A Study on Property Testing

Ph.D. Dissertation Proposal of

Joseph, Chuang-Chieh Lin

Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

February 12, 2009

Objectives of the dissertation

- Evolutionary tree reconstruction property testing:
 - Testing quartet consistency.
- 2. Graph property testing:
 - a). Testing if a graph is induced P_4 -free.
 - b). Testing if a graph is induced C_4 -free.

Quartet consistency

Property (Quartet consistency)

Input: A complete set of quartet topologies Q **Property:** tree-consistency

- Jobs:
 - Give a property tester for this property [preliminary results].
 - Prove its testability.

Induced C_4 -freeness & induced P_4 -freeness

Property (Induced C_4 -freeness)

Input: A dense graph G represented by an adjacency-matrix **Property:** Having no C_4 as an induced-subgraph

- Jobs:
 - Give a property tester for this property.
 - Show that it is easily testable or not.

Property (Induced *P*₄-freeness)

Input: A dense graph G represented by an adjacency-matrix **Property:** Having no P_4 as an induced-subgraph

- Jobs:
 - Give a property tester for this property.
 - Show that it is easily testable or not.

Open problems (Alon and Shapira; 2006)

Is induced C_4 -freeness **easily testable** in dense graphs? Is induced P_4 -freeness **easily testable** in dense graphs?

Background of property testing Previous results on testing graph properties

Outline

2 Brief introduction to property testing

- Background of property testing
- Previous results on testing graph properties

Background of property testing Previous results on testing graph properties

Background of property testing

- In the real world nowadays, we are faced with imperious need to process increasing larger amounts of data in faster times.
- Many practical problems have inputs of very large size.
- Sometimes it is not realistic to solve a problem in the time even linear in the input size.
- Property testing is one of the possible approaches faster than linear time algorithms.

Background of property testing Previous results on testing graph properties

- Try to answer "yes" or "no" for the following *relaxed* decision problems by observing only a small fraction of the input.
 - Does the input satisfy a designated property, or
 - is far from satisfying the property?

• The general notion: Rubinfeld & Sudan [SIAM J. Comput. 1996].

Ronitt Rubinfeld

Madhu Sudan

• Testing *combinatorial objects*: Goldreich, Goldwasser, & Ron [J. ACM 1998].

Oded Goldreich

Shafi Goldwasser

Dana Ron

• Motivation: program checking.

• The general notion: Rubinfeld & Sudan [SIAM J. Comput. 1996].

Ronitt Rubinfeld

Madhu Sudan

• Testing *combinatorial objects*: Goldreich, Goldwasser, & Ron [J. ACM 1998].

Oded Goldreich

Shafi Goldwasser

Dana Ron

• Motivation: program checking.

- A program M: compute a function f.
 - Check if M gives correct answers on most inputs of f.

Extension:

- Given a family of functions \mathcal{F} over a domain \mathcal{D} (e.g., all *linear* functions) and a program M.
 - Test if ∃f ∈ F such that M has the same outputs as f for most points of D.

M is regarded as a *black box*.

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input needs to be modified.
- For example:
 - A sequence of integers L = (0, 2, 3, 4, 1).
 - Allowed operations: integer deletions
 - *L* is 0.2-far from being monotonically nondecreasing.

イロト イポト イヨト イヨト 三日

11/48

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input needs to be modified.
- For example:
 - A sequence of integers L = (0, 2, 3, 4, 1).
 - Allowed operations: integer deletions
 - *L* is 0.2-far from being monotonically nondecreasing.

- The commonly used complexity measure: queries.
- A query is like to probe, which is to examine certain value of the input.
 - to see if two vertices in a graph are adjacent under the adjacency-matrix model;
 - to know the *i*th neighbor of a vertex in a bounded-degree graph under the incidence-list model;
 - . . .
- In property testing, the query complexity (say $q(n, \epsilon)$) is asked to be sublinear in the input size (say f(n)).
 - $q(n,\epsilon) = o(f(n))$ if $\lim_{n \to \infty} \frac{q(n,\epsilon)}{f(n)} \to 0$, where ϵ is viewed as a constant.

- The commonly used complexity measure: queries.
- A query is like to probe, which is to examine certain value of the input.
 - to see if two vertices in a graph are adjacent under the adjacency-matrix model;
 - to know the *i*th neighbor of a vertex in a bounded-degree graph under the incidence-list model;
 - . . .
- In property testing, the query complexity (say q(n, ε)) is asked to be sublinear in the input size (say f(n)).
 - $q(n,\epsilon) = o(f(n))$ if $\lim_{n\to\infty} \frac{q(n,\epsilon)}{f(n)} \to 0$, where ϵ is viewed as a constant.

Property testers

Background of property testing Previous results on testing graph properties

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろので

- A property tester for ${\mathbb P}$ is an algorithm utilizing sublinear queries such that:
 - ▷ if the input satisfies \mathbb{P} : answers "yes" with probability $\geq 2/3$ (1 → one-sided error);
 - ▷ if the input is ϵ -far from satisfying \mathbb{P} : answers "no" with probability $\geq 2/3$.

Testabilities

Background of property testing Previous results on testing graph properties

$\bullet \ \mathbb{P}$ is testable if

- ∃ a property tester for ℙ such that its query complexity is independent of the input size.
- \mathbb{P} is easily testable if
 - \exists a property tester of **one-sided error** for \mathbb{P} such that its query complexity is **poly** $(1/\epsilon)$.

Testabilities

Background of property testing Previous results on testing graph properties

- $\bullet \ \mathbb{P}$ is testable if
 - ∃ a property tester for ℙ such that its query complexity is independent of the input size.
- \mathbb{P} is easily testable if
 - ∃ a property tester of one-sided error for P such that its query complexity is poly(1/ε).

Background of property testing Previous results on testing graph properties

An easy example of property testers

- Testing if a graph is empty
 - i.e., testing if a graph is induced P_2 -free.
- Assume that the adjacency-matrix model is used to represent the input graph.
 - $O(1/\epsilon)$ queries are enough.
 - How can it be done?

Background of property testing Previous results on testing graph properties

An easy example of property testers

- Testing if a graph is empty
 - i.e., testing if a graph is induced P_2 -free.
- Assume that the adjacency-matrix model is used to represent the input graph.
 - $O(1/\epsilon)$ queries are enough.
 - How can it be done?

Background of property testing Previous results on testing graph properties

15/48

An easy example of property testers

- Testing if a graph is empty
 - i.e., testing if a graph is induced P_2 -free.
- Assume that the adjacency-matrix model is used to represent the input graph.
 - $O(1/\epsilon)$ queries are enough.
 - How can it be done?

An easy example of property testers (contd.)

• ϵ -far from being empty:

- ϵn^2 pairs of vertices are *adjacent*.
- A property tester, say \mathcal{A} , works as follows.
 - Repeatedly, for $1/\epsilon$ times, pick two vertices uniformly at random and check if they are adjacent.
 - Once an edge is found, return "no",
 - otherwise (i.e., all of the chosen pairs of vertices are not adjacent) return "yes".

- ϵ -far from being empty:
 - ϵn^2 pairs of vertices are *adjacent*.
- A property tester, say \mathcal{A} , works as follows.
 - Repeatedly, for $1/\epsilon$ times, pick two vertices uniformly at random and check if they are adjacent.
 - Once an edge is found, return "no",
 - otherwise (i.e., all of the chosen pairs of vertices are not adjacent) return "yes".

- ϵ -far from being empty:
 - ϵn^2 pairs of vertices are *adjacent*.
- A property tester, say \mathcal{A} , works as follows.
 - Repeatedly, for $1/\epsilon$ times, pick two vertices uniformly at random and check if they are adjacent.
 - Once an edge is found, return "no",
 - otherwise (i.e., all of the chosen pairs of vertices are not adjacent) return "yes".

Background of property testing Previous results on testing graph properties

イロト イポト イヨト イヨト 三日

17/48

- $\Pr[\mathcal{A} \text{ returns "yes" } | G \text{ is empty }] = 1.$
- $\Pr[\mathcal{A} \text{ returns "yes" } | \text{G is } \epsilon\text{-far from being empty}] = (1 \epsilon n^2 / \binom{n}{2})^{1/\epsilon} < (1 2\epsilon)^{1/\epsilon} < e^{-2} < 1/3.$

Background of property testing Previous results on testing graph properties

17/48

- $\Pr[\mathcal{A} \text{ returns "yes" } | G \text{ is empty }] = 1.$
- $\Pr[\mathcal{A} \text{ returns "yes" } | \text{G is } \epsilon\text{-far from being empty}] = (1 \epsilon n^2 / \binom{n}{2})^{1/\epsilon} < (1 2\epsilon)^{1/\epsilon} < e^{-2} < 1/3.$

Two commonly used models for graph property testing

Background of property testing Previous results on testing graph properties

The model for dense graphs

- Graph representation: adjacency-matrix for a graph G = (V, E).
 - undirected, no self-loops, ≤ 1 edge between any $u, v \in V$.
 - |V| = n vertices and $|E| = \Omega(n^2)$ edges.
 - A query: to see if two vertices u and v are adjacent or not.
- ϵ -far from satisfying \mathbb{P} :
 - $\geq \epsilon n^2$ edges should be deleted or added to make G satisfy \mathbb{P} .

Background of property testing Previous results on testing graph properties

The model for sparse graphs

- Graph representation: incidence-list for a graph G = (V, E) with bounded degree d.
 - undirected, no self-loops, ≤ 1 edge between any $u, v \in V$.
 - |V| = n vertices and |E| = O(dn) edges.
 - A query: to see who is the *i*th neighbor of *v*.
- ϵ -far from satisfying \mathbb{P} :
 - $\geq \epsilon dn$ edges should be deleted or added to make G satisfy \mathbb{P} .

Some important families of graph properties

Some graph properties

 Δ Hereditary graph properties:

- closed under removal of vertices (taking induced subgraphs).
- ★ Monotone graph properties:
 - closed under removal of vertices and edges (taking subgraphs).
- $\Delta \mathbb{P}_{H}^{*}$: the property that a graph having no *H* as an **induced** subgraph.
- ★ \mathbb{P}_H : the property that a graph having no *H* as a subgraph.

Previous results on testing graph properties in **dense** undirected graphs

Property	Tester	Testable	Easily testable	Query
First-order graph properties without a quantifier alternation of type '∀∃'	Yes	Yes	No	*
First-order graph properties with a quantifier alternation of type '∀∃'	Ι	No	No	-
Monotone properties	Yes	Yes	No	*
Hereditary properties	Yes	Yes	No	*

Table: '*' stands for the bounds of the type towers of towers of exponents of height poly $(1/\epsilon)$; '-' means no explicit bound (or tester) is given.

$$2^{2^{2^{2^{2^{2}}}}}$$
: tower of 2's of height 5

Property	Tester	Testable	Easily testable	Query
Bipartiteness	Yes	Yes	Yes	$O(rac{\ln^8(1/\epsilon) \ln\ln^2(1/\epsilon)}{\epsilon^2})$
k-colorability	Yes	Yes	Yes	$O(rac{k^2 \ln^2 k}{\epsilon^4})$
Having a clique of size $\geq \rho n$	Yes	Yes	No*	$O(rac{\log^2(1/\epsilon) ho^2}{\epsilon^6})$
Having a cut of size $\geq \rho n^2$	Yes	Yes	No*	$O(rac{\log^2(1/\epsilon)}{\epsilon^7})$

Table: '*' stands for that only two-sided error property testers can be obtained.

Property	Tester	Testable	Easily testable	Query
\mathbb{P}_{H}, H is bipartite	Yes	Yes	Yes	$O(h^2 \left(rac{1}{2\epsilon} ight)^{h^2/4})$
\mathbb{P}_{H} , H is not bipartite	Yes	Yes	No	$\Omega\left(\left(\frac{c}{\epsilon}\right)^{c\log(c/\epsilon)}\right)$
$\mathbb{P}_{H}^{*}, H = P_{2}$	Yes	Yes	Yes	$\Theta\left(\frac{1}{\epsilon}\right)$
$\mathbb{P}_{H}^{*}, \ H = P_{3}$	Yes	Yes	Yes	$O(rac{\log(1/\epsilon)}{\epsilon})$
$\mathbb{P}_{H}^{*}, \ H \neq P_{2}, \ P_{3}, P_{4}, \ C_{4} \ ext{or their}$ complements	Yes	Yes	No	$\Omega\left(\left(\frac{1}{\epsilon}\right)^{c\log(1/\epsilon)}\right)$
\mathbb{P}_{H}^{*} , H is P_{4}	Yes	Yes	?	*
\mathbb{P}_{H}^{*} , H is C_{4}	Yes	Yes	?	*

Table: '*' stands for the bounds of the type towers of towers of exponents of height poly $(1/\epsilon)$; c is a constant depending on H; '?' stands for an open question.

Previous results on testing graph properties in **sparse** undirected graphs

Property	Tester	Testable	Easily testable	Query
Hereditary properties in a hereditary and nonexpanding family of graphs	Yes	Yes	?	*
Minor-closed properties	Yes	Yes	?	$2^{2^{2^{poly(1/\epsilon)}}}$
Bipartiteness	_	No	No	$\Omega(\sqrt{n})$
Expansion		No	No	$\Omega(\sqrt{n})$
3-colorability	_	No	No	$\Omega(n)$

Table: ' \star ' stands for a bound in a not explicitly form yet it is independent of *n*; '?' stands for an open question; '-' means no explicit tester is given.

Property	Tester	Testable	Easily testable	Query
Connectivity	Yes	Yes	Yes	$O(rac{\log^2(1/\epsilon d)}{\epsilon})$
k-edge-connectivity for $k = 1, 2$	Yes	Yes	Yes	$O(rac{\log^2(1/\epsilon d)}{\epsilon})$
3-edge-connectivity	Yes	Yes	Yes	$O(rac{\log(1/\epsilon d)}{\epsilon^2 d})$
k-edge-connectivity for $k \ge 4$	Yes	Yes	Yes	$O(\tfrac{k^3\log(1/(\epsilon d))}{\epsilon^{3-2/k}d^{2-2/k}})$
Eulerian	Yes	Yes	Yes	$O(rac{\log^2(1/\epsilon d)}{\epsilon})$
Cycle-freeness	Yes	Yes	No	$O(\frac{1}{\epsilon^3})^*$

Table: ' \star ' stands for a bound in a not explicitly form yet it is independent of *n*; ' \star ' stands for a result with two-sided error.

As to our preliminary results..

Property	Tester	Testable	Easily testable		Query
Quartet consistency	Yes	?	?	0	$\left(\frac{n^3}{1-2(1-\epsilon)^{1/4}}\right)$

Table: Testing quartet consistency.

Evolutionary trees

- S: a set of taxa; |S| = n.
- An evolutionary tree T on S:
 - An unrooted, leaf-labeled tree
 - The leaves are bijectively labeled by the taxa in *S*
 - Each internal node has degree *three*

T

(日)

Quartet topologies

・ロト <
同 ト <
言 ト <
言 ト 、
言 や へ
で
、 32 / 48
</p>

Quartet topologies (contd.)

Biological issue

: ৩৫. 34/48

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = (ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T$ s.t. $Q \subseteq Q_T$.
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;

35 / 48

• Otherwise, incomplete.

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = (ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;

35 / 48

• Otherwise, incomplete.

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = (ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- *Q* is called complete:
 - Exactly one topology for every quartet;

35 / 48

• Otherwise, incomplete.

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = (ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;
 - Otherwise, incomplete.

Quartet errors

- Given complete Q and Q^* (tree-like).
- # quartet errors of *Q* w.r.t. *Q**:
 δ(*Q*, *Q**).
- **#** quartet errors of *Q*:

• $\Delta^*(Q) := \min\{\delta(Q, Q^*) : Q^* \text{ is tree-like}\}.$

<ロト < 四ト < 回ト < 回ト < 回ト = 三</p>

Quartet errors

- Given complete Q and Q^* (tree-like).
- # quartet errors of Q w.r.t. Q*:
 δ(Q, Q*).
- # quartet errors of Q:
 Δ*(Q) := min{δ(Q, Q*) : Q* is tree-like}.

Quartet errors

- Given complete Q and Q^* (tree-like).
- # quartet errors of Q w.r.t. Q*:
 δ(Q, Q*).
- **# quartet errors of** *Q*:
 - $\Delta^*(Q) := \min\{\delta(Q, Q^*) : Q^* \text{ is tree-like}\}.$

The parameterized MQI problem:

Given: a **complete** set of quartet topologies Q and an integer k.

• The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary tree T such that $\Delta(Q, Q_T) \leq k$.

- * NP-complete [Berry *et al.* 1999].
- * $O(4^k n + n^4)$ [Gramm and Niedermeier 2003].
- ★ O*(3.0446^k), O*(2.0162^k), and O*((1 + ε)^k) fixed-parameter algorithms [Chang, Lin, Rossmanith; IWPEC'08; to appear in *Theory of Computing Systems*].

The parameterized MQI problem:

Given: a **complete** set of quartet topologies Q and an integer k.

• The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary tree T such that $\Delta(Q, Q_T) \leq k$.

- * **NP**-complete [Berry *et al.* 1999].
- * $O(4^k n + n^4)$ [Gramm and Niedermeier 2003].
- * $O^*(3.0446^k)$, $O^*(2.0162^k)$, and $O^*((1 + \epsilon)^k)$ fixed-parameter algorithms [Chang, Lin, Rossmanith; IWPEC'08; to appear in *Theory of Computing Systems*].

Related works (Constructing T and QCP)

- Construct T by a given tree-like Q:
 * O(n⁴) [Berry and Gascuel 2000].
- The Quartet Compatibility Problem (QCP):

Determine whether there exists an evolutionary tree T satisfying all quartet topologies in Q.

- * NP-complete [Steel 1992].
- \star Polynomial time solvable if Q is complete [Erdős et al. 1999].
- Consider the cases of **complete** *Q*.

Related works (MQI & MQC)

Minimum Quartet Inconsistency Problem (MQI)

Construct an evolutionary tree T s.t. $\Delta(Q, Q_T)$ is minimized.

- * **NP**-hard [Berry *et al.* 1999].
- * Approx. ratio: $O(n^2)$ [Jiang *et al.* 2000].
- ★ O(3ⁿn⁴) dynamic programming [Ben-Dor *et al.* 1998].
- ★ $O(n^4)$ if $\Delta^*(Q) < (n-3)/2$ [Berry *et al.* 1999].
- * $O(n^5 + 2^{4c}n^{12c+2})$ if $\Delta^*(Q) < cn$ for some constant c [Wu *et al.* 2006].

Maximum Quartet Consistency Problem (MQC)

Dual problem of MQI.

* NP-hard [Berry et al. 1999].

イロト 不得下 イヨト イヨト 二日

39 / 48

* PTAS [Jiang et al. 2001].

Testing quartet consistency

- Now we consider property testing on the property that a complete Q is tree-consistent (testing quartet consistency).
- The input size: $|Q| = \binom{n}{4}$.
- Q is ϵ -far from being tree-consistent: Q is not tree-consistent unless at least ϵn^4 quartet topologies are changed.
- However, is it possible for Q to have $\Omega(n^4)$ quartet errors?

Testing quartet consistency

- Now we consider property testing on the property that a complete Q is tree-consistent (testing quartet consistency).
- The input size: $|Q| = \binom{n}{4}$.
- Q is ϵ -far from being tree-consistent: Q is not tree-consistent unless at least ϵn^4 quartet topologies are changed.
- However, is it possible for Q to have $\Omega(n^4)$ quartet errors?

Existence of $\Omega(n^4)$ quartet errors

YES!

Theorem (Chang, Lin, Rossmanith)

There exists a set of quartet topologies Q which has $\Omega(n^4)$ quartet errors.

Quintets

• A quintet is a set of five taxa in S.

• Quintet topologies:

Quintets

- A quintet is a set of five taxa in S.
- Quintet topologies:

Quintet topologies

Consistent quintets

• What is a consistent quintet?

[ab|cd], [ab|ce], [ab|de], [ac|de], $[bc|de] \in Q.$

Consistent quintets

- What is a consistent quintet?
- $\triangleright \quad [ab|cd], [ab|ce], [ab|de], [ac|de], \\ [bc|de] \in Q.$

Tree consistency and quintets

Theorem (Bandelt and Dress 1986)

Q is tree-like \Leftrightarrow every quintet containing *f* is consistent.

The first property tester for quartet consistency

Theorem (Chang, Lin, Rossmanith)

If Q is ϵ -far from satisfying quartet consistency, then there exist $\geq (1 - 2(1 - \epsilon)^{1/4})n$ inconsistent quintets containing an arbitrary fixed taxon f.

 Pick an arbitrary taxon f ∈ S and then repeat (a) and (b) for ^{2n³}/_{1-2(1-ε)^{1/4}} times.

 (a) Pick four taxa s₁, s₂, s₃, s₄ ∈ S uniformly at random.
 (b) If the quintet {s₁, s₂, s₃, s₄, f} is not consistent, then return "no".

2. Return "yes".

Table: Quartet Tester.

The first property tester for quartet consistency (contd.)

Theorem (Chang, Lin, Rossmanith)

Quartet Tester is a one-sided-error property tester for quartet consistency, which makes at most $O\left(\frac{n^3}{1-2(1-\epsilon)^{1/4}}\right)$ queries.

- Our property tester is the first one for testing quartet consistency.
- Yet it is still open that whether this property is testable.

Thank you!

<□ > < 部 > < E > < E > E の Q (~ 48 / 48)