A faster algorithm for the single source shortest path problem with few distinct positive lengths

J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson Journal of Discrete Algorithms 8 (2010) 189–198.

> Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

January 31, 2010

- 2 Basic terminology
- **3** Reviewing Dijkstra's algorithm for SSSPP
- 4 An O(m + nK) implementation of Dijkstra's algorithm
- **5** A faster algorithm if K is permitted to grow with the problem size

- 2 Basic terminology
- 3 Reviewing Dijkstra's algorithm for SSSPP
- 4 An O(m + nK) implementation of Dijkstra's algorithm
- 5 A faster algorithm if K is permitted to grow with the problem size

The single source shortest path problem (SSSPP)

Given a graph G = (V, E) and $s \in V$ designated as the source, where each edge $(u, v) \in E$ has a positive length c_{uv} , determine the shortest path from s to each $v \in V$ in G.

イロン イロン イヨン イヨン 三日

4/30

Assume that |V| = n and |E| = m.

- O(m + n log n) time by Fibonacci Heap implementation.
 ▷ Fredman and Tarjan (1987); J. ACM.
- O(m + n log n log n) time by the Atomic Heap implementation (in a slightly different model of computation).
 Eradman and Willard (1004): L Comput. Sys. Sci.

▷ Fredman and Willard (1994); J. Comput. Sys. Sci.

- ♠ Input: a graph G = (V, E) with |V| = n, |E| = m, and K distinct edge lengths.
- Efficient methods for implementing Dijkstra's algorithm for SSSPP parameterized by K.
 - An O(m + nK) algorithm (O(m) if $nK \le 2m)$;
 - An $O(m \log \frac{nK}{m})$ algorithm for the case that nK > 2m.
- Experimental results.
 - Demonstration of the superiority of their approach when K is small (except for dense graphs).

- The "gossip" problem for social networks.
- For example, consider a social network composed of clusters of participants.
 - We model the intra-cluster distance by 1 and the inter-cluster distance by *p* > 1.
 - <u>Goal</u>: determine a faster manner where gossip originating in a cluster can reach all the participants in the social network.

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An O(m + nK) implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

- \emptyset : empty set; \emptyset : nothing.
- $E_{out}(v)$: the set of edges directed out of v.
- δ(v): the length of the shortest path in G from s to v.
 δ(v) = ∞ if there is no path from s to v.

L = {ℓ₁, ℓ₂,..., ℓ_K}: the set of distinct nonnegative edge lengths in increasing order (stored in an array).

イロン イロン イヨン イヨン 三日

10/30

• $\forall (i,j) \in E$, (i,j) has an edge length $c_{ij} \in L$.

- Assumption: $(i,j) \Leftrightarrow t_{ij}$.
 - $c_{ij} = \ell_{t_{ij}}$ (i.e., $t : E \mapsto \{1, 2, \dots, K\}$).
 - This can be done in $O(m + K \log K)$ time.

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An O(m + nK) implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

Dijkstra's algorithm for SSSPP

Dijkstra(G, w, s)for each $v \in V(G)$ do 1: $d[v] \leftarrow \infty$; pred $[v] \leftarrow \emptyset$; 2: 3: end for $d[s] \leftarrow 0;$ 4: 5: $Q \leftarrow V(G); S \leftarrow \emptyset;$ 6: while $(Q \neq \emptyset)$ do 7: $u \leftarrow \operatorname{argmin} \{ d[v] : v \in Q \}$ if $d[u] = \infty$ then 8: <u>g</u>. break: end if 10: 11: remove *u* from *Q*; $S \leftarrow S \cup \{u\}$; 12: for each $v \in \operatorname{Adj}[u]$ do 13: $\texttt{temp} \leftarrow d[u] + c_{uv};$ 14: if temp < d[v] then $d[v] \leftarrow \text{temp};$ 15: $pred[v] \leftarrow u;$ 16: end if 17: 18: end for 19: end while

12 / 30

- 3

Dijkstra's algorithm for SSSPP (modularized)

$$\begin{array}{lll} \text{RELAX}(u,v,c)\\ 1: & \text{temp} \leftarrow d[u] + c_{uv};\\ 2: & \text{if temp} < d[v] \text{ then}\\ 3: & d[v] \leftarrow \text{temp};\\ 4: & \text{pred}[v] \leftarrow u;\\ 5: & \text{end if} \end{array}$$

INITIALIZE(G, s) 1: for each $v \in V(G)$ do 2: $d[v] \leftarrow \infty$; 3: pred[v] $\leftarrow \emptyset$; 4: end for 5: $d[s] \leftarrow 0$;

Dijkstra(G, c, s)1: INITIALIZE(G, s); 2: $S \leftarrow \emptyset$: 3: $Q \leftarrow V(G);$ 4: while $(Q \neq \emptyset)$ do 5: $u \leftarrow \text{EXTRACT-MIN}(Q);$ 6: if $d[u] = \infty$ then 7: break: 8: end if 9: $S \leftarrow S \cup \{u\};$ 10: for each $v \in \operatorname{Adj}[u]$ do RELAX(u, v, c); 11: 12: end for 13: end while

Improvements by implementing priority queues

- A series of EXTRACT-MIN() and DECREASE-KEY() is performed in Dijkstra's algorithm.
- The running time of Dijkstra's algorithm can be represented as T(n, m) = n × EXTRACT-MIN() + m × DECREASE-KEY().

	EXTRACT_MIN()	DECREASE-KEY()
linked list:	<i>O</i> (1)	<i>O</i> (<i>n</i>)
binary heap:	$O(\log n)$	$O(\log n)$
Fibonacci Heap:	O(log n) (amortized)	O(1) (amortized)

- 2 Basic terminology
- 3 Reviewing Dijkstra's algorithm for SSSPP

4 An O(m + nK) implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

Further notations

• We maintain the following structures:

- *S*: the set of permanently labeled vertices;
- $T = V \setminus S$: the set of temporarily labeled vertices.
- d(j): the distance label of vertex j.
 - If $j \in S$, then $d(j) = \delta(j)$.

•
$$d^* = \max\{d(j) : j \in S\}$$
:

- the distance label of the vertex most recently added to *S*.
- FIND-MIN(): identifying min $\{d(v) : v \in T\}$.
 - EXTRACT-MIN() = FIND-MIN()+ Deletion of argmin{d(v) : v ∈ T} from T.

Further notations (contd.)

- Recall that L = {l₁, l₂, ..., l_K}: the set of K distinct edge lengths.
- For each $1 \le t \le K$, $E_t(S) = \{(i, j) \in E : i \in S, c_{ij} = \ell_t\}$. ■ If (i, j) occurs prior to edge (i', j') on $E_t(S)$, then $d(i) \le d(i')$.
- CurrentEdge(t): the first edge $(i,j) \in E_t(S)$ such that $j \in T$.
 - CurrentEdge $(t) = \emptyset$ if no such edge exists.
 - If CurrentEdge(t) = (i, j), then let $f(t) = d(i) + \ell_t$.
 - f(t): the length of the shortest path from s to i followed by edge (i, j).
 - Note here that NOT NECESSARY that f(t) = d(j).

- UPDATE(t): moving the pointer CurrentEdge(t) so that it points to the first edge whose endpoint is in T (or set CurrentEdge(t) = Ø).
 - If CurrentEdge(t) = (i, j), then UPDATE(t) sets $f(t) = d(i) + c_{ij}$.
 - If CurrentEdge $(t) = \emptyset$, then UPDATE(t) sets $f(t) = \infty$.

An O(m + nK) implementation of Dijkstra's algorithm

```
NEW-DIJKSTRA()
        INITIALIZE();
 1:
        while (T \neq \emptyset) do
 2:
 3.
               r \leftarrow \operatorname{argmin} \{ f(t) : 1 < t < K \};
 4:
              (i, j) \leftarrow \texttt{CurrentEdge}(r);
           d(i) \leftarrow d(i) + \ell_r; \operatorname{pred}(i) \leftarrow i;
 5:
            S \leftarrow S \cup \{j\}; T \leftarrow T \setminus \{j\};
 6:
 7:
               for (each edge (j, k) \in E_{out}(j)) do
                     Add (i, k) to the end of E_t(S), where \ell_t = c_{ik};
 8:
                     if (CurrentEdge(t) = \varnothing) then
 9:
                          CurrentEdge(t) \leftarrow (j, k);
10:
11:
                     end if
12:
               end for
13:
               for (t \leftarrow 1 \text{ to } K) do
14:
                     UPDATE(t);
15:
               end for
16:
        end while
```

<ロ><団><団><日><日><日><日><日><日><日><日><日><日><日><10</td>

An O(m + nK) implementation of Dijkstra's algorithm

INITIALIZE() $S \leftarrow \{s\}; T \leftarrow V \setminus \{s\};$ 1: 2: $d(s) \leftarrow 0$; pred $(s) \leftarrow \emptyset$; 3: for (each $v \in T$) do $d(v) \leftarrow \infty$: pred $(v) \leftarrow \emptyset$: 4: 5: end for 6: for $t \leftarrow 1$ to K do 7: $E_t(S) \leftarrow \emptyset;$ CurrentEdge(t) $\leftarrow \emptyset$; 8: g٠ end for 10: for each edge (s, j) do Add (s, j) to the end of $E_t(S)$, 11: where $\ell_t = c_{si}$; if (CurrentEdge(t) = \varnothing) then 12: 13: CurrentEdge(t) \leftarrow (s, j); 14: end if 15: end for 16: for $(t \leftarrow 1 \text{ to } K)$ do 17: UPDATE(t): 18: end for

UPDATE(t)1: $(i,j) \leftarrow \text{CurrentEdge}(t);$ 2: if $(j \in T)$ then 3: $f(t) \leftarrow d(i) + c_{ii};$ 4: return; 5 end if 6: while $((j \notin T))$ and (CurrentEdge(t).next $\neq \emptyset$)) do 7: $(i, j) \leftarrow \texttt{CurrentEdge}(t).\texttt{next};$ 8: CurrentEdge $(t) \leftarrow (i, j)$; 9: end while 10: if $(i \in T)$ then 11: $f(t) \leftarrow d(i) + c_{ii};$ 12: else 13: CurrentEdge(t) $\leftarrow \emptyset$; 14: $f(t) \leftarrow \infty$; end if 15:

> < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 20 / 30

Initialization: O(n)

- Computing r = argmin{f(t) : 1 ≤ t ≤ K} over all iterations: O(nK).
- Total time needed for UPDATE(t): O(m + nK).
 - Suppose that $(i,j) \leftarrow \texttt{CurrentEdge}(t)$.
 - * O(nK) if CurrentEdge(t).next is never used.
 - * Otherwise, O(m).
 - (i, j) is never scanned again after updating CurrentEdge(t).

- 2 Basic terminology
- 3 Reviewing Dijkstra's algorithm for SSSPP
- 4 An O(m + nK) implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

• Let
$$q = \frac{nK}{m}$$
.

- If q < 2, previous algorithm runs in O(m) time.
- Assume that $q \geq 2$.
- To simplify the discussion, let $h = \frac{K}{q}$.
- Goal: compute r = argmin{f(t) : 1 ≤ t ≤ K} more efficiently and call UPDATE(t) less frequently.

Revision of the previous algorithm

- Store the values f() in a collection of h different binary heaps H_1, H_2, \ldots, H_h .
 - $\begin{array}{l} \bullet \ H_1 \ \text{stores} \ f(j) \ \text{for} \ 1 \leq j \leq q; \\ \bullet \ H_2 \ \text{stores} \ f(j) \ \text{for} \ q+1 \leq j \leq 2q; \\ \vdots \end{array}$
- FIND-MIN() in H_i : O(1) time.
 - FIND-MIN() takes O(hn) = O(m) time overall.
- Insert/Delete an element into H_i : $O(\log q)$ time.
 - Deletions after FIND-MIN() takes O(n log q) time overall.

Relax the requirement on CurrentEdge.

- If $(i,j) \leftarrow \texttt{CurrentEdge}(t)$ we obtain that $i,j \in S$:
 - We say that CurrentEdge(t) is invalid.
- CurrentEdge(t) is permitted to be invalid at some intermediate stages of the algorithm.

We modify FIND-MIN() as follows.

- If the minimum element in heap H_i is f(t) for some i and if CurrentEdge(t) is invalid, perform UPDATE(), followed by:
 - Finding the new minimum element in *H_i* until it corresponds to a valid edge.
- Whenever the algorithm calls UPDATE(), it leads to such a modification of CurrentEdge().
- Whenever the algorithm selects the minimum element among the q heaps, the minimum element in each heap corresponds to a valid edge.
- Since there are ≤ m modifications of CurrentEdge(), the total running time for UPDATE() overall is O(m log q).

Theorem 5.1

The binary heap implementation of Dijkstra's algorithm with $O\left(\frac{K}{q}\right)$ binary heaps of size O(q) with $q = \frac{nK}{m}$ determines the shortest path from s to all other vertices in $O(m \log q)$ time.

Interested audience may refer to Chapter 7 of the paper for experimental results.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

28 / 30

My daughter, Sherry

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

30 / 30