A Study on Fixed-Parameter Algorithms and Property Testing

Student: Joseph Chuang-Chieh Lin

Advisors: Professor Maw-Shang Chang Professor Peter Rossmanith

Department of Computer Science and Information Engineering National Chung Cheng University Taiwan

26 July 2011

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

26 July 2011 1 / 45

Outline

- Fixed-parameter algorithms
- Property testing
- Motivations

2 Our contributions

500

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Introduction: Fixed-parameter algorithms

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011 3 / 45

Fixed-parameter algorithms

A parameterized problem

A language $L \subseteq \Sigma^* \times \mathbb{Z}^+$ that consists of input pairs (I, k).

- The first component: problem instance (Σ: finite alphabet).
- The second component: parameter.
- Fixed-parameter algorithms:
 - Solving parameterized problems in $O(f(k) \cdot poly(n))$ time.
 - f(k): an arbitrary function solely depending on k.
- Characteristics of fixed-parameter algorithms:
 - They can be used to solve NP-hard problems exactly.
 - Efficient when k is small.
- Problems admit such algorithms: FPT (fixed-parameter tractable).

Ph.D. Dissertation Oral Defense Introduction

Fixed-parameter algorithms

Fixed-parameter algorithms (contd.)

This research field has been very active since 1990s.

- Articles in this field appear in important conferences.
 - FOCS, STOC, SODA, ICALP, STACS, MFCS, SWAT, ISAAC, ESA, WG, IPEC, etc.
 - IPEC: International Symposium on Parameterized and Exact Computation.
- At least three monographs & books in this field.
 - R. G. Downey & M. R. Fellows: *Parameterized Complexity*. Springer-Verlag, New York, 1999.
 - J. Flum & M. Grohe: *Parameterized Complexity Theory*. Springer-Verlag, 2006.
 - R. Niedermeier: *Invitation to Fixed-Parameter Algorithms.* Oxford University Press, 2006.
- Well-known experts in this field:
 - H. L. Bodlaender, J. Chen, E. Demaine, M. R. Fellows, R. Niedermeier, P. Rossmanith, etc.

Fixed-parameter algorithms (contd.)

- The main tasks in this field:
 - Find the "parameters" which make NP-hard problems difficult.
 - Improve known FPT results.

• e.g.,
$$O(2^k n^2) \rightarrow O(1.62^k n^2) \rightarrow \ldots \rightarrow O(1.2738^k + kn).$$

- Common types of parameters:
 - Target size (e.g., the size of a vertex cover)
 - Structure of the input (e.g., the treewidth of a graph)

A parameter associated with the target: vertex cover

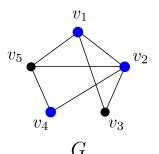
- Given a graph G = (V, E),
 - $C \subseteq V$ is a vertex cover:

each edge in E has at least one of its endpoints in C.

• The Vertex Cover problem:

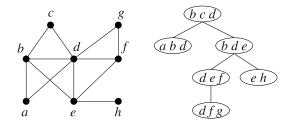
Determine if a graph has a vertex cover of size $\leq k$:

▷ **FPT**: $O(1.2738^k + kn)$ [Chen *et al.* 2010].



A parameter associated with the input structure: treewidth

• Tree-decomposition of a graph:



- The width of the tree-decomposition: |maximum bag| 1.
- The treewidth of G: the minimum width over all tree-decompositions of G.

A parameter associated with the input structure: treewidth

- Roughly speaking, treewidth measures how close a graph is to being a tree.
- Many **NP**-hard graph problems can be solved in polynomial time or even linear time when the treewidth of the input graph is bounded.
 - the Maximum Independent Set problem
 - the Minimum Dominating Set problem
 - the Hamiltonian Cycle problem

•

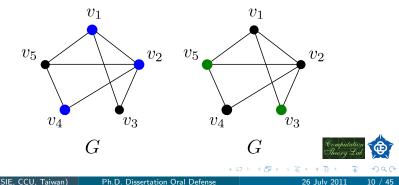
Fixed-parameter intractable?

- $I \subseteq V$ is an independent set:
 - None of pairs of the vertices in I are adjacent.
- ★ A well-known fact:
 - A graph G has a vertex cover of size k
 ⇔ G has an independent set of size k' = n k.

The Independent Set problem, the Clique problem the Dominating Set problem, ..., etc.

Fixed-parameter *intractable*?

- $I \subseteq V$ is an independent set:
 - None of pairs of the vertices in *I* are adjacent.
- ★ A well-known fact:
 - A graph G has a vertex cover of size k \Leftrightarrow G has an independent set of size k' = n - k.



Fixed-parameter intractable?

- $I \subseteq V$ is an independent set:
 - None of pairs of the vertices in I are adjacent.
- ★ A well-known fact:
 - A graph G has a vertex cover of size k
 ⇔ G has an independent set of size k' = n k.
- ∃ an O(f(k') · poly(n)) algorithm A for the Independent Set problem
 ⇒ A can be used to solve the Vertex Cover problem efficiently even when k = n k' is large.
- Fixed-parameter intractable problems:

The Independent Set problem, the Clique problem, the Dominating Set problem, ..., etc.

Fixed-parameter intractable?

- $I \subseteq V$ is an independent set:
 - None of pairs of the vertices in *I* are adjacent.
- ★ A well-known fact:
 - A graph G has a vertex cover of size k
 ⇔ G has an independent set of size k' = n k.
- ∃ an O(f(k') · poly(n)) algorithm A for the Independent Set problem
 ⇒ A can be used to solve the Vertex Cover problem efficiently even when k = n k' is large.
- Fixed-parameter intractable problems:

The Independent Set problem, the Clique problem, the Dominating Set problem, ..., etc.

Ph.D.	Dissertation	Oral	Defense
Intro	oduction		
Р	roperty testir	ng	

Introduction: Property testing

11 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011

Property testing

- General notion: Rubinfeld & Sudan (SIAM J. Comput. 1996).
 - Graph property testing: Goldreich, Goldwasser & Ron (J. ACM 1998).

Task of property testing

Input: An input *I* and a specified property \mathcal{P}

Task: Fulfill the following requirements in o(|I|) time.

- If I satisfies $\mathcal{P} \Rightarrow$ answer "yes" with prob. $\geq \frac{2}{3}$; (= 1: 1-sided error)
- If I is far from satisfying $\mathcal{P} \Rightarrow$ answer "no" with prob. $\geq \frac{2}{3}$.

A notion of "approximating" yes/no problems in sublinear time.
 f(n) = o(g(n)) if lim_{n→∞} f(n)/g(n) = 0.

• Property testers: algorithms accomplishing the above task.

Property testing (contd.)

This research field has been very active since 1996.

- Articles in this field appear in important conferences.
 - FOCS, STOC, SODA, ICALP, STACS, ESA, APPROX+RANDOM, etc.
- Surveys for this field:
 - * [Goldreich 1998], [Fischer 2001], [Ron 2001], [Alon & Shapira 2005].
- Well-known experts in this field:
 - N. Alon, A. Czumaj, L. Fortnow, O. Goldreich, D. Ron, R. Rubinfeld, A. Shapira, L. Trevisan, etc.

Property testing (ϵ -far)

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input that needs to be modified.
- For example, L = (0, 2, 1, 4) over $\{0, 1, 2, 3, 4\}$ is 1/4-far from being monotonically nondecreasing.

14 / 45

• $(0,2,1,4) \Rightarrow$

Property testing (ϵ -far)

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input that needs to be modified.
- For example, L = (0, 2, 1, 4) over $\{0, 1, 2, 3, 4\}$ is 1/4-far from being monotonically nondecreasing.
 - $(0, 2, 1, 4) \Rightarrow (0, 2, 3, 4).$

Property testing (ϵ -far)

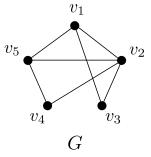
- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input that needs to be modified.
- For example, L = (0, 2, 1, 4) over $\{0, 1, 2, 3, 4\}$ is 1/4-far from being monotonically nondecreasing.

•
$$(0,2,1,4) \Rightarrow (0,2,3,4).$$

Property testing (ϵ -far)

G is ?-far from having a vertex cover of size ≤ 2 .

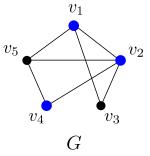
	$ v_1 $	<i>v</i> ₂	V ₃	<i>v</i> ₄	V_5
v_1	-	1	1	0	1
<i>V</i> 2	-	-	1	1	1
V3	-	-	_	0	0
<i>V</i> 4	-	-	_	-	1
<i>V</i> 5	-	-	-	-	_



Property testing (ϵ -far)

G is ?-far from having a vertex cover of size ≤ 2 .

	$ v_1 $	<i>v</i> ₂	V ₃	<i>v</i> ₄	V_5
v_1	-	1	1	0	1
<i>V</i> 2	-	_	1	1	1
V3	-	_	-	0	0
<i>V</i> 4	-	_	-	-	1
<i>V</i> 5	-	-	-	-	_

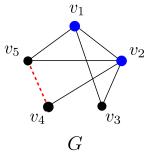


500

Property testing (ϵ -far)

G is (1/10)-far from having a vertex cover of size ≤ 2 .

	$ v_1 $	<i>v</i> ₂	V ₃	<i>v</i> ₄	v_5
v_1	-	1	1	0	1
<i>V</i> 2	-	_	1	1	1
V3	-	_	_	0	0
<i>V</i> 4	-	_	_	_	0
<i>V</i> 5	-	-	-	-	_



500

Property testing (contd.)

- A property is
 - testable: it admits a property tester of time complexity independent of the input size.
 - easily-testable: it admits a 1-sided-error property tester of time complexity O(poly(1/ε)).
- A property tester is non-adaptive: it makes queries to the input **without** knowing the results of previous ones.
- Time complexity = $\Omega(\#$ queries).

The sparse / dense model for testing graph properties

- ★ The sparse model
- $f_G: V(G) \times [d] \mapsto V(G) \cup \emptyset$ (adjacency list)
 - $[d] := \{1, 2, \dots, d\}$
 - $f_G(v, i) = u$: (u, v) is the *i*th edge incident to v.
 - $f_G(v, i) = \emptyset$: there is no such edge.
- ε-far:
 - $\geq \epsilon dn$ edge insertions or removals are required.

- ★ The dense model
- $M_G: V(G) \times V(G) \mapsto \{0,1\}$ (adjacency matrix)
 - $M_G(v, u) = 1$: u and v are adjacent.
- ϵ-far:
 ≥ ϵn² edge insertions or removals are required.

Testable & easily testable results

Some graph properties that are testable, and even easily testable.

- ★ In the sparse model
- connectivity & k-connectivity (easily-testable)
- being cycle-free
- being Eulerian (easily-testable)
- minor-closed properties

- \star In the dense model
- being *H*-free (easily-testable iff *H* is bipartite)
- being induced *H*-free (not easily-testable if $H \notin \{P_2, \overline{P}_2, P_3, \overline{P}_3, P_4, \overline{P}_4, C_4, \overline{C}_4\}$)
- k-colorability (easily-testable)
- Having a clique of size $\geq \rho n$ for $\rho \in (0, 1)$
- Hereditary graph properties

18 / 45

Ο...

Non-testable results

Some graph properties that are NOT (or remain unknown) to be testable.

- ⋆ In the sparse model
- bipartiteness
- k-colorability for general $k \ge 3$
- Having a dominating set of size $\leq \rho n$ for $\rho \in (0, 1)$
- Having a vertex cover of size $\leq \rho n$ for $\rho \in (0, 1)$

- * In the dense model
- first-order graph properties with a quantifier alternation of type '∀∃'

...

Ο...

Motivations

- Some properties cannot be tested efficiently, even non-testable.
- **FPT** problems can be efficiently solved when the parameters are small.
- We wish to know:
 - the parameters that make property testing difficult;
 - whether some properties can be tested more efficiently when some parameters are small.

Motivations: parameterized property testing

- Some properties cannot be tested efficiently, even non-testable.
- **FPT** problems can be efficiently solved when the parameters are small.
- We wish to know:
 - the parameters that make property testing difficult;
 - whether some properties can be tested more efficiently when some parameters are small.
- * A new concept: Parameterized property testing
 - Introducing parameters to the standard property testing.

Parameterized property testing

Parameterized property testers

Input: An input instance *I*, $\epsilon \in (0, 1)$, and a parameter $k \in \mathbb{Z}^+$.

Property: \mathcal{P} .

Task: Testing if *I* has the property \mathcal{P} in $O(f(k, 1/\epsilon) \cdot o|I|)$ time.

• $f(k, 1/\epsilon)$: a function solely depending on k and ϵ .

• $O(f(k, 1/\epsilon))$ time \Rightarrow parameterized testable.

Parameterized property testing (previous work)

Positive results:

- *k*-colorability in the dense model:
 - $O(k^2 \ln^2 k/\epsilon^4)$ [Alon & Krivelevich 2002].
- being *H*-free (without having *H* as a subgraph; |H| = h) in the dense model:
 - $O(h^2(1/2\epsilon)^{h^2/4})$ [Alon 2002].
- k-connectivity in the sparse model: (weakly uniform)
 - $O(d(ck/\epsilon d)^k \log(k/\epsilon d))$ [Yoshida & Ito 2008].
 - For $n \le \max\{120k^3, 400k^3/\epsilon d\} \Rightarrow \text{Using an } O(\text{poly}(n)) = O(\text{poly}(k/\epsilon d)) \text{ algorithm.}$

Parameterized property testing (previous work)

Positive results:

- *k*-colorability in the dense model:
 - $O(k^2 \ln^2 k/\epsilon^4)$ [Alon & Krivelevich 2002].
- being *H*-free (without having *H* as a subgraph; |H| = h) in the dense model:
 - $O(h^2(1/2\epsilon)^{h^2/4})$ [Alon 2002].
- k-connectivity in the sparse model: (weakly uniform)
 - $O(d(ck/\epsilon d)^k \log(k/\epsilon d))$ [Yoshida & Ito 2008].
 - For $n \le \max\{120k^3, 400k^3/\epsilon d\} \Rightarrow \text{Using an } O(\text{poly}(n)) = O(\text{poly}(k/\epsilon d)) \text{ algorithm.}$

Parameterized property testing (previous work)

A negative result:

k-colorability for k ≥ 3 in the sparse model:
 Ω(n) [Bogdanov, Obata & Trevisan 2002].

23 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Parameterized property testing (trivial to test for small k's)

Properties are trivial to test when k is small (in the sparse model):

- Having a simple k-path / k-cycle (\in **FPT**).
 - * O(k) edge insertions for any graph. (e.g., $k < \epsilon dn$)
 - Answer "yes" for any input graph.
- Having a dominating set of size $\leq k \quad (\notin \mathbf{FPT})$.
 - * k vertices have $\leq k \cdot d$ neighbors.
 - Answer "no" for any input graph.
- Having a clique / an independent set of size $\leq k$ (\notin **FPT**).
 - * $O(k^2)$ edge insertions for any graph.
 - Answer "yes" for any input graph.

When k is large, just run the exact algorithms. \Rightarrow weakly uniform

Parameterized property testing (trivial to test for small k's)

Properties are trivial to test when k is small (in the sparse model):

- Having a simple k-path / k-cycle (\in **FPT**).
 - * O(k) edge insertions for any graph. (e.g., $k < \epsilon dn$)
 - Answer "yes" for any input graph.
- Having a dominating set of size $\leq k \quad (\notin \mathbf{FPT})$.
 - * k vertices have $\leq k \cdot d$ neighbors.
 - Answer "no" for any input graph.
- Having a clique / an independent set of size $\leq k \quad (\notin \text{FPT})$.
 - * $O(k^2)$ edge insertions for any graph.
 - Answer "yes" for any input graph.

When k is large, just run the exact algorithms. \Rightarrow weakly uniform

Parameterized property testing (trivial to test for small k's)

Properties are trivial to test when k is small (in the sparse model):

- Having a simple k-path / k-cycle (\in **FPT**).
 - * O(k) edge insertions for any graph. (e.g., $k < \epsilon dn$)
 - Answer "yes" for any input graph.
- Having a dominating set of size $\leq k \ (\notin FPT)$.
 - * k vertices have $\leq k \cdot d$ neighbors.
 - Answer "no" for any input graph.
- Having a clique / an independent set of size $\leq k$ (\notin FPT).
 - * $O(k^2)$ edge insertions for any graph.
 - Answer "yes" for any input graph.

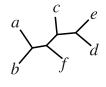
When k is large, just run the exact algorithms. \Rightarrow weakly uniform

Tackle a problem in computational biology through three aspects

- In this dissertation, we study a problem related to consistency of quartet topologies.
 - It's a problem originated from computational biology,
 - evolutionary tree reconstruction.
- * We tackle the problems through the following algorithmic aspects:
 - fixed-parameter algorithms
 - property testing
 - parameterized property testing

Evolutionary trees

- S: a set of taxa; |S| = n.
- An evolutionary tree T on S:
 - An unrooted, leaf-labeled tree;
 - The leaves are bijectively labeled by the taxa in *S*;
 - Each internal node has degree *three*.

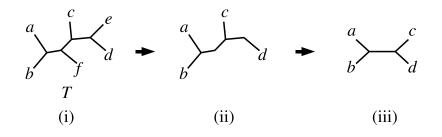


T

26 / 45

26 July 2011

Evolutionary trees & quartets (contd.)



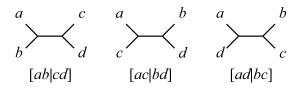
Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011

୬ ୯.୦ 27 / 45

Evolutionary trees & quartets (contd.)



500

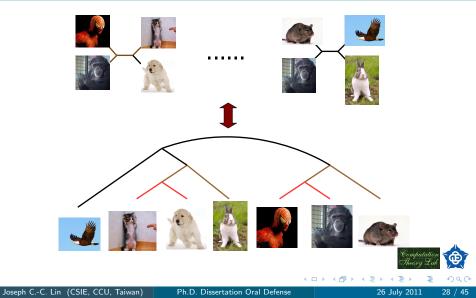
27 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

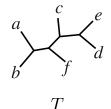
26 July 2011

Evolutionary trees & quartets (contd.)



A set Q of quartet topologies over $\{a, b, c, d, e, f\}$:

[ac | bd], [ab | ce], [ab | cf],[ab | de], [ab | df], [ab | ef],[ac | de], [af | cd], [af | ce],[af | de], [bd | ce], [bf | cd],[bf | ce], [bf | de], [cf | de].



Quartet errors w.r.t. T.

Determine if Q has 0 quartet error: NP-complete [Steel 1992].

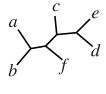
590

29 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

A set Q of quartet topologies over $\{a, b, c, d, e, f\}$:

 $\begin{bmatrix} ac & bd \end{bmatrix}, \quad \begin{bmatrix} ab & ce \end{bmatrix}, \quad \begin{bmatrix} ab & cf \end{bmatrix}, \\ \begin{bmatrix} ab & de \end{bmatrix}, \quad \begin{bmatrix} ab & df \end{bmatrix}, \quad \begin{bmatrix} ab & ef \end{bmatrix}, \\ \begin{bmatrix} ac & de \end{bmatrix}, \quad \begin{bmatrix} af & cd \end{bmatrix}, \quad \begin{bmatrix} af & ce \end{bmatrix}, \\ \begin{bmatrix} af & de \end{bmatrix}, \quad \begin{bmatrix} bd & ce \end{bmatrix}, \quad \begin{bmatrix} bf & cd \end{bmatrix}, \\ \begin{bmatrix} bf & ce \end{bmatrix}, \quad \begin{bmatrix} bf & de \end{bmatrix}, \quad \begin{bmatrix} cf & de \end{bmatrix}.$



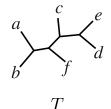
Quartet errors w.r.t. T.

• Determine if Q has 0 quartet error: NP-complete [Steel 1992].

590

A set Q of quartet topologies over $\{a, b, c, d, e, f\}$:

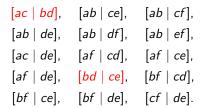
 $\begin{bmatrix} ac & bd \end{bmatrix}, \quad \begin{bmatrix} ab & ce \end{bmatrix}, \quad \begin{bmatrix} ab & cf \end{bmatrix}, \\ \begin{bmatrix} ab & de \end{bmatrix}, \quad \begin{bmatrix} ab & df \end{bmatrix}, \quad \begin{bmatrix} ab & ef \end{bmatrix}, \\ \begin{bmatrix} ac & de \end{bmatrix}, \quad \begin{bmatrix} af & cd \end{bmatrix}, \quad \begin{bmatrix} af & ce \end{bmatrix}, \\ \begin{bmatrix} af & de \end{bmatrix}, \quad \begin{bmatrix} bd & ce \end{bmatrix}, \quad \begin{bmatrix} bf & cd \end{bmatrix}, \\ \begin{bmatrix} bf & ce \end{bmatrix}, \quad \begin{bmatrix} bf & de \end{bmatrix}, \quad \begin{bmatrix} cf & de \end{bmatrix}.$

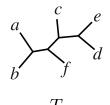


Quartet errors w.r.t. T.

• Determine if Q has 0 quartet error: NP-complete [Steel 1992].

A complete set Q of quartet topologies over $\{a, b, c, d, e, f\}$:





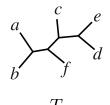
Quartet errors w.r.t. T.

• Determine if Q has 0 quartet error: $O(n^4)$ [Erdős *et al.* 1999].

Compute # quartet errors of Q: NP-hard [Berry et al. 1999];

• Approximation ratio: $O(n^2)$ [Jiang *et al.* 2000].

A complete set Q of quartet topologies over $\{a, b, c, d, e, f\}$:



Quartet errors w.r.t. T.

• Determine if Q has 0 quartet error: $O(n^4)$ [Erdős et al. 1999].

• Compute # quartet errors of *Q*: **NP**-hard [Berry *et al.* 1999];

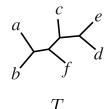
• Approximation ratio: $O(n^2)$ [Jiang *et al.* 2000].

30 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

A complete set Q of quartet topologies over $\{a, b, c, d, e, f\}$:

[ac | bd], [ab | ce], [ab | cf],[ab | de], [ab | df], [ab | ef],[ac | de], [af | cd], [af | ce],[af | de], [bd | ce], [bf | cd],[bf | ce], [bf | de], [cf | de].



Quartet errors w.r.t. T.

- Determine if Q has 0 quartet error: $O(n^4)$ [Erdős et al. 1999].
- Compute # quartet errors of Q: NP-hard [Berry et al. 1999];
 - Approximation ratio: $O(n^2)$ [Jiang *et al.* 2000].

omputatio

Contribution: Fixed-parameter algorithms for MQI

• MQI: minimum quartet inconsistency

The parameterized MQI problem

Input: A complete set Q of quartet topologies, $k \in \mathbb{Z}^+$. **Task:** Determine if Q has $\leq k$ quartet errors.

• Previous results:

* $O(4^k n + n^4)$ [Gramm & Niedermeier 2003].

• Our results:

- $O(3.0446^k n + n^4)$, $O(2.0162^k n^3 + n^5)$, $O^*((1 + \varepsilon)^k)$.
 - $O^*((1+\varepsilon)^k)$: $\varepsilon \downarrow$, the polynomial factor \uparrow .
 - * Chang, Lin, & Rossmanith: Theory Comput. Syst., 2010.

Contribution: Fixed-parameter algorithms for MQI

• MQI: minimum quartet inconsistency

The parameterized MQI problem

Input: A complete set Q of quartet topologies, $k \in \mathbb{Z}^+$. **Task:** Determine if Q has $\leq k$ quartet errors.

- Previous results:
 - * $O(4^k n + n^4)$ [Gramm & Niedermeier 2003].

• Our results:

- $O(3.0446^k n + n^4)$, $O(2.0162^k n^3 + n^5)$, $O^*((1 + \varepsilon)^k)$.
 - $O^*((1+\varepsilon)^k)$: $\varepsilon \downarrow$, the polynomial factor \uparrow .
 - * Chang, Lin, & Rossmanith: Theory Comput. Syst., 2010.

Contribution: Fixed-parameter algorithms for MQI

• MQI: minimum quartet inconsistency

The parameterized MQI problem

Input: A complete set Q of quartet topologies, $k \in \mathbb{Z}^+$. **Task:** Determine if Q has $\leq k$ quartet errors.

- Previous results:
 - * $O(4^k n + n^4)$ [Gramm & Niedermeier 2003].
- Our results:
 - $O(3.0446^k n + n^4)$, $O(2.0162^k n^3 + n^5)$, $O^*((1 + \varepsilon)^k)$.
 - O^{*}((1 + ε)^k): ε ↓, the polynomial factor ↑.
 - * Chang, Lin, & Rossmanith: Theory Comput. Syst., 2010.

Contribution: Testing tree-consistency of quartet topologies

The property: tree-consistent

• Q is tree-consistent: 0 quartet errors.

Testing tree-consistency of a complete Q

Input: A complete set Q of quartet topologies, $0 < \epsilon < 1$. **Task:** Testing if Q is tree-consistent.

• Determine if a complete Q is tree-consistent: $O(n^4)$ [Erdős *et al.* 1999].

Our result:

- An $O(n^3/\epsilon)$ property tester (1-sided error & non-adaptive).
 - * Chang, <u>Lin</u>, & Rossmanith: *Theory Comput. Syst.*. Accepted. Online first.

Contribution: Testing tree-consistency of quartet topologies

The property: tree-consistent

• Q is tree-consistent: 0 quartet errors.

Testing tree-consistency of a complete Q

Input: A complete set Q of quartet topologies, $0 < \epsilon < 1$. **Task:** Testing if Q is tree-consistent.

• Determine if a complete Q is tree-consistent: $O(n^4)$ [Erdős *et al.* 1999].

Our result:

- An $O(n^3/\epsilon)$ property tester (1-sided error & non-adaptive).
 - * Chang, <u>Lin</u>, & Rossmanith: *Theory Comput. Syst.*. Accepted. Online first.

Contribution: Parameterized property testing for tree-consistency

Missing quartets: quartets whose topologies are missing.

• T_{miss} : a set of k missing quartets.

Testing tree-consistency with k missing quartets

Input: A set Q of quartet topologies, a set T_{miss} of k missing quartets, $0 < \epsilon < 1$.

Task: Testing if Q is tree-consistent.

• Determine if Q is tree-consistent: **NP**-complete [Steel 1992].

Our results:

- Indicate: deterministically solvable in $O(3^k n^4)$ time.
- An $O(k3^kn^3/\epsilon)$ property tester (1-sided error, non-adaptive & uniform)
 - * Lin: Proc. Workshop on Combin. Math. Comput. Theory, 2011.

Contribution: Parameterized property testing for tree-consistency

Missing quartets: quartets whose topologies are missing.

• T_{miss} : a set of k missing quartets.

Testing tree-consistency with k missing quartets

Input: A set Q of quartet topologies, a set T_{miss} of k missing quartets, $0 < \epsilon < 1$.

Task: Testing if Q is tree-consistent.

• Determine if Q is tree-consistent: **NP**-complete [Steel 1992].

Our results:

- Indicate: deterministically solvable in $O(3^k n^4)$ time.
- An $O(k3^k n^3/\epsilon)$ property tester (1-sided error, non-adaptive & uniform)

* Lin: Proc. Workshop on Combin. Math. Comput. Theory, 2011.

Summary of our contributions in quartet consistency

Property (Problem)	PC	PT	РРТ
MQI	$O(3.0446^k n + n^4) \ O(2.0162^k n^3 + n^5) \ O^*((1 + \varepsilon)^k)$	-	-
\mathcal{P}_{tree}	_	$O(n^3/\epsilon)$	$O(k3^kn^3/\epsilon)$

PC: parameterized complexity; PT: property testing; PPT: parameterized property testing. MQI: minimum quartet inconsistency; \mathcal{P}_{tree} : tree-consistency.

Two more results on parameterized property testing

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011

Parameterized property testing for two graph properties

For the following two problems in **NP**-hard \cap **FPT**:

- the Vertex Cover problem and
- the Treewidth problem,

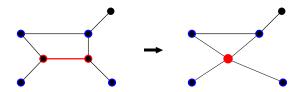
we propose parameterized property testers for their corresponding properties.

Parameterized property testers (Vertex Cover)

- The property: Having a vertex cover of size $\leq k$.
 - Denoted it by $\mathcal{P}_{VC \leq k}$.
- Previous results:
 - **FPT**: $O(1.2738^k + kn)$ [Chen *et al.* 2010]
 - Property testing:
 - $\begin{array}{c} \cdot \cdot ^{2} \\ \bullet & 2^{2} \end{array} \Big\} O(\operatorname{poly}(1/\epsilon)) \text{ 2's} \\ \bullet & 2^{2} \end{array} (dense model) [Alon & Shapira 2008] \\ \bullet & \Omega(\sqrt{n}) \text{ for } \mathcal{P}_{VC \leq \rho n} \text{ (sparse model) [Goldreich & Ron 2002]} \end{array}$
- Our result: (in the sparse model)
 - * $O(1.2738^k + k^2/\epsilon + kd/\epsilon)$ (1-sided error, adaptive & weakly uniform).
 - Joint work with M.-S. Chang, L.-J. Hung, A. Langer & P. Rossmanith.

Parameterized property testers (Treewidth)

• Edge contractions.



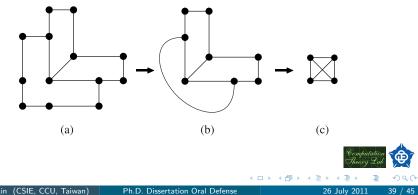
Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011

Parameterized property testers (Treewidth)

- H is a minor of G:
 - H can be obtained from G by edge removals, vertex removals and edge contractions.



Parameterized property testers (Treewidth)

- Minor-closed properties: closed under taking minors.
- G satisfies a minor-closed property P
 ⇔ ∃ a finite F s.t. H is not a minor of G for each H ∈ F.
 [Robertson & Seymour 1983-2004]
- "Having treewidth $\leq k$ " is minor-closed [Kloks 1994].
 - Yet the obstruction set \mathcal{F} is not explicitly known for k > 3.

Parameterized property testers (Treewidth)

- The property: Having treewidth $\leq k$.
 - Denoted it by $\mathcal{P}_{tw \leq k}$.
- Previous results:
 - **FPT**: $2^{\Theta(k^3)} \cdot k^{O(1)} \cdot n$ [Bodlaender 1996]
 - **Property testing**: $2^{\text{poly}(1/\epsilon)}$ (sparse model) [Hassidim *et al.* 2009]
 - for minor-closed properties
- Our results: (in the sparse model)
 - $2^{d^{O(kd^3/\epsilon^2)}}$
 - $d^{(k/\epsilon)^{O(k^2)}} + 2^{\operatorname{poly}(k,d,1/\epsilon)}$
 - * Both are uniform w.r.t. k, d, ϵ ; (2-sided error, adaptive).
 - * Without using the obstruction set of forbidden minors.
 - Joint work with M.-S. Chang, L.-J. Hung, A. Langer & P. Rossmanith.

ompulati

A summary of our contributions

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Ph.D. Dissertation Oral Defense

26 July 2011

Summary of our contributions

Property			
(Problem)	PC	PT	PPT
MQI	$O(3.0446^k n + n^4)$		
	$O(2.0162^k n^3 + n^5)$	-	_
	$O^*((1+\varepsilon)^k)$		
\mathcal{P}_{tree}	_	$O(n^3/\epsilon)$	$O(k3^kn^3/\epsilon)$
		$2^2 \cdot \frac{2}{2} O(\operatorname{poly}(1/\epsilon)) 2's +$	
$\mathcal{P}_{VC\leq k}$	$O(1.2738^k + kn)$	$2^2 \int (poly(2/2)) 2^3 t$	$O(1.2738^k + k^2/\epsilon + kd/\epsilon) \ddagger$
$\mathcal{P}_{VC \leq \rho \cdot n}$	_	$\Omega(\sqrt{n})$ ‡	_
$\mathcal{P}_{tw \leq k}$	$2^{\Theta(k^3)} \cdot k^{O(1)} \cdot n$	$O(2^{poly(1/\epsilon)})$ ‡	$2^{d^{O(kd^{3}/\epsilon^{2})}}$ ‡
_			$d^{(k/\epsilon)^{O(k^2)}} + 2^{\operatorname{poly}(k,d,1/\epsilon)} \ddagger$

PC: parameterized complexity; PT: property testing; PPT: parameterized property testing. MQI: minimum quartet inconsistency; \mathcal{P}_{tree} : tree-consistency; $\mathcal{P}_{VC \leq k}$: having a vertex cover of size $\leq k$; \mathcal{P}_{tw} : having treewidth $\leq k$; \ddagger : sparse model; \ddagger : dense model.

Summary of our contributions (Testers)

Property	Sublinear	Testable (easily)	Non-adaptive	1/2-sided error	uniform
\mathcal{P}_{tree}	Yes	? (?)	Yes	1	Yes
$\mathcal{P}_{VC \leq k}$	Yes	Yes (no)	No	1	weakly
$\mathcal{P}_{tw \leq k}$	Yes	Yes (?)	No	2	Yes

* Parameterized easily testable: 1-sided error, uniform & $O(\text{poly}(k, d, 1/\epsilon))$ time.

44 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

Thanks for your attention.

500

45 / 45

Joseph C.-C. Lin (CSIE, CCU, Taiwan)

26 July 2011