A Study on Property Testing

Ph.D. Dissertation Proposal of
Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

February 12, 2009

1/48

Objectives of the dissertation

Objectives of the dissertation

@ Evolutionary tree reconstruction property testing:

e Testing quartet consistency.

2. Graph property testing:
a). Testing if a graph is induced P,-free.

b). Testing if a graph is induced C,-free.

2/48

Objectives of the dissertation

Quartet consistency

Property (Quartet consistency)

Input: A complete set of quartet topologies Q
Property: tree-consistency

@ Jobs:

@ Give a property tester for this property [preliminary results].
@ Prove its testability.

3/48

Objectives of the dissertation

Induced (C;-freeness & induced P,-freeness

Property (Induced C4-freeness)

Input: A dense graph G represented by an adjacency-matrix
Property: Having no C4 as an induced-subgraph

@ Jobs:

@ Give a property tester for this property.
e Show that it is easily testable or not.

Property (Induced Pj-freeness)

Input: A dense graph G represented by an adjacency-matrix
Property: Having no P, as an induced-subgraph

@ Jobs:

o Give a property tester for this property.
e Show that it is easily testable or not.

4/48

Objectives of the dissertation

Open problems (Alon and Shapira; 2006)

Is induced C4-freeness easily testable in dense graphs?
Is induced P,-freeness easily testable in dense graphs?

5/48

Brief introduction to property testing DG e 6ff ey FEsig

QOutline

@ Objectives of the dissertation

9 Brief introduction to property testing
@ Background of property testing
® Previous results on testing graph properties

€ Preliminary results on quartet consistency

6/48

Background of property testing

Brief introduction to property testing Previous results on testing graph properties

Background of property testing

@ In the real world nowadays, we are faced with imperious need
to process increasing larger amounts of data in faster times.

@ Many practical problems have inputs of very large size.

@ Sometimes it is not realistic to solve a problem in the time
even linear in the input size.

@ Property testing is one of the possible approaches faster than
linear time algorithms.

7/48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

@ Does the input satisfy a designated property, or
e is far from satisfying the property?

8/48

Background of property testing

Brief introduction to property testing

Background of property testing (contd.)

@ The general notion: Rubinfeld & Sudan [SIAM J. Comput.
1996].

Ronitt Rubinfeld Madhu Sudan

@ Testing combinatorial objects: Goldreich, Goldwasser, & Ron
[J. ACM 1998|.

Oded Goldreich ~ Shafi Goldwasser Dana Ron

9/48

Background of property testing

Brief introduction to property testing

Background of property testing (contd.)

@ The general notion: Rubinfeld & Sudan [SIAM J. Comput.
1996].

Ronitt Rubinfeld Madhu Sudan

@ Testing combinatorial objects: Goldreich, Goldwasser, & Ron
[J. ACM 1998|.

Oded Goldreich ~ Shafi Goldwasser Dana Ron

@ Motivation: program checking.

9/48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ A program M: compute a function f.
@ Check if M gives correct answers on most inputs of f.

Extension:

@ Given a family of functions F over a domain D (e.g., all linear
functions) and a program M.

e Test if Af € F such that M has the same outputs as f for
most points of D.

M is regarded as a black box.

10/ 48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ In property testing, we use e-far to say that the input is far
from a certain property.

@ ¢: the least fraction of the input needs to be modified.

11/48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ In property testing, we use e-far to say that the input is far
from a certain property.
@ ¢: the least fraction of the input needs to be modified.

@ For example:

s A sequence of integers L = (0,2,3,4,1).
o Allowed operations: integer deletions
e L is 0.2-far from being monotonically nondecreasing.

11/48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ The commonly used complexity measure: queries.

@ A query is like to probe, which is to examine certain value of
the input.

e to see if two vertices in a graph are adjacent under the
adjacency-matrix model;

e to know the ith neighbor of a vertex in a bounded-degree
graph under the incidence-list model;

® ...

@ In property testing, the query complexity (say g(n,¢)) is asked
to be sublinear in the input size (say f(n)).

12/48

Brief introduction to property testing DG e 6ff ey FEsig

Background of property testing (contd.)

@ The commonly used complexity measure: queries.

@ A query is like to probe, which is to examine certain value of
the input.
e to see if two vertices in a graph are adjacent under the
adjacency-matrix model;

e to know the ith neighbor of a vertex in a bounded-degree
graph under the incidence-list model;

® ...

@ In property testing, the query complexity (say g(n,¢)) is asked
to be sublinear in the input size (say f(n)).
@ g(n,e) = o(f(n)) if lim % — 0, where € is viewed as a
n—oo

constant.

12/48

Brief introduction to property testing DG e 6ff ey FEsig

Property testers

@ A property tester for P is an algorithm utilizing sublinear
queries such that:

o> if the input satisfies P:
answers “yes’ with probability > 2/3 (1 — one-sided error);

> if the input is e-far from satisfying P:
answers “no” with probability > 2/3.

13/48

Brief introduction to property testing DG e 6ff ey FEsig

Testabilities

o [P is testable if

e 1 a property tester for P such that its query complexity is
independent of the input size.

14 /48

Brief introduction to property testing DG e 6ff ey FEsig

Testabilities

@ P is testable if
e 1 a property tester for P such that its query complexity is
independent of the input size.

@ P is easily testable if

e 1 a property tester of one-sided error for P such that its
query complexity is poly(1/¢€).

14/48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers

@ Testing if a graph is empty
@ i.e., testing if a graph is induced P-free.

@ Assume that the adjacency-matrix model is used to represent
the input graph.

15/48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers

@ Testing if a graph is empty
@ i.e., testing if a graph is induced P-free.

@ Assume that the adjacency-matrix model is used to represent
the input graph.

@ O(1/e€) queries are enough.

15/48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers

@ Testing if a graph is empty
@ i.e., testing if a graph is induced P-free.

@ Assume that the adjacency-matrix model is used to represent
the input graph.

@ O(1/e€) queries are enough.

@ How can it be done?

15/48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers (contd.)

@ c-far from being empty:
e en? pairs of vertices are adjacent.

16 /48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers (contd.)

@ c-far from being empty:
e en? pairs of vertices are adjacent.

@ A property tester, say A, works as follows.

16 /48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers (contd.)

@ c-far from being empty:
e en? pairs of vertices are adjacent.

@ A property tester, say A, works as follows.

o Repeatedly, for 1/e times, pick two vertices uniformly at
random and check if they are adjacent.

@ Once an edge is found, return “no”,

@ otherwise (i.e., all of the chosen pairs of vertices are not

adjacent) return “yes”.

16 /48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers (contd.)

® Pr[A returns “yes” |G is empty | = 1.

17 /48

Brief introduction to property testing DG e 6ff ey FEsig

An easy example of property testers (contd.)

® Pr[A returns “yes” |G is empty | = 1.

@ Pr[A returns “yes” |G is e-far from being empty| =
(L—en?/()Ve < (1—2e)/e < e2<1/3.

17 /48

Brief introduction to property testing DG e 6ff ey FEsig

Two commonly used models for graph
property testing

18 /48

Brief introduction to property testing DG e 6ff ey FEsig

The model for dense graphs

@ Graph representation: adjacency-matrix for a graph
G =(V,E).
@ undirected, no self-loops, < 1 edge between any u,v € V.
o |V| = n vertices and |E| = Q(n?) edges.
e A query: to see if two vertices u and v are adjacent or not.

o cfar from satisfying IP:
@ > en? edges should be deleted or added to make G satisfy P.

19/48

Brief introduction to property testing DG e 6ff ey FEsig

The model for sparse graphs

@ Graph representation: incidence-list for a graph G = (V, E)
with bounded degree d.

@ undirected, no self-loops, < 1 edge between any u,v € V.
@ |V| = n vertices and |E| = O(dn) edges.
e A query: to see who is the ith neighbor of v.

o cfar from satisfying IP:
@ > edn edges should be deleted or added to make G satisfy IP.

20 /48

Brief introduction to property testing DG e 6ff ey FEsig

Some important families of graph properties

21/48

Background of property testing

Brief introduction to property testing Previous results on testing graph properties

Some graph properties

A Hereditary graph properties:
@ closed under removal of vertices (taking induced subgraphs).

* Monotone graph properties:
o closed under removal of vertices and edges (taking subgraphs).

A P},: the property that a graph having no H as an induced
subgraph.

* Py the property that a graph having no H as a subgraph.

22/48

Brief introduction to property testing

Previous results on testing graph properties

Previous results on testing graph properties
in dense undirected graphs

23/48

Brief introduction to property testing Previous results on testing graph properties

Property | Tester | Testable | Easily testable | Query

First-order graph properties
without a quantifier Yes Yes No *
alternation of type V3’

First-order graph properties
with a quantifier - No No -
alternation of type 'VZ'

Monotone properties Yes Yes No *

Hereditary properties Yes Yes No *

Table: ‘x" stands for the bounds of the type towers of towers of exponents of
height poly(1/€); ‘=" means no explicit bound (or tester) is given.

22

2
22 . tower of 2's of height 5

24 /48

Brief introduction to property testing Previous results on testing graph properties

Property | Tester | Testable | Easily testable | Query
Bipartiteness Yes Yes Yes O(w)
k-colorability Yes Yes Yes Oo(K '6'22 k)

Having a clique) .
of size > pn Yes Yes No* O(%)

Having a cut
of size > pn? Yes Yes No*

Table: “*' stands for that only two-sided error property testers can be obtained.

25 /48

Brief introduction to property testing Previous results on testing graph properties

Property | Tester | Testable | Easily testable | Query

Py, H is bipartite Yes Yes Yes O(h? (i)hZM)

Py, H is not bipartite | Yes Yes No Q ((%)Clog(c/e))
5 H=P; Yes Yes Yes o (1)
i H=Ps3 Yes Yes Yes O(%)
w H# P2, Ps,

P4, C, or their Yes Yes No Q ((%)Clog(l/e))

complements

P, His P4 Yes Yes ? *

Py, His G Yes Yes ? *

Table: ‘x" stands for the bounds of the type towers of towers of exponents of
height poly(1/e€); c is a constant depending on H; ‘7" stands for an open
question.

26 /48

Brief introduction to property testing

Previous results on testing graph properties

Previous results on testing graph properties
in sparse undirected graphs

27 /48

Brief introduction to property testing Previous results on testing graph properties

Property | Tester | Testable | Easily testable | Query
Hereditary properties
in a hereditary
and nonexpanding Yes Yes ? *
family of graphs

H . 22p0|y(1/e)
Minor-closed properties | Yes Yes ?
Bipartiteness - No No Q(+v/n)
Expansion - No No Q(v/n)
3-colorability - No No Q(n)

Table: ‘x" stands for a bound in a not explicitly form yet it is independent of n;
‘7" stands for an open question; ‘=’ means no explicit tester is given.

28 /48

Brief introduction to property testing Previous results on testing graph properties

Property | Tester | Testable | Easily testable | Query
Connectivity Yes Yes Yes O(w)
k-edge-connectivity

fork=1,2 Yes Yes Yes O(w)
3-edge-connectivity Yes Yes Yes O(%)
k-edge-connectivity

for k > 4 Yes Yes Yes O(iizl‘;g/(kldé(ff/)k))
Eulerian Yes Yes Yes O(w)
Cycle-freeness Yes Yes No O(E%)*

Table: ‘x" stands for a bound in a not explicitly form yet it is independent of n;
*' stands for a result with two-sided error.

29 /48

Brief introduction to property testing Previous results on testing graph properties

As to our preliminary results..

Property | Tester | Testable | Easily testable | Query

3
: ? ? __n
Quartet consistency| Yes ! !) (1_2(1_6)1/4)

Table: Testing quartet consistency.

30/48

Preliminary results on quartet consistency

Evolutionary trees

@ S: a set of taxa; |S| = n.

@ An evolutionary tree T on S: a

@ An unrooted, leaf-labeled tree

@ The leaves are bijectively
labeled by the taxa in S c

@ Each internal node has degree T
three

31/48

Preliminary results on quartet consistency

Quartet topologies

f
a J a d
b a
-> -> D —
b e 8 b c d
A c
T The path structure The topology

connecting a, b,c,dinT of {a, b, c, d}

32/48

Preliminary results on quartet consistency

Quartet topologies (contd.)

[ablcd] [aclbd] [adlbc]

33/48

Preliminary results on quartet consistency

Biological issue

34/48

Preliminary results on quartet consistency

Tree-consistency

® Q7 : the set of quartet topologies induced by T.
o Q7= (3)-

35/48

Preliminary results on quartet consistency

Tree-consistency

® Q7 : the set of quartet topologies induced by T.
o Q7= (3)-

® Q is tree-consistent (with T):
o T s.t. Q C Q7.

35/48

Preliminary results on quartet consistency

Tree-consistency

® Q7 : the set of quartet topologies induced by T.
o Q7= (3)-

® Q is tree-consistent (with T):
o T s.t. Q C Q7.

> tree-like if Q = Q.

35/48

Preliminary results on quartet consistency

Tree-consistency

® Q7 : the set of quartet topologies induced by T.
o Q7= (3)-

® Q is tree-consistent (with T):
o T s.t. Q C Q7.
> tree-like if @ = Q.

@ @ is called complete:

@ Exactly one topology for every quartet;
@ Otherwise, incomplete.

35/48

Preliminary results on quartet consistency

Quartet errors

@ Given complete @ and Q* (tree-like).

36/48

Preliminary results on quartet consistency

Quartet errors

@ Given complete @ and Q* (tree-like).

® # quartet errors of Q w.r.t. Q*:
° 0(Q, Q7).

36/48

Preliminary results on quartet consistency

Quartet errors

@ Given complete @ and Q* (tree-like).

® # quartet errors of Q w.r.t. Q*:
° 0(Q, Q7).

® # quartet errors of Q:

o A*(Q) :=min{d(Q, Q*) : Q" is tree-like}.

36/48

Preliminary results on quartet consistency

The parameterized MQI problem:

Given: a complete set of quartet topologies @ and an integer k.

@ The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary
tree T such that A(Q, Q7) < k.

37/48

Preliminary results on quartet consistency

The parameterized MQI problem:

Given: a complete set of quartet topologies @ and an integer k.

@ The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary
tree T such that A(Q, Q7) < k. J

* NP-complete [Berry et al. 1999].

* O(4%n + n*) [Gramm and Niedermeier 2003].

* 07(3.0446K), 0*(2.0162%), and O*((1 + €)¥) fixed-parameter
algorithms [Chang, Lin, Rossmanith; IWPEC'08; to appear in
Theory of Computing Systems].

37/48

Preliminary results on quartet consistency

Related works (Constructing T and QCP)

@ Construct T by a given tree-like Q:
x O(n*) [Berry and Gascuel 2000].

@ The Quartet Compatibility Problem (QCP):

Determine whether there exists an evolutionary
tree T satisfying all quartet topologies in Q.

* NP-complete [Steel 1992].
* Polynomial time solvable if @ is complete [Erd6s et al. 1999].

@ Consider the cases of complete Q.

38/48

Preliminary results on quartet consistency

Related works (MQI & MQC)

Minimum Quartet Inconsistency Maximum Quartet Consistency
Problem (MQI) Problem (MQC)
Construct an evolutionary tree T Dual problem of MQI. J
s.t. A(Q, Qr) is minimized. J '
* NP-hard [Berry et al. 1999]. * NP-hard [Berry et al. 1999].
* Approx. ratio: O(n?) [Jiang et al. * PTAS [Jiang et al. 2001].
2000].

x 0(3"n*) dynamic programming
[Ben-Dor et al. 1998].

* O(n") if A*(Q) < (n—3)/2 [Berry et
al. 1999).

* O(n® + 2% n'22) if A*(Q) < cn for
some constant ¢ [Wu et al. 2006].

39/48

Preliminary results on quartet consistency

Testing quartet consistency

@ Now we consider property testing on the property that a
complete Q is tree-consistent (testing quartet consistency).

@ The input size: |Q| = (}).

® @ is e-far from being tree-consistent: @ is not tree-consistent
unless at least en* quartet topologies are changed.

40/48

Preliminary results on quartet consistency

Testing quartet consistency

@ Now we consider property testing on the property that a
complete Q is tree-consistent (testing quartet consistency).

@ The input size: |Q| = (}).

® @ is e-far from being tree-consistent: @ is not tree-consistent
unless at least en* quartet topologies are changed.

@ However, is it possible for Q to have Q(n*) quartet errors?

40/48

Preliminary results on quartet consistency

Existence of Q(n*) quartet errors

@ YES!

Theorem (Chang, Lin, Rossmanith)

There exists a set of quartet topologies @ which has Q(n*) quartet
errors.

41/48

Preliminary results on quartet consistency

Quintets

® A quintet is a set of five taxa in S.

42/48

Preliminary results on quartet consistency

Quintets

® A quintet is a set of five taxa in S.

® Quintet topologies:

42/48

b a d b d b a d b a d b p
C>_<e C>a_<e C>—L<€ c>_<e c>_a<e
b a ¢ b c b a ¢c b ac b .
d>_<e d>a_<e d>_|_<€ d>_<e a’>_a<e
b a ¢ b c b a ¢ b, a c b .
e>_<d e>a_<d e>_L<d e>_<a’ e>_a<d

43/48

Preliminary results on quartet consistency

Consistent quintets

@ What is a consistent quintet?

44 /48

Preliminary results on quartet consistency

Consistent quintets

@ What is a consistent quintet? b a d
> [ab|cd], [ab|ce], [ab|de], [ac|de], c> <e
[bc|de] € Q.

44 /48

Preliminary results on quartet consistency

Tree consistency and quintets

Theorem (Bandelt and Dress 1986)

Q is tree-like < every quintet containing f is consistent.

45 /48

Preliminary results on quartet consistency

The first property tester for quartet consistency

Theorem (Chang, Lin, Rossmanith)

If Q is e-far from satisfying quartet consistency, then there exist

> (1 —2(1 — €)Y*)n inconsistent quintets containing an arbitrary
fixed taxon f.

1. Pick an arbitrary taxon f € S and then repeat (a) and (b)

2n3 .
for Ta(1_q/F times.

(a) Pick four taxa s1, sp, 53,54 € S uniformly at random.

(b) If the quintet {s1, s, 53,54, f} is not consistent, then
return “no"”.

2. Return "yes".

Table: Quartet Tester.

46 /48

Preliminary results on quartet consistency

The first property tester for quartet consistency (contd.)

Theorem (Chang, Lin, Rossmanith)
Quartet Tester is a one-sided-error property tester for quartet

consistency, which makes at most O (1_2

n3 o
W queries.

@ Our property tester is the first one for testing quartet
consistency.

@ Yet it is still open that whether this property is testable.

47 /48

Thank you!

	Objectives of the dissertation
	Brief introduction to property testing
	Background of property testing
	Previous results on testing graph properties

	Preliminary results on quartet consistency
	

