Testing k-colorability

Noga Alon and Michael Krivelevich:
Testing k-colorability. SIAM J. Discrete Math. 15 (2002) 211-227.

Speaker: Joseph, Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Dept. Computer Science and Information Engineering
National Chung Cheng University, Taiwan

October 22, 2008

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

QOutline

@ Introduction
© The algorithm

© Preliminaries
® Some notations
® Main idea of the proof

@ Detailed analysis

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

QOutline

@ Introduction

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (model)

@ Graph model: dense graph (adjacency matrix) for G(V/, E).
e undirected, no self-loops, < 1 edge between any u,v € V
o |V| = n vertices and |E| = Q(n?) edges.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (model)

@ Graph model: dense graph (adjacency matrix) for G(V/, E).
e undirected, no self-loops, < 1 edge between any u,v € V
o |V| = n vertices and |E| = Q(n?) edges.

@ A graph property:
o A set of graphs closed under isomorphisms.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (model)

@ Graph model: dense graph (adjacency matrix) for G(V/, E).
e undirected, no self-loops, < 1 edge between any u,v € V
o |V| = n vertices and |E| = Q(n?) edges.

@ A graph property:
o A set of graphs closed under isomorphisms.

@ Let P be a graph property.
o e-far from satisfying [P

@ > en? edges should be deleted or added to let the graph
satisfy PP

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (property testing)

@ Property testing:
@ it does NOT precisely determine YES or NO for a decision
problem;
@ requires sublinear running time

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (property testing)

@ Property testing:
@ it does NOT precisely determine YES or NO for a decision

problem;
@ requires sublinear running time

@ A property tester for IP:
¢ A randomized algorithm such that
@ it answers “YES” with probability of > 2/3 if G satisfies PP,

and
o it answers “NO” with probability of > 2/3 if G is e-far from

satisfying P

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (property testing)

@ Property testing:
@ it does NOT precisely determine YES or NO for a decision

problem;
@ requires sublinear running time

@ A property tester for IP:
¢ A randomized algorithm such that
@ it answers “YES” with probability of > 2/3 if G satisfies PP,

and
o it answers “NO” with probability of > 2/3 if G is e-far from

satisfying P

® P is testable if
@ 1 a property tester for P such that its running time complexity
is independent of n.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph
o Testing H-freeness, where H is an edge.

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph

o Testing H-freeness, where H is an edge.
@ Query complexity and time complexity: O(1/¢)

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph
o Testing H-freeness, where H is an edge.
@ Query complexity and time complexity: O(1/¢)
e How can it be done?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph

o Testing H-freeness, where H is an edge.
@ Query complexity and time complexity: O(1/¢)
e How can it be done?

@ Testing connectivity is trivial (for dense graphs).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Examples

@ Testing emptiness of a graph

o Testing H-freeness, where H is an edge.
@ Query complexity and time complexity: O(1/¢)
e How can it be done?

@ Testing connectivity is trivial (for dense graphs).
o Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ a (proper) k-coloring: a function f : V — {1,2,..., k} such
that

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ a (proper) k-coloring: a function f : V — {1,2,..., k} such
that

o f(u) # f(v)if (u,v) € E.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ a (proper) k-coloring: a function f : V — {1,2,..., k} such
that

o f(u) # f(v)if (u,v) € E.

@ Equivalent to a k-partition (Vq, Vs, ..., Vi) of V such that
for each i/, (u,v) ¢ E for every u,v € V.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ a (proper) k-coloring: a function f : V — {1,2,..., k} such
that

o f(u) # f(v)if (u,v) € E.

@ Equivalent to a k-partition (Vq, Vs, ..., Vi) of V such that
for each i/, (u,v) ¢ E for every u,v € V.

@ For convenience, we denote {1,2,..., k} by [k].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ NP-complete for kK > 3

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ NP-complete for kK > 3

@ k-colorability is testable.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ NP-complete for kK > 3

@ k-colorability is testable.

o Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

@ Dependency of tower of 2's of height polynomial in 1/e.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction

Introduction (k-colorability)

@ NP-complete for kK > 3

@ k-colorability is testable.

o Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

@ Dependency of tower of 2's of height polynomial in 1/e.

o Query complexity: O(k?In? k/e*);
Time complexity: exp(kIn k/€2); [Alon and Krivelevich 2002;
this paper]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

QOutline

© The algorithm

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

@ The property tester for k-colorability is very simple.

k-coloring-tester (G, s)
Generate a random subset R C V of size s = 36k In k /¢’
Exhaustively color R by k colors.
Return YES if G[R] is k-colorable, and return NO otherwise.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

N B4

H
N
b“r
N
2] []

W

2

S

N E 4

= N
g
w ((
N
o (] [a] [v]

_
v
W
N
[[a] [

N El
N B4

~ D Q"D aw o>

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

W

Y]

—

oY)

W

oY)

—_

SV Q Ml U aw
W

H
g Eguge
w W

| e e [a] 5] [2] [5] [&
2] [w] [@] [9] [a] [&] [@] [«

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

W

] [u]

O A w
)
wllw
BN
]

~ Q™
~

NN W
ESRESRESEES
L] (o] [w] [9]

- -
w

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

P S BB
. p [N
F
F
H ! G
H

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

A B D CD
c p B [Es
F
F
H 4 G
H

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

A B D C
D
C
F
F
H ! G

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

ion Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

ion Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

The property tester for k-colorability

@ If G is k-colorable, then the algorithm always returns YES.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

The algorithm

The property tester for k-colorability

@ If G is k-colorable, then the algorithm always returns YES.

@ What if G is e-far from being k-colorable?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries

QOutline

© Preliminaries
@ Some notations

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Some notations

@ Given S C V and its k-partition ¢ : S — [K].

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries

Some notations

@ Given S C V and its k-partition ¢ : S — [K].

The list of feasible labels of a vertex v € V' \ S

Ly(v) = [KI\{1 < i< k:3ueSnN(v),d(u)=i}.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations

Preliminaries

Some notations

@ Given S C V and its k-partition ¢ : S — [K].

The list of feasible labels of a vertex v € V' \ S

Ly(v) = [KI\{1 < i< k:3ueSnN(v),d(u)=i}.

@ v e V\Siscalled colorless if Ly(v) = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Some notations (contd.)

o S={A B,E,H,I}.

c B HEs]
p B [E5]

~y
o)
W
=] [=]

(] 4]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Some notations (contd.)

o S={AB,E,H,I}.
® ¢(A)=1,¢(B) =3,0(E) =2,¢(H) = 1,¢(/) =

c H [Es]
p B [E5]

~y
o)
W
=] [=]

(] 4]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Some notations (contd.)

o S={A B,E,H,I}.
o 6(A) = 1,¢(B) = 3,6(E) = 2,6(H) = 1, ¢(I) = 1.

@ No colorless vertices w.r.t. (S,).

a
e
=] &
(] [«]

~y
o)
W
=] [=]

(] 4]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

@ Suppose we are given a subset S C R C V/(G) and its k
partition ¢ : S — [].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

@ Suppose we are given a subset S C R C V/(G) and its k
partition ¢ : S — [].

@ Our aim is to find w.h.p. that:

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

@ Suppose we are given a subset S C R C V/(G) and its k
partition ¢ : S — [].

@ Our aim is to find w.h.p. that:

> a succinct (i.e., short & concise) witness in R\ S to the fact
that ¢ can NOT be extended to a (proper) k-coloring.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

@ Suppose we are given a subset S C R C V/(G) and its k
partition ¢ : S — [].

@ Our aim is to find w.h.p. that:

> a succinct (i.e., short & concise) witness in R\ S to the fact
that ¢ can NOT be extended to a (proper) k-coloring.

o Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof

@ Assume that G is e-far from being k-colorable.

@ Suppose we are given a subset S C R C V/(G) and its k
partition ¢ : S — [].

@ Our aim is to find w.h.p. that:

> a succinct (i.e., short & concise) witness in R\ S to the fact
that ¢ can NOT be extended to a (proper) k-coloring.

o Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

@ Extending ¢: giving other vertices colors based on (S, ¢).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ If there are a lot of colorless vertices w.r.t. (S,¢) ...
¢ It is easy to obtain a witness for nonextendability of ¢.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ If there are a lot of colorless vertices w.r.t. (S,¢) ...
¢ It is easy to obtain a witness for nonextendability of ¢.

@ What if the number of colorless vertices is small?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ If there are a lot of colorless vertices w.r.t. (S,¢) ...
¢ It is easy to obtain a witness for nonextendability of ¢.

® What if the number of colorless vertices is small?
@ As G is e-far from being k-colorable, one can show that:

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ If there are a lot of colorless vertices w.r.t. (S,¢) ...
¢ It is easy to obtain a witness for nonextendability of ¢.

® What if the number of colorless vertices is small?
@ As G is e-far from being k-colorable, one can show that:

> 3 W CV (|W]is large) s.t. coloring every vertex v € W by
any feasible color w.r.t. ¢ reduces the number of feasible
colors of at least Q(€)n neighbors of v.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ If there are a lot of colorless vertices w.r.t. (S,¢) ...
¢ It is easy to obtain a witness for nonextendability of ¢.

® What if the number of colorless vertices is small?
@ As G is e-far from being k-colorable, one can show that:

> 3 W CV (|W]is large) s.t. coloring every vertex v € W by
any feasible color w.r.t. ¢ reduces the number of feasible
colors of at least Q(€)n neighbors of v.

@ It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ The above process can be represented by an auxiliary tree T.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ The above process can be represented by an auxiliary tree T.

@ Every node of T corresponds to a colorless or a restricting
vertex v.

@ Each node is labeled by a vertex of G or by the symbol #
(terminal node).

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability

Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ The above process can be represented by an auxiliary tree T.

@ Every node of T corresponds to a colorless or a restricting
vertex v.

@ Each node is labeled by a vertex of G or by the symbol #
(terminal node).

@ Every edge of T corresponds to a feasible color for v.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Preliminaries Main idea of the proof

Main idea of the proof (contd.)

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

® Let t be a node of T.

Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

® Let t be a node of T.

@ The path from the root of T to t not including t itself defines
a k-partition (we call it ¢(t)) of the labels (i.e., vertices of G;
we call it S(t)) along this path.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Some notations
Preliminaries Main idea of the proof

Main idea of the proof (contd.)

® Let t be a node of T.

@ The path from the root of T to t not including t itself defines
a k-partition (we call it ¢(t)) of the labels (i.e., vertices of G;
we call it S(t)) along this path.

@ If t is labeled by v and v has a neighbor in S(t) whose color
in ¢(t) is also 7, the the son of v along the edge labeled by i
is labeled by #.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ Since the degree of each node of T can be as large as k, the
size of T grows exponentially.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Preliminaries Main idea of the proof

Main idea of the proof (contd.)

@ Since the degree of each node of T can be as large as k, the
size of T grows exponentially.

@ We therefore need the probability of choosing colorless or
restricting vertices to be exponentially close to 1.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

QOutline

@ Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Reducing feasible colors

@ For every v € V' \ (SU U):

Estimation of # excluded feasible colors of N(v) outside S U U
dp(v) = TI?) Hue N(v)\ (SUU):ieLy(u)}
e oV

@ U is the set of colorless vertices w.r.t. (S,).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

5 E
c EE
p EE
r EE
G 3
H 3

® 64(B) = min,-e{3,475}{4,4,4} = 4.

® J5(C) = minic(23453{0,1,1,1} = 0.

® 5(D) = minjc2345{0,2,2,2} = 0.

® 65(F) = minjc(2345{0,2,2,2} = 0.

® 04(G) = minjc(3 454,44} = 4.

® dy(H) = minjc(1345y10,4,4,4} = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Restricting vertices

Restricting vertices

Given a pair (S, ¢), a vertex is called restricting if §,(v) > en/2.

o W:={veV\(SUU)]|d(v)>en/2}.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the number of monochromatic edges

For every subset S C V and every k-partition ¢ of S, to make the
graph be k-colorable requires deleting at most

(n = 1)(IS| + [U]) + 2y evy(suu) 96(v) edges.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the number of monochromatic edges

For every subset S C V and every k-partition ¢ of S, to make the
graph be k-colorable requires deleting at most

(n = 1)(IS| + [U]) + 2y evy(suu) 96(v) edges.

@ ‘c-far from being k-colorable” makes sense only if
6”2 < (n — 1)(|S| + |U|) + ZVEV\(SUU) 6¢(V)

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the number of monochromatic edges

For every subset S C V and every k-partition ¢ of S, to make the
graph be k-colorable requires deleting at most

(n = 1)(IS| + [U]) + 2y evy(suu) 96(v) edges.

@ ‘c-far from being k-colorable” makes sense only if
6”2 < (n — 1)(|S| + |U|) + ZVEV\(SUU) 6¢(V)

@ Thus we have the following corollary.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Corollary 4.1

If G is e-far from being k-colorable, then for any pair (S, ¢), where
Sc V(G), ¢ :S — [k], one has

Y ds(v) > en® —n(|S| +|U),

vev\(SuU)

where U is the set of colorless vertices w.r.t. (S, ¢).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

The number of restricting vertices must be large

If G is e-far from being k-colorable, then for any pair (S, ¢), where
Sc V(G), ¢ :S — [k], one has

en
U+ W] > T~ sl

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

The number of restricting vertices must be large

If G is e-far from being k-colorable, then for any pair (S, ¢), where
Sc V(G), ¢ :S — [k], one has

en
U+ W] > T~ sl

i

en” — n(|S| +|U))
<D WS-+ Y0 (V)

veVv\SuU V\(SUULW)

2
n
< |W|n—|—%.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Recall the auxiliary tree T for the coloring process

@ Consider a leaf t of T.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Recall the auxiliary tree T for the coloring process

@ Consider a leaf t of T.

@ U(t): the set of colorless vertices w.r.t. (5(t), ¢(t)).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Recall the auxiliary tree T for the coloring process

@ Consider a leaf t of T.
@ U(t): the set of colorless vertices w.r.t. (5(t), ¢(t)).

@ W(t): the set of restricting vertices w.r.t. (5(t), (t)).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Recall the auxiliary tree T for the coloring process

@ Consider a leaf t of T.
@ U(t): the set of colorless vertices w.r.t. (5(t), ¢(t)).
@ W(t): the set of restricting vertices w.r.t. (5(t), (t)).

@ A nonterminal node of T is labeled only when a vertex in
U(t) U W(t) is chosen.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the depth of T

The depth of T is bounded by %

@ The depth of T is mainly due to the restricting vertices.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the depth of T

The depth of T is bounded by %

@ The depth of T is mainly due to the restricting vertices.

@ The total length of the lists of feasible colors initially: nk.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the depth of T

The depth of T is bounded by %

@ The depth of T is mainly due to the restricting vertices.
@ The total length of the lists of feasible colors initially: nk.

@ Coloring a vertex w € W: reduces > en/2 colors.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

An upper bound on the depth of T

The depth of T is bounded by %

@ The depth of T is mainly due to the restricting vertices.
@ The total length of the lists of feasible colors initially: nk.
@ Coloring a vertex w € W: reduces > en/2 colors.

@ We cannot make more than nk/(en/2) = 2k /e steps down
from the roof of T to a leaf of T.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

#'s and no-proper k-coloring

If a leaf t* of T is labeled by #, then ¢(t*) is not a proper
k-coloring of S(t*).

If all leaves t*'s of T are terminal nodes after j rounds of the
algorithm, then the subgraph induced by the labels along the path
from the root of T to t* is not k-colorable.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

The leaves of T are all leaves w.h.p. before long

If G is e-far from being k-colorable, then after 36k In k/e2 rounds,
with probability > 2/3 all leaves of T are terminal nodes.

@ T can be embedded into a k-ary tree T, 2 of depth %

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

The leaves of T are all leaves w.h.p. before long

If G is e-far from being k-colorable, then after 36k In k/e2 rounds,
with probability > 2/3 all leaves of T are terminal nodes.

@ T can be embedded into a k-ary tree T, 2 of depth %

o T, 2 hasat most 1+ k+...+ k¥ < k¥+1 vertices.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

The leaves of T are all leaves w.h.p. before long

If G is e-far from being k-colorable, then after 36k In k/e2 rounds,
with probability > 2/3 all leaves of T are terminal nodes.

@ T can be embedded into a k-ary tree T, 2 of depth %

o T, 2 hasat most 1+ k+...+ k¥ < k¥+1 vertices.

@ A round of the algorithm is called successful a colorless vertex
or a restricting vertex is picked.

i

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Fix some leaf node t of T after 36k In k/€? rounds of the
algorithm.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Fix some leaf node t of T after 36k In k/€? rounds of the
algorithm.

@ The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Fix some leaf node t of T after 36k In k/€? rounds of the
algorithm.

@ The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

@ Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) U W(t)) is at least
€/2—S(t)/n=¢/2 —o(1) > ¢/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Fix some leaf node t of T after 36k In k/€? rounds of the
algorithm.

@ The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

@ Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) U W(t)) is at least
€/2—S(t)/n=¢/2 —o(1) > ¢/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Pr[t is a nonterminal leaf of T] can be bounded by
Pr[B(36kInk/€? €/3) < 2k/e].
@ B(n,p) is the Binomial random variable of n Bernoulli trials
with probability p of success.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

@ Pr[t is a nonterminal leaf of T] can be bounded by
Pr[B(36kInk/€? €/3) < 2k/e].
@ B(n,p) is the Binomial random variable of n Bernoulli trials
with probability p of success.

@ The Chernoff bound for B(n, p):

1 (mp — k)?

Pr(B(m, p) < K] < exp (—57) .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

o Pr[B(36kInk/e? ¢/3) < 2k/e] < k=3K/¢ by the Chernoff
bound.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

o Pr[B(36kInk/e? ¢/3) < 2k/e] < k=3K/¢ by the Chernoff
bound.

@ Thus by the union bound we conclude that the probability

that some node of T, 2 is a nonterminal leaf is
' e
—3k

< V(T 2)l k< < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

o Pr[B(36kInk/e? ¢/3) < 2k/e] < k=3K/¢ by the Chernoff
bound.

@ Thus by the union bound we conclude that the probability

that some node of T, 2 is a nonterminal leaf is
' e
—3k

< V(T 2)l k< < 1/3.

O

o

@ That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Detailed analysis

Proof of Claim 6 (contd.)

o Pr[B(36kInk/e? ¢/3) < 2k/e] < k=3K/¢ by the Chernoff
bound.

@ Thus by the union bound we conclude that the probability

that some node of T, 2 is a nonterminal leaf is
' e
—3k

< V(T 2)l k< < 1/3.

O

o

@ That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

@ Hence we derive the error probability of the algorithm < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Thank you!

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

	Introduction
	The algorithm
	Preliminaries
	Some notations
	Main idea of the proof

	Detailed analysis
	

