A faster algorithm for the single source shortest path problem with few distinct positive lengths

J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson Journal of Discrete Algorithms 8 (2010) 189-198.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

January 31, 2010

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

The single source shortest path problem (SSSPP)
Given a graph $G=(V, E)$ and $s \in V$ designated as the source, where each edge $(u, v) \in E$ has a positive length $c_{u v}$, determine the shortest path from s to each $v \in V$ in G.

Assume that $|V|=n$ and $|E|=m$.

- $O(m+n \log n)$ time by Fibonacci Heap implementation.
\triangleright Fredman and Tarjan (1987); J. ACM.
- $O\left(m+n \frac{\log n}{\log \log n}\right)$ time by the Atomic Heap implementation (in a slightly different model of computation).
\triangleright Fredman and Willard (1994); J. Comput. Sys. Sci.

The contributions of this paper

© Input: a graph $G=(V, E)$ with $|V|=n,|E|=m$, and K distinct edge lengths.

■ Efficient methods for implementing Dijkstra's algorithm for SSSPP parameterized by K.

- An $O(m+n K)$ algorithm $(O(m)$ if $n K \leq 2 m)$;
- An $O\left(m \log \frac{n K}{m}\right)$ algorithm for the case that $n K>2 m$.
- Experimental results.
- Demonstration of the superiority of their approach when K is small (except for dense graphs).
- The "gossip" problem for social networks.

■ For example, consider a social network composed of clusters of participants.

- We model the intra-cluster distance by 1 and the inter-cluster distance by $p>1$.
- Goal: determine a faster manner where gossip originating in a cluster can reach all the participants in the social network.

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

■ \emptyset : empty set; \varnothing : nothing.

■ $E_{\text {out }}(v)$: the set of edges directed out of v.

- $\delta(v)$: the length of the shortest path in G from s to v.
- $\delta(v)=\infty$ if there is no path from s to v.

■ $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{K}\right\}$: the set of distinct nonnegative edge lengths in increasing order (stored in an array).

- $\forall(i, j) \in E,(i, j)$ has an edge length $c_{i j} \in L$.
- Assumption: $(i, j) \Leftrightarrow t_{i j}$.

■ $c_{i j}=\ell_{t_{i j}}$ (i.e., $t: E \mapsto\{1,2, \ldots, K\}$).

- This can be done in $O(m+K \log K)$ time.

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

Dijkstra's algorithm for SSSPP

```
Dijkstra(G,w,s)
    1: for each \(v \in V(G)\) do
        \(d[v] \leftarrow \infty ; \operatorname{pred}[v] \leftarrow \varnothing ;\)
    end for
    \(d[s] \leftarrow 0 ;\)
    \(Q \leftarrow V(G) ; S \leftarrow \emptyset ;\)
    while \((Q \neq \emptyset)\) do
            \(u \leftarrow \operatorname{argmin}\{d[v]: v \in Q\}\)
            if \(d[u]=\infty\) then
                break;
                end if
                remove \(u\) from \(Q ; S \leftarrow S \cup\{u\}\);
                for each \(v \in \operatorname{Adj}[u]\) do
                        temp \(\leftarrow d[u]+c_{u v} ;\)
                if temp \(<d[v]\) then
                \(d[v] \leftarrow\) temp;
                        \(\operatorname{pred}[v] \leftarrow u\);
                end if
            end for
19: end while
```


Dijkstra's algorithm for SSSPP (modularized)

```
\(\operatorname{RELAX}(u, v, c)\)
1: \(\quad\) temp \(\leftarrow d[u]+c_{u v}\);
2: if temp \(<d[v]\) then
    3: \(\quad d[v] \leftarrow\) temp;
4: \(\quad \operatorname{pred}[v] \leftarrow u\);
5: end if
\(\operatorname{INITIALIZE}(G, s)\)
    1: for each \(v \in V(G)\) do
    2: \(\quad d[v] \leftarrow \infty\);
    3: \(\quad \operatorname{pred}[v] \leftarrow \varnothing\);
    4: end for
    5: \(\quad d[s] \leftarrow 0\);
```

$\operatorname{RELAX}(u, v, c)$

1: for each $v \in V(G)$ do

$$
d[v] \leftarrow \infty ;
$$

$$
\operatorname{pred}[v] \leftarrow \varnothing ;
$$

4. end for

5: $\quad d[s] \leftarrow 0$;

```
    5: \(\quad u \leftarrow \operatorname{EXTRACT}-\operatorname{MIN}(Q)\);
            if \(d[u]=\infty\) then
```

$$
\operatorname{Dijkstra}(G, c, s)
$$

$$
\text { 1: } \operatorname{INITIALIZE}(G, s) ;
$$

$$
2: \quad S \leftarrow \emptyset ;
$$

$$
\text { 3: } \quad Q \leftarrow V(G)
$$

4: while $(Q \neq \emptyset)$ do break;
end if

$$
S \leftarrow S \cup\{u\}
$$

$$
\text { for each } v \in \operatorname{Adj}[u] \text { do }
$$

$$
\operatorname{RELAX}(u, v, c)
$$

end for
end while

Improvements by implementing priority queues

- A series of EXTRACT-MIN() and DECREASE-KEY() is performed in Dijkstra's algorithm.

■ The running time of Dijkstra's algorithm can be represented as $T(n, m)=n \times \operatorname{EXTRACT}-\operatorname{MIN}()+m \times \operatorname{DECREASE}-\operatorname{KEY}()$.

	EXTRACT_MIN()	DECREASE-KEY ()
linked list:	$O(1)$	$O(n)$
binary heap:	$O(\log n)$	$O(\log n)$
Fibonacci Heap:	$O(\log n)$ (amortized)	$O(1)$ (amortized)

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

- We maintain the following structures:
- S : the set of permanently labeled vertices;
- $T=V \backslash S$: the set of temporarily labeled vertices.
- $d(j)$: the distance label of vertex j.
- If $j \in S$, then $d(j)=\delta(j)$.

■ $d^{*}=\max \{d(j): j \in S\}:$

- the distance label of the vertex most recently added to S.
- FIND-MIN(): identifying $\min \{d(v): v \in T\}$.
- EXTRACT-MIN() = FIND-MIN()+ Deletion of $\operatorname{argmin}\{d(v): v \in T\}$ from T.
- Recall that $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{K}\right\}$: the set of K distinct edge lengths.

■ For each $1 \leq t \leq K, E_{t}(S)=\left\{(i, j) \in E: i \in S, c_{i j}=\ell_{t}\right\}$.

- If (i, j) occurs prior to edge $\left(i^{\prime}, j^{\prime}\right)$ on $E_{t}(S)$, then $d(i) \leq d\left(i^{\prime}\right)$.
- CurrentEdge (t) : the first edge $(i, j) \in E_{t}(S)$ such that $j \in T$.
- CurrentEdge $(t)=\varnothing$ if no such edge exists.
- If CurrentEdge $(t)=(i, j)$, then let $f(t)=d(i)+\ell_{t}$.

■ $f(t)$: the length of the shortest path from s to i followed by edge (i, j).
■ Note here that NOT NECESSARY that $f(t)=d(j)$.

Further notations (contd.)

- UPDATE (t) : moving the pointer CurrentEdge (t) so that it points to the first edge whose endpoint is in T (or set CurrentEdge $(t)=\varnothing$).
- If CurrentEdge $(t)=(i, j)$, then $\operatorname{UPDATE}(t)$ sets $f(t)=d(i)+c_{i j}$.
- If CurrentEdge $(t)=\varnothing$, then $\operatorname{UPDATE}(t)$ sets $f(t)=\infty$.

An $O(m+n K)$ implementation of Dijkstra's algorithm

```
NEW-DIJKSTRA()
1: INITIALIZE();
2: while \((T \neq \emptyset)\) do
    \(r \leftarrow \operatorname{argmin}\{f(t): 1 \leq t \leq K\} ;\)
    \((i, j) \leftarrow\) CurrentEdge \((r)\);
    \(d(j) \leftarrow d(i)+\ell_{r} ; \operatorname{pred}(j) \leftarrow i ;\)
    \(S \leftarrow S \cup\{j\} ; T \leftarrow T \backslash\{j\} ;\)
    for (each edge \(\left.(j, k) \in E_{\text {out }}(j)\right)\) do
        Add \((j, k)\) to the end of \(E_{t}(S)\), where \(\ell_{t}=c_{j k}\);
        if (CurrentEdge \((t)=\varnothing\) ) then
            CurrentEdge \((t) \leftarrow(j, k)\);
        end if
    end for
    for \((t \leftarrow 1\) to \(K)\) do
        UPDATE \((t)\);
    end for
    end while
```


An $O(m+n K)$ implementation of Dijkstra's algorithm

```
INITIALIZE()
    1: \(\quad S \leftarrow\{s\} ; T \leftarrow V \backslash\{s\} ;\)
    2: \(\quad d(s) \leftarrow 0 ; \operatorname{pred}(s) \leftarrow \varnothing\);
    3: for (each \(v \in T\) ) do
        \(d(v) \leftarrow \infty ; \operatorname{pred}(v) \leftarrow \varnothing ;\)
    end for
    for \(t \leftarrow 1\) to \(K\) do
        \(E_{t}(S) \leftarrow \emptyset ;\)
        CurrentEdge \((t) \leftarrow \varnothing\);
    end for
    for each edge \((s, j)\) do
        Add \((s, j)\) to the end of \(E_{t}(S)\),
        where \(\ell_{t}=c_{s j}\);
        if (CurrentEdge \((t)=\varnothing\) ) then
                CurrentEdge \((t) \leftarrow(s, j)\);
        end if
    end for
    for \((t \leftarrow 1\) to \(K\) ) do
        UPDATE \((t)\);
    end for
```

UPDATE (t)
1: $\quad(i, j) \leftarrow$ CurrentEdge (t);
2: if $(j \in T)$ then
3: $\quad f(t) \leftarrow d(i)+c_{i j} ;$
4: return;
5: end if
6: \quad while $((j \notin T)$ and
(CurrentEdge (t).next $\neq \varnothing$)) do
$(i, j) \leftarrow$ CurrentEdge (t).next;
CurrentEdge $(t) \leftarrow(i, j)$;
9: end while
10: if $(j \in T)$ then
11: $\quad f(t) \leftarrow d(i)+c_{i j}$;
12: else
13: \quad CurrentEdge $(t) \leftarrow \varnothing$;
14: $\quad f(t) \leftarrow \infty$;
15: end if

- Initialization: $O(n)$

■ Computing $r=\operatorname{argmin}\{f(t): 1 \leq t \leq K\}$ over all iterations: $O(n K)$.

- Total time needed for $\operatorname{UPDATE}(t): O(m+n K)$.
- Suppose that $(i, j) \leftarrow$ CurrentEdge (t).
* $O(n K)$ if CurrentEdge (t).next is never used.
\star Otherwise, $O(m)$.
$■ \because(i, j)$ is never scanned again after updating CurrentEdge (t).

Outline

1 Introduction

2 Basic terminology

3 Reviewing Dijkstra's algorithm for SSSPP

4 An $O(m+n K)$ implementation of Dijkstra's algorithm

5 A faster algorithm if K is permitted to grow with the problem size

- Let $q=\frac{n K}{m}$.
- If $q<2$, previous algorithm runs in $O(m)$ time.
- Assume that $q \geq 2$.
- To simplify the discussion, let $h=\frac{K}{q}$.
- Goal: compute $r=\operatorname{argmin}\{f(t): 1 \leq t \leq K\}$ more efficiently and call $\operatorname{UPDATE}(t)$ less frequently.

Revision of the previous algorithm

- Store the values $f()$ in a collection of h different binary heaps $H_{1}, H_{2}, \ldots, H_{h}$.
- H_{1} stores $f(j)$ for $1 \leq j \leq q$;
- H_{2} stores $f(j)$ for $q+1 \leq j \leq 2 q$;
- FIND-MIN() in $H_{i}: O(1)$ time.
- FIND-MIN() takes $O(h n)=O(m)$ time overall.

■ Insert/Delete an element into $H_{i}: O(\log q)$ time.

- Deletions after FIND-MIN() takes $O(n \log q)$ time overall.

Revision of the previous algorithm (contd.)

■ Relax the requirement on CurrentEdge.

- If $(i, j) \leftarrow$ CurrentEdge (t) we obtain that $i, j \in S$:
- We say that CurrentEdge (t) is invalid.
- CurrentEdge (t) is permitted to be invalid at some intermediate stages of the algorithm.

Revision of the previous algorithm (contd.)

- We modify FIND-MIN() as follows.
- If the minimum element in heap H_{i} is $f(t)$ for some i and if CurrentEdge(t) is invalid, perform UPDATE(), followed by:
- Finding the new minimum element in H_{i} until it corresponds to a valid edge.
- Whenever the algorithm calls UPDATE(), it leads to such a modification of CurrentEdge().
- Whenever the algorithm selects the minimum element among the q heaps, the minimum element in each heap corresponds to a valid edge.

■ Since there are $\leq m$ modifications of CurrentEdge(), the total running time for UPDATE () overall is $O(m \log q)$.

Theorem 5.1

The binary heap implementation of Dijkstra's algorithm with $O\left(\frac{K}{q}\right)$ binary heaps of size $O(q)$ with $q=\frac{n K}{m}$ determines the shortest path from s to all other vertices in $O(m \log q)$ time.

Interested audience may refer to Chapter 7 of the paper for experimental results.

My daughter, Sherry

Thank you!

