overline{D}'$  is  $(\epsilon + \alpha)$ -close to monotone.
- Find  $M' \in \mathcal{M}$  closest to  $\bar{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - \frac{ar{D}'(I_j)}{|I_j|} \right| \cdot |I_j|$$

subject to 
$$1 \ge x_1 \ge x_2 \ge ... \ge x_{\ell} \ge 0$$
,  $\sum_{j=1}^{n} x_j |I_j| = 1$ .

Ø

 $M'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

•  $d_{TV}(D, M') \le d_{TV}(D, \bar{D}) + d_{TV}(\bar{D}, \bar{D}') + d_{TV}(\bar{D}', M') \le 3\epsilon + 3\alpha = (3 + c)\epsilon.$ 



# Sketch of the Proof of Lemma 5.1

- Consider the Birgé decomposition *I*<sub>α</sub> = (*I*<sub>1</sub>,..., *I*<sub>ℓ</sub>), α = cε/3, ℓ = O(log n/ε).
- Learn, with  $O(\frac{\log n}{\epsilon^3})$  samples, a flattened distribution  $\overline{D}$ , where  $d_{TV}(D,\overline{D}) \leq 2\epsilon + \alpha$  (by [Birgé 1987] & Corollary 2.5).
  - Learn  $\bar{D} \rightarrow \text{getting } \bar{D}'$ .
- $d_{TV}(\bar{D}, \mathcal{M}) = d_{TV}(\Phi_{\alpha}(D), \mathcal{M}) \leq d_{TV}(\Phi_{\alpha}(D), \Phi_{\alpha}(M)) \leq d_{TV}(D, M) \leq \epsilon.$ 
  - *M*: the closest monotone distribution to *D*.
  - \*  $\overline{D}'$  is  $(\epsilon + \alpha)$ -close to monotone.
- Find  $M' \in \mathcal{M}$  closest to  $\bar{D}'$  such that:

minimize 
$$\sum_{j=1}^{\ell} \left| x_j - \frac{ar{D}'(I_j)}{|I_j|} \right| \cdot |I_j|$$

subject to 
$$1 \ge x_1 \ge x_2 \ge \ldots \ge x_\ell \ge 0$$
,  $\sum_{j=1}^{c} x_j |I_j| = 1$ .  
 $\mathcal{M}'(i) = x_{ind(i)}$ , for  $i \in I_{ind(i)}$ .

•  $d_{TV}(D,M') \leq d_{TV}(D,\bar{D}) + d_{TV}(\bar{D},\bar{D}') + d_{TV}(\bar{D}',M') \leq 3\epsilon + 3\alpha = (3+c)\epsilon.$ 



Sampling Correctors Example: correcting monotonicity Oblivious correcting of distributions very close to monotone

# Oblivious correcting of monotonicity

• Consider D which is  $O(1/\log^2 n)$ -close to monotone.

### Corollary 5.5

For every  $\epsilon' \in (0, 1)$ , there exists an (oblivious) sampling corrector for monotonicity of O(1) sample complexity, with parameters  $\epsilon = O(\epsilon'^3 / \log^2 n)$ ,  $\epsilon_1 = O(\epsilon')$ .

High level idea:

- Treat *D* as a *O*(log *n*)-histogram on the Birgé decomposition.
- Implicitly approximate it.
- Correct this histogram by adding a certain amount of prob. weight to every interval.



#### Lemma 5.2

- $\mathcal{I} = (I_1, \ldots, I_k)$ : a Birgé decomposition of [n], s.t.  $|I_{j+1}|/|I_j| = 1 + c$  for all j.
- D: a k-histogram distribution on  $\mathcal{I}$ ,  $\epsilon$ -close to monotone.

Then, there exists a monotone distribution  $\tilde{D}$ , such that

- $\tilde{D}$  can be sampled in constant time from given oracle access to D;
- $d_{TV}(D, \tilde{D}) \leq O(\epsilon k^2).$
- $\tilde{D}$  is also a *k*-histogram distribution on  $\mathcal{I}$ .

#### Claim 5.3

Let D be a k-histogram distribution on  $\mathcal{I}$  that is  $\epsilon$ -close to monotone. Then, for any  $j \in [k-1]$ ,

$$D(I_{j+1}) \leq (1+c) \cdot D(I_j) + \epsilon(2+c).$$

. . . . . .

Sampling Correctors Example: correcting monotonicity Oblivious correcting of distributions very close to monotone

# Sketch of the proof of Lemma 5.2

• Claim 5.3 suggests a correcting scheme: output samples according to  $\tilde{D}$ , which is a *k*-histogram on  $\mathcal{I}$  defined by

$$ilde{D}(I_k) = \lambda(D(I_k)) \ ilde{D}(I_{k-1}) = \lambda(D(I_k) + \epsilon(2+c))$$

$$\begin{split} ilde{D}(l_j) &= \lambda \left( D(l_j) + (k-j)\epsilon(2+c) 
ight) \ &= \lambda \cdot D(l_j) + (1-\lambda) rac{k-j}{k(k-1)/2}, \end{split}$$

$$\lambda \triangleq \left(1 + \epsilon(2 + c)\frac{k(k-1)}{2}\right)^{-1}$$
: normalizing factor.

$$2d_{TV}(D, ilde{D}) = \sum_{j=1}^k |D(l_j) - ilde{D}(l_j)| \leq 1 - rac{1 - \epsilon(2+c)rac{k(k-1)}{2}}{1 + \epsilon(2+c)rac{k(k-1)}{2}} = O(\epsilon k^2).$$



# Correcting uniformity with scarce randomness



Joseph C.-C. Lin (Academia Sinica, TW)

Sampling Correctors

28 Apr 2017 22 / 31

- Allowing arbitrary amounts of additional randomness makes the correcting task almost trivial.
- \* Using roughly  $\log |\Omega|$  random bits per query, then interpolate arbitrarily between *D* and the uniform distribution, say *U*.
  - Sampling improver.



Sampling Correctors Correcting uniformity with scarce randomness Von Neumann sampling corrector

# Von Neumann sampling corrector

#### Theorem 7.1

For any  $\epsilon = \epsilon_1 < 0.49$ , there exists a sampling corrector for  $\mathcal{U}$  with query complexity  $O(\log n \cdot (\log \log n + \log(1/\delta)))$ , where  $\delta$  is the failure probability per sample.

- Idea: see a draw from D as a biased coin toss.
  - Depending on whether the sample lands in  $S_0 = \{1, \ldots, n/2\}$  or  $S_1 = \{n/2 + 1, \ldots, n\}$ .
  - \* Note:  $|D(S_0) D(S_1)| \le 2\epsilon$  by the assumption that  $d_{TV}(D, U) \le \epsilon$ .

• Let 
$$p \triangleq D(S_0)$$
,  $p \in [1/2 - \epsilon, 1/2 + \epsilon]$ .

Sampling Correctors Correcting uniformity with scarce randomness Von Neumann sampling corrector

# Proof of Theorem 7.1 (contd.)

- Assume that  $D_{TV}(D, U) \leq \epsilon < 1/2 c$ .
- Take at most  $m = \left\lceil \left(\log^{-1} \frac{1}{1-c}\right)\log \frac{2}{\delta'}\right\rceil$  samples, and stop as soon as a sequence  $S_0S_1$  or  $S_1S_0$  is seen.
  - Output a bit 0 or 1 respectively.
  - If it does NOT happen, output FAIL.
  - \* The probability of failure  $\leq p^m + (1-p)^m \leq 2(1-c)^m \leq \delta/(\log n)$ .
- Extract log *n* random bits, output a uniform random number  $s \in [n]$  w.p.  $\geq 1 \delta$ .
  - Using  $O(m \log n) = O(\log n \log \frac{\log n}{\delta})$  samples from D.
  - \* Yet,  $O(\log n)$  samples in expectation.



Sampling Correctors Correcting uniformity with scarce randomness Convolution improver

### On convolutions of distributions over Abelian groups

#### Convolutions of distributions over a finite group

For any tow probability distributions  $D_1, D_2$  over a finite group G, the *convolution* of  $D_1$  and  $D_2$  is defined by

$$D_1 * D_2(x) = \sum_{g \in G} D_1(xg^{-1})D_2(g).$$

If G is Abelian,  $D_1 * D_2 = D_2 * D_1$ .

#### Fact [Maciej 2013]

Let G be a finite Abelian gruop, and  $D_1, D_2$  be two probability distributions over G. Then,

$$d_{TV}(\mathcal{U}(G), D_1 * D_2) \leq 2 \cdot d_{TV}(\mathcal{U}(G), D_1) \cdot d_{TV}(\mathcal{U}(G), D_2).$$



Sampling Correctors Correcting uniformity with scarce randomness Convolution improver

### Convolution improver

#### Theorem 7.2

For any  $\epsilon < \frac{1}{2}$ ,  $\epsilon_2$ , and  $\epsilon_1 = \epsilon + \epsilon_2$ , there exists a sampling improver for uniformity with query complexity  $O(\frac{\log(1/\epsilon_2)}{\log(1/\epsilon)})$ .

Idea: drawing two independent samples x, y ~ D and computing z = (x + y mod n) + 1 guarantees that the distribution of z is (2e<sup>2</sup>)-close to U.

Extending the above observation to a sum of k := log(1/ε)/log(1/ε) independent elements s<sub>1</sub>,..., s<sub>k</sub> ~ D and computing s = (∑<sub>ℓ=1</sub><sup>k</sup> s<sub>ℓ</sub> mod n) + 1 ∈ [n], the distribution D̃ of s is ((2ε)<sup>k</sup>/2)-close to U.

• Choose k such that 
$$(2\epsilon)^k/2 = \epsilon_2$$
, we get  
 $d_{TV}(D, \tilde{D}) \leq d_{TV}(D, \mathcal{U}) + d_{TV}(\mathcal{U}, \tilde{D}) \leq \epsilon + \epsilon_2.$ 

Sampling Correctors Correcting uniformity with scarce randomness Convolution improver

### The problem of the convolution improver

- Say D<sup>(k)</sup> ≜ D \* · · · \* D, D<sup>(k)</sup> could be a little bit far from D.
   d<sub>TV</sub>(D, D<sup>(k)</sup>) ≤ ε + 2<sup>k-1</sup>ε<sup>k</sup>.
- Bad news: There exists a distribution D on  $\mathbb{Z}_n$  such that  $d_{TV}(D, U) = \epsilon$ , yet  $d_{TV}(D, D * D) = \epsilon + \frac{3}{4}\epsilon^2 + O(\epsilon^3)$ .



Sampling Correctors Correcting uniformity with scarce randomness Hybrid improver

# Hybrid improver

#### Theorem 7.3

(

For any  $\epsilon \leq \frac{1}{2}$ ,  $\epsilon_1 = \frac{\epsilon}{2} + 2\epsilon^3 + \epsilon'$ , and  $\epsilon_2 = \frac{\epsilon}{2} + \epsilon'$ , there exists a sampling improver for uniformity with query complexity  $O(\frac{\log(1/\epsilon')}{\log(1/\epsilon)})$ .

• Idea: 
$$ilde{D} riangleq (1-p_0)D+p_0D^{(k)}.$$

- $p_0$ : the probability that the two independently samples  $s_1, s_2 \sim D$  located both in  $S_0$  or both in  $S_1$ .
- Getting a sample from  $\tilde{D}$  only requires  $\leq k + 2$  queries from D.

#### Theorem 7.4 (Bootstrapping)

For any  $\epsilon \leq \frac{1}{2}$ ,  $0 < \epsilon_2 < \epsilon$ , and  $\epsilon_1 = \epsilon - \epsilon_2 + O(\epsilon^3)$ , there exists a sampling improver for uniformity with query complexity  $O(\frac{\log^2(1/\epsilon_2)}{\log(1/\epsilon)})$ .

# Comparison with randomness extractors

• In the randomness extractor model:

- One is provided with a source of *imperfect* random bits (sometimes an additional source of completely random bits).
- **Goal:** output random bits (close to uniformly distributed) as many as possible.
- One could view extractors as sampling improvers for uniformity.
  - Both of them attempt to minimize the use of extra randomness.

### • The differences:

- Randomness extractors assume a lower bound on the min-entropy (i.e., log(1/max<sub>i</sub> D(i))) of the input distribution, while sampling improvers assume the distribution to be ε-close to uniformity.
- We have sampling improvers that do not use any extra random bits, not the case for randomized extractor constructions.



# Comparison with randomness extractors

• In the randomness extractor model:

- One is provided with a source of *imperfect* random bits (sometimes an additional source of completely random bits).
- **Goal:** output random bits (close to uniformly distributed) as many as possible.
- One could view extractors as sampling improvers for uniformity.
  - Both of them attempt to minimize the use of extra randomness.
- The differences:
  - Randomness extractors assume a lower bound on the min-entropy (i.e., log(1/max<sub>i</sub> D(i))) of the input distribution, while sampling improvers assume the distribution to be ε-close to uniformity.
  - We have sampling improvers that do not use any extra random bits, not the case for randomized extractor constructions.



#### Sampling Correctors





Joseph C.-C. Lin (Academia Sinica, TW)

28 Apr 2017 31

31 / 31