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Sampling Correctors

Introduction

Motivations

Data consisting of samples from distributions has reliability issues.

If you know that the uncorrupted distribution is Gaussian, it would be
natural to correct the samples to the nearest Gaussian.

How do you correct the samples if you do NOT know much about the
original uncorrupted distribution?
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Sampling Correctors

Introduction

Contribution in general

A methodology based on using known structural properties of the
distribution to design sampling correctors which “correct” the sample data.

Question: How best one can output samples of a distribution such that

on one hand, the structural properties are restored,

on the other hand, the corrected distribution, say D̃ is close to the original

distribution, say D .

We wish to optimize the two parameters:

# samples of D needed to output samples of D̃;
# additional truly random bits needed to output samples of D̃.

⋆ For any property P , can one achieve improved query complexity in terms of

these parameters over the use of the näıve learning approach for P?
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Sampling Correctors

Introduction

Terminologies and tools

Sampling Corrector

P : a fixed and given distributions on Ω.

A distribution D over [n], dTV (D ,P) ≤ ǫ.

An (ǫ, ǫ1)-sampling corrector for P is a randomized algorithm which is given

ǫ, ǫ1 ∈ (0, 1] s.t. ǫ1 ≥ ǫ, and δ ∈ [0, 1],

sampling access to D .

provides sampling access to a distribution D̃ such that

(i) dTV (D̃,D) ≤ ǫ1;

(ii) D̃ ∈ P .

with probability ≥ 1− δ over the samples it draws and its internal randomness.

⋆ The query complexity: q = q(ǫ, ǫ1, δ,Ω).

# samples from D it takes per query (to D̃) in the worst case.
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Sampling Correctors

Introduction

Terminologies and tools

Sampling Improver

P : a fixed and given distributions on Ω.

A distribution D over [n], dTV (D ,P) ≤ ǫ.

An (ǫ, ǫ1, ǫ2)-sampling improver for P is a randomized algorithm, which is given

ǫ ∈ (0, 1], ǫ1, ǫ2 ∈ [0, 1] s.t. ǫ1 + ǫ2 ≥ ǫ, and δ ∈ [0, 1]

ORACLE1 access to D ,

provides ORACLE2 access to a distribution D̃ such that

(i) dTV (D̃,D) ≤ ǫ1;

(ii) dTV (D̃,P) ≤ ǫ2.

with probability ≥ 1− δ over the answers from ORACLE1 and its internal

randomness.

⋆ The query complexity: q = q(ǫ, ǫ1, ǫ2, δ,Ω).

# queries the algorithm makes to ORACLE1 in the worst case.
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Sampling Correctors

Introduction

Terminologies and tools

Learning Algorithms (for a class of distributions C)

An algorithm L which

gets independent samples from an unknown distribution D ∈ C

has input ǫ > 0;

output, with high probability, a hypothesis D̃ such that dTV (D, D̃) ≤ ǫ.

If D̃ ∈ C, then we said L is proper.
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Sampling Correctors

Connections to learning

From learning to correcting

From learning to correcting

Theorem 4.1

Let C be a class of distributions over Ω and D ∈ C.

Suppose that there exists a learning algorithm L for C with sample complexity qL.

Then, for any property P of distributions, there exists a sampling corrector for P

with sample complexity q(ǫ, ǫ1, δ) = qL(
ǫ1−ǫ
2 , δ).

Run L on the unknown D ∈ C to learn (whp) hypothesis D̂ such that
DTV (D , D̂) ≤ ǫ1−ǫ

2
⇒ dTV (D̂,P) ≤ ǫ1+ǫ

2
.

Find (e.g., exhaustive search) a distribution D̃ ∈ P closest to D̂, and use it to

produce “corrected samples”.

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 10 / 31



Sampling Correctors

Example: correcting monotonicity

Example: correcting monotonicity

Joseph C.-C. Lin (Academia Sinica, TW) Sampling Correctors 28 Apr 2017 11 / 31



Sampling Correctors

Example: correcting monotonicity

Monotone distributions

A distribution D is monotone if its probability mass function is non-increasing,

that is, if D(1) ≥ D(2) ≥ . . . ≥ D(n).

Birgé decomposition [Birgé 1987]

Given α > 0, the corresponding Birgé-decomposition of [n] is the partition

Iα = (I1, I2, . . . , Iℓ),

where ℓ = Θ
(

ln(αn+1)
α

)

= Θ
(

log n
α

)

, |Ik | = ⌊(1 + α)k⌋, 1 ≤ k ≤ ℓ.

Flattened distribution

For a distribution D and parameter α > 0,

Φα(D)(i) , D(Ik )/|Ik |,

for all k ∈ [ℓ] and i ∈ Ik .
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Sampling Correctors

Example: correcting monotonicity

Sampling from Φα(D)

Sampling from Φα(D) needs only one sample from D.

We have the explicit Birgé decomposition I1, . . . , Iℓ of [n] at hand.

Draw a sample x from D. Once you get it, find in which of these
intervals it fell, say I49. Forget now about x , and output a sample y

drawn uniformly at random from I49.

Claim: y is exactly distributed according to Φα(D).

For any given i ∈ [ℓ], we have that x belongs to Ii with prob. D(Ii ).
Conditioned on i ∈ [ℓ], y is uniformly distributed in Ii .

We only need one sample from D to output a sample from Φα(D)
(along with some internal randomness for the second step).
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Sampling Correctors

Example: correcting monotonicity

Birgé flattening doesn’t increase TV of two distributions

Claim 2.1

dTV (Φα(D1),Φα(D2)) ≤ dTV (D1,D2).

2dTV (Φα(D1),Φα(D2)) =
n

∑

i=1

|Φα(D1)(i)− Φα(D2)(i)|

=

ℓ
∑

k=1

∑

i∈Ik

∣

∣

∣

∣

D1(Ik )

|Ik |
−

D2(Ik)

|Ik |

∣

∣

∣

∣

=
ℓ

∑

k=1

|D1(Ik )− D2(Ik)| =
ℓ

∑

k=1

∣

∣

∣

∣

∣

∣

∑

i∈Ik

(D1(i)− D2(i))

∣

∣

∣

∣

∣

∣

≤
ℓ

∑

k=1

∑

i∈Ik

|D1(i) −D2(i)|

=

n
∑

i=1

|D1(i) − D2(i)| = 2dTV (D1,D2).
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Sampling Correctors

Example: correcting monotonicity

More facts on the flattened distribution

Theorem 2.4 [Birgé 1987]

If D is monotone, then dTV (D,Φα(D)) ≤ α.

Corollary 2.5

Suppose D is ǫ-close to monotone, and α > 0. Then,

dTV (D ,Φα(D)) ≤ 2ǫ + α.

Φα(D) is also ǫ-close to monotone.

Let D ′ be a monotone distribution s.t. dTV (D ,D ′) = η ≤ ǫ.

dTV (Φα(D)−Φα(D
′)) ≤ dTV (D ,D ′) = η (Claim 2.1).

Note: Φα(D′) is monotone.

dTV (D ,Φα(D)) ≤ dTV (D ,D ′) + dTV (D
′,Φα(D

′)) + dTV (Φα(D
′),Φα(D)).
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Sampling Correctors

Example: correcting monotonicity

A natural approach (correcting by learning)

Correcting by learning

Lemma 5.1

Fix any constant c > 0. For any ǫ, ǫ1 ≥ (3 + c)ǫ and ǫ2 = 0, any type of oracle

ORACLE and any number of queries m, there exists a sampling corrector for

monotonicity from sampling to ORACLE with sample complexity O(log n/ǫ3).

Learn a good approximation of the distribution to correct.

Use this approximation to build a good monotone distribution offline
(+searching via linear programming).
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Sampling Correctors

Example: correcting monotonicity

A natural approach (correcting by learning)

Sketch of the Proof of Lemma 5.1

Consider the Birgé decomposition Iα = (I1, . . . , Iℓ), α = cǫ/3, ℓ = O(log n/ǫ).

Learn, with O( log n
ǫ3

) samples, a flattened distribution D̄, where

dTV (D , D̄) ≤ 2ǫ+ α (by [Birgé 1987] & Corollary 2.5).

Learn D̄ → getting D̄′.

dTV (D̄,M) = dTV (Φα(D),M) ≤ dTV (Φα(D),Φα(M)) ≤ dTV (D ,M) ≤ ǫ.

M : the closest monotone distribution to D.
⋆ D̄ ′ is (ǫ + α)-close to monotone.

Find M ′ ∈ M closest to D̄ ′ such that:

minimize

ℓ
∑

j=1

∣

∣

∣

∣

xj −
D̄ ′(Ij )

|Ij |

∣

∣

∣

∣

· |Ij |

subject to 1 ≥ x1 ≥ x2 ≥ . . . ≥ xℓ ≥ 0,
ℓ

∑

j=1

xj |Ij | = 1.

M ′(i) = xind(i), for i ∈ Iind(i).

dTV (D ,M ′) ≤ dTV (D , D̄) + dTV (D̄, D̄ ′) + dTV (D̄
′,M ′) ≤ 3ǫ + 3α = (3 + c)ǫ.
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Sampling Correctors

Example: correcting monotonicity

Oblivious correcting of distributions very close to monotone

Oblivious correcting of monotonicity

Consider D which is O(1/ log2 n)-close to monotone.

Corollary 5.5

For every ǫ′ ∈ (0, 1), there exists an (oblivious) sampling corrector for

monotonicity of O(1) sample complexity, with parameters ǫ = O(ǫ′3/ log2 n),

ǫ1 = O(ǫ′).

High level idea:

Treat D as a O(log n)-histogram on the Birgé decomposition.

Implicitly approximate it.

Correct this histogram by adding a certain amount of prob. weight to every

interval.
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Oblivious correcting of distributions very close to monotone

Lemma 5.2

I = (I1, . . . , Ik ): a Birgé decomposition of [n], s.t. |Ij+1|/|Ij | = 1 + c for all j .

D : a k-histogram distribution on I, ǫ-close to monotone.

Then, there exists a monotone distribution D̃, such that

D̃ can be sampled in constant time from given oracle access to D;

dTV (D, D̃) ≤ O(ǫk2).

D̃ is also a k-histogram distribution on I.

Claim 5.3

Let D be a k-histogram distribution on I that is ǫ-close to monotone. Then, for any
j ∈ [k − 1],

D(Ij+1) ≤ (1 + c) · D(Ij ) + ǫ(2 + c).
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Example: correcting monotonicity

Oblivious correcting of distributions very close to monotone

Sketch of the proof of Lemma 5.2

Claim 5.3 suggests a correcting scheme: output samples according to D̃, which is
a k-histogram on I defined by

D̃(Ik) = λ(D(Ik))

D̃(Ik−1) = λ(D(Ik) + ǫ(2 + c))

...

D̃(Ij ) = λ (D(Ij) + (k − j)ǫ(2 + c))

= λ · D(Ij) + (1− λ)
k − j

k(k − 1)/2
,

λ ,

(

1 + ǫ(2 + c) k(k−1)
2

)

−1

: normalizing factor.

2dTV (D , D̃) =
k

∑

j=1

|D(Ij )− D̃(Ij )| ≤ 1−
1− ǫ(2 + c) k(k−1)

2

1 + ǫ(2 + c) k(k−1)
2

= O(ǫk2).
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Correcting uniformity with scarce randomness
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Correcting uniformity with scarce randomness

Von Neumann sampling corrector

Allowing arbitrary amounts of additional randomness makes the correcting
task almost trivial.

⋆ Using roughly log |Ω| random bits per query, then interpolate arbitrarily
between D and the uniform distribution, say U .

Sampling improver.
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Von Neumann sampling corrector

Von Neumann sampling corrector

Theorem 7.1

For any ǫ = ǫ1 < 0.49, there exists a sampling corrector for U with query

complexity O(log n · (log log n + log(1/δ))), where δ is the failure probability per

sample.

Idea: see a draw from D as a biased coin toss.

Depending on whether the sample lands in
S0 = {1, . . . , n/2} or S1 = {n/2 + 1, . . . , n}.

⋆ Note: |D(S0)− D(S1)| ≤ 2ǫ by the assumption that dTV (D ,U) ≤ ǫ.

Let p , D(S0), p ∈ [1/2− ǫ, 1/2 + ǫ].
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Correcting uniformity with scarce randomness

Von Neumann sampling corrector

Proof of Theorem 7.1 (contd.)

Assume that DTV (D,U) ≤ ǫ < 1/2− c .

Take at most m =
⌈

(log−1 1
1−c

) log 2
δ′

⌉

samples, and stop as soon as a

sequence S0S1 or S1S0 is seen.

Output a bit 0 or 1 respectively.
If it does NOT happen, output FAIL.

⋆ The probability of failure ≤ pm + (1− p)m ≤ 2(1− c)m ≤ δ/(log n).

Extract log n random bits, output a uniform random number s ∈ [n] w.p.
≥ 1− δ.

Using O(m log n) = O(log n log log n

δ
) samples from D .

⋆ Yet, O(log n) samples in expectation.
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Correcting uniformity with scarce randomness

Convolution improver

On convolutions of distributions over Abelian groups

Convolutions of distributions over a finite group

For any tow probability distributions D1,D2 over a finite group G , the convolution of D1

and D2 is defined by

D1 ∗ D2(x) =
∑

g∈G

D1(xg
−1)D2(g).

If G is Abelian, D1 ∗ D2 = D2 ∗ D1.

Fact [Maciej 2013]

Let G be a finite Abelian gruop, and D1,D2 be two probability distributions over G .
Then,

dTV (U(G),D1 ∗ D2) ≤ 2 · dTV (U(G),D1) · dTV (U(G),D2).
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Convolution improver

Convolution improver

Theorem 7.2

For any ǫ < 1
2 , ǫ2, and ǫ1 = ǫ+ ǫ2, there exists a sampling improver for uniformity

with query complexity O( log(1/ǫ2)log(1/ǫ) ).

Idea: drawing two independent samples x , y ∼ D and computing z = (x + y

mod n) + 1 guarantees that the distribution of z is (2ǫ2)-close to U .

Extending the above observation to a sum of k := log(1/ǫ2)
log(1/ǫ)

independent elements

s1, . . . , sk ∼ D and computing s =
(

∑k

ℓ=1 sℓ mod n
)

+ 1 ∈ [n], the distribution D̃

of s is ((2ǫ)k/2)-close to U .

Choose k such that (2ǫ)k/2 = ǫ2, we get

dTV (D , D̃) ≤ dTV (D ,U) + dTV (U , D̃) ≤ ǫ+ ǫ2.
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Correcting uniformity with scarce randomness

Convolution improver

The problem of the convolution improver

Say D(k) , D ∗ · · · ∗ D, D(k) could be a little bit far from D.

dTV (D,D(k)) ≤ ǫ+ 2k−1ǫk .

Bad news: There exists a distribution D on Zn such that
dTV (D,U) = ǫ, yet dTV (D,D ∗ D) = ǫ+ 3

4ǫ
2 + O(ǫ3).
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Hybrid improver

Hybrid improver

Theorem 7.3

For any ǫ ≤ 1
2 , ǫ1 =

ǫ
2 + 2ǫ3 + ǫ′, and ǫ2 =

ǫ
2 + ǫ′, there exists a sampling

improver for uniformity with query complexity O( log(1/ǫ
′)

log(1/ǫ) ).

Idea: D̃ , (1− p0)D + p0D
(k).

p0: the probability that the two independently samples s1, s2 ∼ D located both in
S0 or both in S1.

Getting a sample from D̃ only requires ≤ k + 2 queries from D.

Theorem 7.4 (Bootstrapping)

For any ǫ ≤ 1
2 , 0 < ǫ2 < ǫ, and ǫ1 = ǫ− ǫ2 + O(ǫ3), there exists a sampling

improver for uniformity with query complexity O( log
2(1/ǫ2)

log(1/ǫ) ).
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Correcting uniformity with scarce randomness

Comparison with randomness extractors

In the randomness extractor model:

One is provided with a source of imperfect random bits (sometimes an
additional source of completely random bits).

Goal: output random bits (close to uniformly distributed) as many as

possible.

One could view extractors as sampling improvers for uniformity.

Both of them attempt to minimize the use of extra randomness.

The differences:

Randomness extractors assume a lower bound on the min-entropy (i.e.,
log(1/maxi D(i))) of the input distribution, while sampling improvers assume
the distribution to be ǫ-close to uniformity.
We have sampling improvers that do not use any extra random bits, not the
case for randomized extractor constructions.

. . .
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