
A faster algorithm for the single source shortest
path problem with few distinct positive lengths

J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson

Journal of Discrete Algorithms 8 (2010) 189–198.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan

January 31, 2010

1 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

2 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

3 / 30



Introduction

The single source shortest path problem (SSSPP)

Given a graph G = (V , E ) and s ∈ V designated as the source,
where each edge (u, v) ∈ E has a positive length cuv , determine

the shortest path from s to each v ∈ V in G.

Assume that |V | = n and |E | = m.

4 / 30



Previous results

O(m + n log n) time by Fibonacci Heap implementation.

¤ Fredman and Tarjan (1987); J. ACM.

O(m + n log n
log log n

) time by the Atomic Heap implementation

(in a slightly different model of computation).

¤ Fredman and Willard (1994); J. Comput. Sys. Sci.

5 / 30



The contributions of this paper

♠ Input: a graph G = (V , E ) with |V | = n, |E | = m, and K

distinct edge lengths.

Efficient methods for implementing Dijkstra’s algorithm for
SSSPP parameterized by K .

An O(m + nK ) algorithm (O(m) if nK ≤ 2m);
An O(m log nK

m
) algorithm for the case that nK > 2m.

Experimental results.

Demonstration of the superiority of their approach when K is
small (except for dense graphs).

6 / 30



Motivation

The “gossip” problem for social networks.

For example, consider a social network composed of clusters
of participants.

We model the intra-cluster distance by 1 and the inter-cluster
distance by p > 1.
Goal: determine a faster manner where gossip originating in a
cluster can reach all the participants in the social network.

7 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

8 / 30



Preliminaries & notations

∅: empty set; ∅: nothing.

Eout(v): the set of edges directed out of v .

δ(v): the length of the shortest path in G from s to v .

δ(v) = ∞ if there is no path from s to v .

9 / 30



Preliminaries & notations (contd.)

L = {ℓ1, ℓ2, . . . , ℓK}: the set of distinct nonnegative edge
lengths in increasing order (stored in an array).

∀(i , j) ∈ E , (i , j) has an edge length cij ∈ L.

Assumption: (i , j) ⇔ tij .

cij = ℓtij (i.e., t : E 7→ {1, 2, . . . ,K}).

This can be done in O(m + K log K ) time.

10 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

11 / 30



Dijkstra’s algorithm for SSSPP

Dijkstra(G , w , s)
1: for each v ∈ V (G ) do

2: d [v ] ← ∞; pred[v ] ← ∅;
3: end for

4: d [s] ← 0;
5: Q ← V (G ); S ← ∅;
6: while (Q 6= ∅) do

7: u ← argmin{d [v ] : v ∈ Q}
8: if d [u] = ∞ then

9: break;
10: end if

11: remove u from Q; S ← S ∪ {u};
12: for each v ∈ Adj[u] do

13: temp ← d [u] + cuv ;
14: if temp < d [v ] then

15: d [v ] ← temp;
16: pred[v ] ← u;
17: end if

18: end for

19: end while

12 / 30



Dijkstra’s algorithm for SSSPP (modularized)

RELAX(u, v , c)
1: temp ← d [u] + cuv ;
2: if temp < d [v ] then

3: d [v ] ← temp;
4: pred[v ] ← u;
5: end if

INITIALIZE(G , s)
1: for each v ∈ V (G ) do

2: d [v ] ← ∞;
3: pred[v ] ← ∅;
4: end for

5: d [s] ← 0;

Dijkstra(G , c, s)
1: INITIALIZE(G , s);
2: S ← ∅;
3: Q ← V (G );
4: while (Q 6= ∅) do

5: u ← EXTRACT-MIN(Q);
6: if d [u] = ∞ then

7: break;
8: end if

9: S ← S ∪ {u};
10: for each v ∈ Adj[u] do

11: RELAX(u, v , c);
12: end for

13: end while

13 / 30



Improvements by implementing priority queues

A series of EXTRACT-MIN() and DECREASE-KEY() is performed
in Dijkstra’s algorithm.

The running time of Dijkstra’s algorithm can be represented
as T (n, m) = n × EXTRACT-MIN() + m × DECREASE-KEY().

EXTRACT MIN() DECREASE-KEY()

linked list: O(1) O(n)
binary heap: O(log n) O(log n)

Fibonacci Heap: O(log n) (amortized) O(1) (amortized)

14 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

15 / 30



Further notations

We maintain the following structures:

S : the set of permanently labeled vertices;
T = V \ S : the set of temporarily labeled vertices.

d(j): the distance label of vertex j .

If j ∈ S , then d(j) = δ(j).

d∗ = max{d(j) : j ∈ S}:

the distance label of the vertex most recently added to S .

FIND-MIN(): identifying min{d(v) : v ∈ T}.

EXTRACT-MIN() = FIND-MIN()+ Deletion of
argmin{d(v) : v ∈ T} from T .

16 / 30



Further notations (contd.)

Recall that L = {ℓ1, ℓ2, . . . , ℓK}: the set of K distinct edge
lengths.

For each 1 ≤ t ≤ K , Et(S) = {(i , j) ∈ E : i ∈ S , cij = ℓt}.

If (i , j) occurs prior to edge (i ′, j ′) on Et(S), then d(i) ≤ d(i ′).

CurrentEdge(t): the first edge (i , j) ∈ Et(S) such that
j ∈ T .

CurrentEdge(t) = ∅ if no such edge exists.

If CurrentEdge(t) = (i , j), then let f (t) = d(i) + ℓt .

f (t): the length of the shortest path from s to i followed by
edge (i , j).
Note here that NOT NECESSARY that f (t) = d(j).

17 / 30



Further notations (contd.)

UPDATE(t): moving the pointer CurrentEdge(t) so that it
points to the first edge whose endpoint is in T (or set
CurrentEdge(t) = ∅).

If CurrentEdge(t) = (i , j), then UPDATE(t) sets
f (t) = d(i) + cij .

If CurrentEdge(t) = ∅, then UPDATE(t) sets f (t) = ∞.

18 / 30



An O(m + nK ) implementation of Dijkstra’s algorithm

NEW-DIJKSTRA()
1: INITIALIZE();
2: while (T 6= ∅) do

3: r ← argmin{f (t) : 1 ≤ t ≤ K};
4: (i , j) ← CurrentEdge(r);
5: d(j) ← d(i) + ℓr ; pred(j) ← i ;
6: S ← S ∪ {j}; T ← T \ {j};
7: for (each edge (j , k) ∈ Eout(j)) do

8: Add (j , k) to the end of Et(S), where ℓt = cjk ;
9: if (CurrentEdge(t) = ∅) then

10: CurrentEdge(t) ← (j , k);
11: end if

12: end for

13: for (t ← 1 to K ) do

14: UPDATE(t);
15: end for

16: end while

19 / 30



An O(m + nK ) implementation of Dijkstra’s algorithm

INITIALIZE()
1: S ← {s}; T ← V \ {s};
2: d(s) ← 0; pred(s) ← ∅;
3: for (each v ∈ T ) do

4: d(v) ← ∞; pred(v) ← ∅;
5: end for

6: for t ← 1 to K do

7: Et(S) ← ∅;
8: CurrentEdge(t) ← ∅;
9: end for

10: for each edge (s, j) do

11: Add (s, j) to the end of Et(S),
where ℓt = csj ;

12: if (CurrentEdge(t) = ∅) then

13: CurrentEdge(t) ← (s, j);
14: end if

15: end for

16: for (t ← 1 to K) do

17: UPDATE(t);
18: end for

UPDATE(t)
1: (i , j) ← CurrentEdge(t);
2: if (j ∈ T ) then

3: f (t) ← d(i) + cij ;
4: return;
5: end if

6: while ((j /∈ T ) and
(CurrentEdge(t).next 6= ∅)) do

7: (i , j) ← CurrentEdge(t).next;
8: CurrentEdge(t) ← (i , j);
9: end while

10: if (j ∈ T ) then

11: f (t) ← d(i) + cij ;
12: else

13: CurrentEdge(t) ← ∅;
14: f (t) ← ∞;
15: end if

20 / 30



Time complexity

Initialization: O(n)

Computing r = argmin{f (t) : 1 ≤ t ≤ K} over all iterations:
O(nK ).

Total time needed for UPDATE(t): O(m + nK ).

Suppose that (i , j) ← CurrentEdge(t).

⋆ O(nK ) if CurrentEdge(t).next is never used.
⋆ Otherwise, O(m).

∵ (i , j) is never scanned again after updating CurrentEdge(t).

21 / 30



Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra’s algorithm for SSSPP

4 An O(m + nK ) implementation of Dijkstra’s algorithm

5 A faster algorithm if K is permitted to grow with the problem size

22 / 30



When K is not a constant. . .

Let q = nK
m

.

If q < 2, previous algorithm runs in O(m) time.

Assume that q ≥ 2.

To simplify the discussion, let h = K
q
.

Goal: compute r = argmin{f (t) : 1 ≤ t ≤ K} more efficiently
and call UPDATE(t) less frequently.

23 / 30



Revision of the previous algorithm

Store the values f () in a collection of h different binary heaps
H1, H2, . . . ,Hh.

H1 stores f (j) for 1 ≤ j ≤ q;
H2 stores f (j) for q + 1 ≤ j ≤ 2q;
...

FIND-MIN() in Hi : O(1) time.

FIND-MIN() takes O(hn) = O(m) time overall.

Insert/Delete an element into Hi : O(log q) time.

Deletions after FIND-MIN() takes O(n log q) time overall.

24 / 30



Revision of the previous algorithm (contd.)

Relax the requirement on CurrentEdge.
If (i , j) ← CurrentEdge(t) we obtain that i , j ∈ S :

We say that CurrentEdge(t) is invalid.

CurrentEdge(t) is permitted to be invalid at some
intermediate stages of the algorithm.

25 / 30



Revision of the previous algorithm (contd.)

We modify FIND-MIN() as follows.
If the minimum element in heap Hi is f (t) for some i and if
CurrentEdge(t) is invalid, perform UPDATE(), followed by:

Finding the new minimum element in Hi until it corresponds
to a valid edge.

Whenever the algorithm calls UPDATE(), it leads to such a
modification of CurrentEdge().

Whenever the algorithm selects the minimum element among
the q heaps, the minimum element in each heap corresponds
to a valid edge.

Since there are ≤ m modifications of CurrentEdge(), the
total running time for UPDATE() overall is O(m log q).

26 / 30



Theorem 5.1

The binary heap implementation of Dijkstra’s algorithm with

O
(

K
q

)

binary heaps of size O(q) with q = nK
m

determines the

shortest path from s to all other vertices in O(m log q) time.

27 / 30



Interested audience may refer to Chapter 7 of the paper for
experimental results.

28 / 30



My daughter, Sherry

29 / 30



Thank you!

30 / 30


	Introduction
	Basic terminology
	Reviewing Dijkstra's algorithm for SSSPP
	An O(m+nK) implementation of Dijkstra's algorithm
	A faster algorithm if K is permitted to grow with the problem size
	

