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Sampling Correctors

Outline

@ Introduction
@ Terminologies and tools

© Connections to learning
@ From learning to correcting

© Example: correcting monotonicity
@ A natural approach (correcting by learning)
@ Oblivious correcting of distributions very close to monotone

@ Correcting uniformity with scarce randomness
@ Von Neumann sampling corrector
@ Convolution improver
@ Hybrid improver
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Sampling Correctors
Introduction

Motivations

@ Data consisting of samples from distributions has reliability issues.
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Introduction

Motivations

@ Data consisting of samples from distributions has reliability issues.

@ If you know that the uncorrupted distribution is Gaussian, it would be
natural to correct the samples to the nearest Gaussian.
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Sampling Correctors
Introduction

Motivations

@ Data consisting of samples from distributions has reliability issues.

@ If you know that the uncorrupted distribution is Gaussian, it would be
natural to correct the samples to the nearest Gaussian.

@ How do you correct the samples if you do NOT know much about the
original uncorrupted distribution?
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Sampling Correctors
Introduction

Contribution in general

@ A methodology based on using known structural properties of the
distribution to design sampling correctors which “correct” the sample data.
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Sampling Correctors
Introduction

Contribution in general

@ A methodology based on using known structural properties of the
distribution to design sampling correctors which “correct” the sample data.

@ Question: How best one can output samples of a distribution such that
@ on one hand, the structural properties are restored,
@ on the other hand, the corrected distribution, say D is close to the original
distribution, say D.
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Sampling Correctors
Introduction

Contribution in general

@ A methodology based on using known structural properties of the
distribution to design sampling correctors which “correct” the sample data.

@ Question: How best one can output samples of a distribution such that

@ on one hand, the structural properties are restored,
@ on the other hand, the corrected distribution, say D is close to the original
distribution, say D.

@ We wish to optimize the two parameters:
@ # samples of D needed to output samples of D: R
@ # additional truly random bits needed to output samples of D.
* For any property P, can one achieve improved query complexity in terms of
these parameters over the use of the naive learning approach for P?
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Sampling Correctors
Introduction

Terminologies and tools

Sampling Corrector

@ P: a fixed and given distributions on .
@ A distribution D over [n], drv(D,P) <e.

An (e, e1)-sampling corrector for P is a randomized algorithm which is given
@ ce1 €(0,1] sit. e1 > ¢ and § € [0,1],
@ sampling access to D.
provides sampling access to a distribution D such that
(i) drv(D,D) < e;
(i) DeP.

with probability > 1 — § over the samples it draws and its internal randomness.

x The query complexity: g = q(e, €1, 6, Q).

@ # samples from D it takes per query (to f)) in the worst case.

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 6 /31



Sampling Correctors
Introduction
Terminologies and tools

Sampling Improver

@ P: a fixed and given distributions on .
@ A distribution D over [n], drv(D,P) <e.

An (e, €1, €2)-sampling improver for P is a randomized algorithm, which is given
@ c€(0,1], e1,e2 € [0,1] sit. €1 +e2 > ¢, and § € [0,1]
@ ORACLE; access to D,
provides ORACLE, access to a distribution D such that
(i) drv(D,D) < e;
(i) drv(D,P) < e.
with probability > 1 — § over the answers from ORACLE; and its internal
randomness.

* The query complexity: g = q(e, €1, €2,0, Q).

@ # queries the algorithm makes to ORACLE; in the worst case.
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Sampling Correctors
Introduction
Terminologies and tools

Learning Algorithms (for a class of distributions C)
An algorithm £ which

@ gets independent samples from an unknown distribution D € C

@ has input € > 0;
output, with high probability, a hypothesis D such that dry(D, D) < e.

o If D € C, then we said L is proper.
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Connections to learning

Connections to learning
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Sampling Correctors
Connections to learning

From learning to correcting

From learning to correcting

Theorem 4.1

Let C be a class of distributions over Q and D € C.

Suppose that there exists a learning algorithm L for C with sample complexity q,.

Then, for any property P of distributions, there exists a sampling corrector for P
€1

with sample complexity q(e, €1,6) = gz (<5<, 9).

@ Run £ on the unknown D € C to learn (whp) hypothesis D such that
DT\/(D,D) < 617_6 = dT\/(D,P) < 612$

@ Find (e.g., exhaustive search) a distribution D € P closest to D, and use it to

produce “corrected samples”.
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Example: correcting monotonicity

Example: correcting monotonicity
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Sampling Correctors
Example: correcting monotonicity

Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing,
that is, if D(1) > D(2) > ... > D(n).

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 12 /31



Sampling Correctors
Example: correcting monotonicity
Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing,
that is, if D(1) > D(2) > ... > D(n).

v

Birgé decomposition [Birgé 1987]

Given « > 0, the corresponding Birgé-decomposition of [n] is the partition

Ia - (l17l27"'7/£)7

Whereeze(w) :e('°g"), | =(1+ )], 1<k <L

[(e% [e%
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Sampling Correctors
Example: correcting monotonicity
Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing,
that is, if D(1) > D(2) > ... > D(n).

v
s .. . s

Birgé decomposition [Birgé 1987]

Given « > 0, the corresponding Birgé-decomposition of [n] is the partition

Ioz - (l17l27"'7/€)7

[(e% [e%
v

Flattened distribution

For a distribution D and parameter a > 0,

®a(D)(i) = D()/|l.

Whereeze(w) :e("’g"), | =(1+ )], 1<k <L

for all k € [¢] and i € Ix.

v
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Sampling Correctors

Example: correcting monotonicity
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Sampling Correctors

Example: correcting monotonicity

Sampling from ¢,(D)

Sampling from ®,(D) needs only one sample from D. J

@ We have the explicit Birgé decomposition /i, ..., Iy of [n] at hand.

@ Draw a sample x from D. Once you get it, find in which of these

intervals it fell, say 9. Forget now about x, and output a sample y
drawn uniformly at random from Iyg.
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Sampling Correctors
Example: correcting monotonicity

Sampling from ¢,(D)

Sampling from ®,(D) needs only one sample from D. J

@ We have the explicit Birgé decomposition /i, ..., Iy of [n] at hand.

@ Draw a sample x from D. Once you get it, find in which of these
intervals it fell, say 9. Forget now about x, and output a sample y
drawn uniformly at random from Iyg.

e Claim: y is exactly distributed according to ®,(D).

o For any given i € [{], we have that x belongs to I; with prob. D(/;).
o Conditioned on i € [{], y is uniformly distributed in /;.
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Sampling Correctors
Example: correcting monotonicity

Sampling from ¢,(D)

Sampling from ®,(D) needs only one sample from D. J

@ We have the explicit Birgé decomposition /i, ..., Iy of [n] at hand.

@ Draw a sample x from D. Once you get it, find in which of these
intervals it fell, say 9. Forget now about x, and output a sample y
drawn uniformly at random from Iyg.

e Claim: y is exactly distributed according to ®,(D).
o For any given i € [{], we have that x belongs to I; with prob. D(/;).

o Conditioned on i € [{], y is uniformly distributed in /;.
@ We only need one sample from D to output a sample from $,(D)
(along with some internal randomness for the second step).
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Sampling Correctors
Example: correcting monotonicity

Birgé flattening doesn't increase TV of two distributions

d1v(®a(D1), ®o(D2)) < drv(D1, D).

2d7v(Pa(D1), Da(D2)) Z|¢ (D1)(7) = ®a(D2) (7))
Da (1)
- ;; i
=" IDa(k) — Da(k) |—Z >_(Di(i) = Da(1)

|D1(i) — Dy(i)| = 2d1v(Dn, D5).
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Sampling Correctors
Example: correcting monotonicity

More facts on the flattened distribution

Theorem 2.4 [Birgé 1987]
If D is monotone, then drv (D, ®,(D)) < a.

Suppose D is e-close to monotone, and o > 0. Then,

@ drv(D,®.(D)) < 2¢+ .

® &, (D) is also e-close to monotone.
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Sampling Correctors
Example: correcting monotonicity

More facts on the flattened distribution

Theorem 2.4 [Birgé 1987]
If D is monotone, then drv (D, ®,(D)) < a.

Suppose D is e-close to monotone, and o > 0. Then,

@ drv(D,®.(D)) < 2¢+ .

® &, (D) is also e-close to monotone.

@ Let D' be a monotone distribution s.t. dry(D,D’) =n <e.
@ dry(®.(D) — ®,(D") < drv(D,D") = n (Claim 2.1).
@ Note: d,(D’) is monotone.

@ drv(D,®4(D)) < drv(D,D") + drv(D', ®a(D")) + drv(®a(D'), ®o(D)).
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Sampling Correctors
Example: correcting monotonicity

A natural approach (correcting by learning)

Correcting by learning

Fix any constant ¢ > 0. For any €,€e; > (3 + ¢)e and e, = 0, any type of oracle
ORACLE and any number of queries m, there exists a sampling corrector for
monotonicity from sampling to ORACLE with sample complexity O(log n/e3).

@ Learn a good approximation of the distribution to correct.

@ Use this approximation to build a good monotone distribution offline
(+searching via linear programming).

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 17 /31



Sampling Correctors
Example: correcting monotonicity
A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

@ Consider the Birgé decomposition Zo, = (h, ..., ls), « = ce/3, £ = O(log n/e).
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Sampling Correctors
Example: correcting monotonicity
A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

@ Consider the Birgé decomposition Zo, = (h, ..., ls), « = ce/3, £ = O(log n/e).

@ Learn, with O('%") samples, a flattened distribution D, where
drv(D, D) < 2¢ + a (by [Birgé 1987] & Corollary 2.5).

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 18 /31



Sampling Correctors
Example: correcting monotonicity
A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

@ Consider the Birgé decomposition Zo, = (h, ..., ls), « = ce/3, £ = O(log n/e).

@ Learn, with O('%") samples, a flattened distribution D, where
drv(D, D) < 2¢ + a (by [Birgé 1987] & Corollary 2.5).
@ Learn D — getting D’.
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Sampling Correctors
Example: correcting monotonicity
A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

@ Consider the Birgé decomposition Zo, = (h, ..., ls), « = ce/3, £ = O(log n/e).

@ Learn, with O('%") samples, a flattened distribution D, where
drv(D, D) < 2¢ + a (by [Birgé 1987] & Corollary 2.5).
@ Learn D — getting D'
@ drv(D, M) = drv(Pa(D), M) < drv(®a(D), Pa(M)) < drv(D,M) < e.
o M: the closest monotone distribution to D.
x D' is (€ 4+ a)-close to monotone.
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Sampling Correctors
Example: correcting monotonicity
A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

@ Consider the Birgé decomposition Zo, = (h, ..., ls), « = ce/3, £ = O(log n/e).
@ Learn, with O('%") samples, a flattened distribution D, where
drv(D, D) < 2¢ + a (by [Birgé 1987] & Corollary 2.5).
@ Learn D — getting D’.
® dry(D, M) = drv(®a(D), M) < drv(®a(D), ®a(M)) < drv(D,M) < €
@ M: the closest monotone distribution to D.
* D' is (e + a)-close to monotone.

@ Find M’ € M closest to D’ such that:

minimize Z D (IJ

au]

subject to 1 > x1 >0 > ... > x >0, Y _ x| =1

M’ (i) = Xna(iy, for i € hoa(s. o
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Sampling Correctors

Example: correcting monotonicity

A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

Consider the Birgé decomposition Zo, = (h, ..., l¢), « = ce/3, £ = O(log n/e).
Learn, with O("’G%) samples, a flattened distribution D, where
drv(D, D) < 2¢ + a (by [Birgé 1987] & Corollary 2.5).
@ Learn D — getting D’.
drv(D, M) = drv(®a(D), M) < drv(®a(D), ®a(M)) < drv(D,M) < €
@ M: the closest monotone distribution to D.
* D' is (e + a)-close to monotone.

Find M’ € M closest to D’ such that:

minimize Z D (IJ

au]

subject to 1 > x1 >0 > ... > x >0, Y _ x| =1
j=1
M’ (i) = Xina(iy, Tor i € knaciy- ’

dT\/(D, M ) < dT\/(D D) + dTv( )+ dTv(Dl M) <3¢+ 3a = (3 + C)E

Joseph C.-
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Sampling Correctors

Example: correcting monotonicity
Oblivious correcting of distributions very close to monotone

Oblivious correcting of monotonicity

@ Consider D which is O(1/log? n)-close to monotone.

For every € € (0,1), there exists an (oblivious) sampling corrector for
monotonicity of O(1) sample complexity, with parameters e = O(¢’3/ log? n),
€1 = O(€).

High level idea:

@ Treat D as a O(log n)-histogram on the Birgé decomposition.

@ Implicitly approximate it.

@ Correct this histogram by adding a certain amount of prob. weight to every

interval.
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Sampling Correctors
Example: correcting monotonicity

Oblivious correcting of distributions very close to monotone

@ Z = (h,...,I): a Birgé decomposition of [n], s.t. |li+1|/|lj] =1+ c for all j.
@ D: a k-histogram distribution on Z, e-close to monotone.
Then, there exists a monotone distribution D, such that

@ D can be sampled in constant time from given oracle access to D;
@ drv(D, D) < O(ek?).

@ D is also a k-histogram distribution on Z.

v

Claim 5.3

Let D be a k-histogram distribution on Z that is e-close to monotone. Then, for any
Jjelk-1],

D(lj11) < (14 ¢) - D(L) + (2 + ¢).

W
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Sampling Correctors
Example: correcting monotonicity
Oblivious correcting of distributions very close to monotone

Sketch of the proof of Lemma 5.2

@ Claim 5.3 suggests a correcting scheme: output samples according to D, which is
a k-histogram on Z defined by

D(l) = X(D(I))
D(h—1) = M(D(I) + €(2 + ¢))

D(l) = (D) + (k = j)e(2 + ©))

k—Jj
=X-D(I; 1-N)——F—
-1
A2 (1 +e(2+4 c)@) : normalizing factor.
° — (24 )KL

2drv(D, D D(l)) — D(J; <1——=o k).
TV ) Z|( )| 1+6(2+C)k£k2_12 (6 )

28 Apr 2017
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Correcting uniformity with scarce randomness

Correcting uniformity with scarce randomness

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 22 /31



Sampling Correctors
Correcting uniformity with scarce randomness

Von Neumann sampling corrector

@ Allowing arbitrary amounts of additional randomness makes the correcting
task almost trivial.

* Using roughly log |Q2| random bits per query, then interpolate arbitrarily
between D and the uniform distribution, say U.

@ Sampling improver.
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Sampling Correctors
Correcting uniformity with scarce randomness

Von Neumann sampling corrector

Von Neumann sampling corrector

For any € = €1 < 0.49, there exists a sampling corrector for U with query
complexity O(log n - (loglog n + log(1/4))), where ¢ is the failure probability per

sample.

@ |dea: see a draw from D as a biased coin toss.

@ Depending on whether the sample lands in
So={1,...,n/2} or St ={n/2+1,...,n}.
* Note: |[D(So) — D(51)| < 2¢ by the assumption that drv(D,U) < e.

o Let p£ D(So), pe[1/2—¢ 1/2+¢].

28 Apr 2017
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Sampling Correctors
Correcting uniformity with scarce randomness
Von Neumann sampling corrector

Proof of Theorem 7.1 (contd.)

@ Assume that Dry(D,U) <e<1/2—c.

@ Take at most m = [(Iog_1 1716) log %-I samples, and stop as soon as a
sequence 5957 or 515y is seen.
@ Output a bit 0 or 1 respectively.
o If it does NOT happen, output FAIL.
* The probability of failure < p™ + (1 — p)” < 2(1 —¢)" < §/(log n).
@ Extract log n random bits, output a uniform random number s € [n] w.p.
>1-0.
@ Using O(mlogn) = O(log nlog '°§") samples from D.
* Yet, O(log n) samples in expectation.
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Sampling Correctors
Correcting uniformity with scarce randomness
Convolution improver

On convolutions of distributions over Abelian groups

Convolutions of distributions over a finite group
For any tow probability distributions D1, D> over a finite group G, the convolution of D;
and D, is defined by

D1+ Da(x) = > Di(xg ™ *)Ds(g).
geG

If G is Abelian, D1 * D> = D, * Ds.

Fact [Maciej 2013]

Let G be a finite Abelian gruop, and D1, D> be two probability distributions over G.
Then,
drv(U(G), D1+ D2) < 2 drv(U(G), Dy) - drv(U(G), D2).
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Sampling Correctors
Correcting uniformity with scarce randomness

Convolution improver

Convolution improver

For any € < %, €2, and €1 = € + €, there exists a sampling improver for uniformity

with query complexity O(Il(li(ll/;:)))

@ Idea: drawing two independent samples x, y ~ D and computing z = (x + y
mod n) + 1 guarantees that the distribution of z is (2¢°)-close to U.

|OE(1/€2
log(1/€)

St,...,S ~ D and computing s = (25:1 s¢ mod n) +1 € [n], the distribution D
of s is ((2¢)*/2)-close to U.

@ Extending the above observation to a sum of k := independent elements

@ Choose k such that (2¢)%/2 = e, we get
drv(D, D) < drv(D,U) + drv(U, D) < e + 2.
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Sampling Correctors
Correcting uniformity with scarce randomness
Convolution improver

The problem of the convolution improver

o Say D £ D« ...« D, D) could be a little bit far from D.
e drv(D, D(k)) < e 4 2k 1ek,

o Bad news: There exists a distribution D on Z, such that
drv(D,U) = €, yet dry(D,D x D) = e + 22 + O(€3).
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Sampling Correctors
Correcting uniformity with scarce randomness

Hybrid improver

Hybrid improver

Forany e < 3, e1 =5 +2e3+¢, and e = & + €, there exists a sampling

improver for uniformity with query compIeX|ty O(If;gg(ll//i)))

@ Idea: D 2 (1— po)D + poD¥)
@ po: the probability that the two independently samples s;, s, ~ D located both in
So or both in S;.

@ Getting a sample from D only requires < k + 2 queries from D.

Theorem 7.4 (Bootstrapping)

For any e < %, 0< e <e and e; =€ — e + O(€3), there exists a sampling

2
improver for uniformity with query complexity O(%).
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Sampling Correctors
Correcting uniformity with scarce randomness

Comparison with randomness extractors

@ In the randomness extractor model:
@ One is provided with a source of imperfect random bits (sometimes an
additional source of completely random bits).
@ Goal: output random bits (close to uniformly distributed) as many as
possible.
® One could view extractors as sampling improvers for uniformity.

@ Both of them attempt to minimize the use of extra randomness.
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Sampling Correctors
Correcting uniformity with scarce randomness

Comparison with randomness extractors

@ In the randomness extractor model:
@ One is provided with a source of imperfect random bits (sometimes an
additional source of completely random bits).
@ Goal: output random bits (close to uniformly distributed) as many as
possible.

® One could view extractors as sampling improvers for uniformity.

@ Both of them attempt to minimize the use of extra randomness.

@ The differences:

@ Randomness extractors assume a lower bound on the min-entropy (i.e.,
log(1/ max; D(i))) of the input distribution, while sampling improvers assume
the distribution to be ¢-close to uniformity.

@ We have sampling improvers that do not use any extra random bits, not the
case for randomized extractor constructions.
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