Testing k-colorability

Noga Alon and Michael Krivelevich: Testing *k*-colorability. *SIAM J. Discrete Math.* **15** (2002) 211–227.

Speaker: Joseph, Chuang-Chieh Lin

Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory Dept. Computer Science and Information Engineering National Chung Cheng University, Taiwan

October 22, 2008

・ロト ・同ト ・ヨト ・ヨト

Outline

3 Preliminaries

- Some notations
- Main idea of the proof

4 Detailed analysis

4 fill ≥ 4

Outline

- 2 The algorithm
- 3 Preliminaries
 - Some notations
 - Main idea of the proof

Detailed analysis

Image: A □ = A

3

Introduction (model)

- Graph model: dense graph (adjacency matrix) for G(V, E).
 - ullet undirected, no self-loops, ≤ 1 edge between any $u,v\in V$
 - |V| = n vertices and $|E| = \Omega(n^2)$ edges.
- A graph property:
 - A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
 - ϵ -far from satisfying \mathbb{P} :
 - $\bullet \ \geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy $\mathbb P$

(ロ) (同) (三) (三)

Introduction (model)

- Graph model: dense graph (adjacency matrix) for G(V, E).
 - ullet undirected, no self-loops, ≤ 1 edge between any $u,v\in V$
 - |V| = n vertices and $|E| = \Omega(n^2)$ edges.
- A graph property:
 - A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
 - ϵ -far from satisfying \mathbb{P} :
 - $\bullet \ \geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy $\mathbb P$

イロト イヨト イヨト

Introduction (model)

- Graph model: dense graph (adjacency matrix) for G(V, E).
 - ullet undirected, no self-loops, ≤ 1 edge between any $u,v\in V$
 - |V| = n vertices and $|E| = \Omega(n^2)$ edges.
- A graph property:
 - A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
 - ϵ -far from satisfying \mathbb{P} :
 - $\geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy $\mathbb P$

イロト イヨト イヨト

Introduction (property testing)

- Property testing:
 - it does NOT precisely determine YES or NO for a decision problem;
 - requires sublinear running time
- A property tester for \mathbb{P} :
 - A randomized algorithm such that
 - \bullet it answers "YES" with probability of $\geq 2/3$ if G satisfies $\mathbb{P},$ and
 - it answers "NO" with probability of $\geq 2/3$ if G is ϵ -far from satisfying $\mathbb P$
- \mathbb{P} is testable if
 - \exists a property tester for \mathbb{P} such that its running time complexity is independent of *n*.

Introduction (property testing)

- Property testing:
 - it does NOT precisely determine YES or NO for a decision problem;
 - requires sublinear running time
- A property tester for \mathbb{P} :
 - A randomized algorithm such that
 - it answers "YES" with probability of $\geq 2/3$ if G satisfies $\mathbb P,$ and
 - it answers "NO" with probability of $\geq 2/3$ if G is $\epsilon\text{-far}$ from satisfying $\mathbb P$
- \mathbb{P} is testable if
 - \exists a property tester for \mathbb{P} such that its running time complexity is independent of *n*.

Introduction (property testing)

- Property testing:
 - it does NOT precisely determine YES or NO for a decision problem;
 - requires sublinear running time
- A property tester for \mathbb{P} :
 - A randomized algorithm such that
 - it answers "YES" with probability of $\geq 2/3$ if G satisfies $\mathbb P,$ and
 - it answers "NO" with probability of $\geq 2/3$ if G is $\epsilon\text{-far}$ from satisfying $\mathbb P$
- \mathbb{P} is testable if
 - \exists a property tester for \mathbb{P} such that its running time complexity is independent of *n*.

Examples

• Testing emptiness of a graph

- Testing *H*-freeness, where *H* is an edge.
- Query complexity and time complexity: $O(1/\epsilon)$
- How can it be done?

Testing connectivity is trivial (for dense graphs).
 Why?

・ロト ・同ト ・ヨト

→ ∃ →

Examples

• Testing emptiness of a graph

- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: ${\it O}(1/\epsilon)$
- How can it be done?

Testing connectivity is trivial (for dense graphs).
 Why?

・ロト ・回ト ・ヨト

- 4 ⊒ ⊳

Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

Testing connectivity is trivial (for dense graphs).
Why?

Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

Testing connectivity is trivial (for dense graphs).Why?

Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?
- Testing connectivity is trivial (for dense graphs).
 Why?

Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?
- Testing connectivity is trivial (for dense graphs).
 Why?

Introduction (k-colorability)

• a (proper) k-coloring: a function $f: V \to \{1, 2, \dots, k\}$ such that

• $f(u) \neq f(v)$ if $(u, v) \in E$.

 Equivalent to a k-partition (V₁, V₂,..., V_k) of V such that for each i, (u, v) ∉ E for every u, v ∈ V_i.

イロト イポト イヨト イヨト

• For convenience, we denote $\{1, 2, \dots, k\}$ by [k].

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \to \{1, 2, \dots, k\}$ such that
 - $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition (V₁, V₂,..., V_k) of V such that for each i, (u, v) ∉ E for every u, v ∈ V_i.

イロト イヨト イヨト

• For convenience, we denote $\{1, 2, \dots, k\}$ by [k].

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \to \{1, 2, \dots, k\}$ such that
 - $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition (V₁, V₂,..., V_k) of V such that for each i, (u, v) ∉ E for every u, v ∈ V_i.

イロト イヨト イヨト

• For convenience, we denote $\{1, 2, \ldots, k\}$ by [k].

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \to \{1, 2, \dots, k\}$ such that
 - $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition (V₁, V₂,..., V_k) of V such that for each i, (u, v) ∉ E for every u, v ∈ V_i.

・ロト ・回ト ・ヨト ・ヨト

• For convenience, we denote $\{1, 2, \ldots, k\}$ by [k].

Introduction (k-colorability)

- **NP**-complete for $k \geq 3$
- *k*-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by *Szemerédi's regularity Lemma*)
 - Dependency of tower of 2's of height polynomial in $1/\epsilon$.
 - Query complexity: O(k² ln² k/ε⁴); Time complexity: exp(k ln k/ε²); [Alon and Krivelevich 2002; this paper]

Introduction (k-colorability)

- **NP**-complete for $k \geq 3$
- k-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by *Szemerédi's regularity Lemma*)
 - Dependency of tower of 2's of height polynomial in $1/\epsilon$.
 - Query complexity: O(k² ln² k/ε⁴); Time complexity: exp(k ln k/ε²); [Alon and Krivelevich 2002; this paper]

Introduction (k-colorability)

- **NP**-complete for $k \ge 3$
- k-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by *Szemerédi's regularity Lemma*)
 - Dependency of tower of 2's of height polynomial in $1/\epsilon$.
 - Query complexity: O(k² ln² k/ε⁴); Time complexity: exp(k ln k/ε²); [Alon and Krivelevich 2002; this paper]

(4月) (4日) (4日)

Introduction (k-colorability)

- **NP**-complete for $k \ge 3$
- k-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by *Szemerédi's regularity Lemma*)
 - Dependency of tower of 2's of height polynomial in $1/\epsilon$.
 - Query complexity: O(k² ln² k/ϵ⁴); Time complexity: exp(k ln k/ϵ²); [Alon and Krivelevich 2002; this paper]

- 4 同 ト 4 臣 ト 4 臣 ト

Outline

3 Preliminaries

- Some notations
- Main idea of the proof

Detailed analysis

Image: A □ = A

• The property tester for *k*-colorability is very simple.

k-coloring-tester (G, s)

Generate a random subset $R \subset V$ of size $s = 36k \ln k/\epsilon^2$ Exhaustively color R by k colors. Return YES if G[R] is k-colorable, and return NO otherwise.

<ロ> (四) (四) (三) (三)

DQC

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

・ロン ・四と ・ヨン ・ヨン

Э

・ロン ・四と ・ヨン ・ヨン

Э

・ロン ・四と ・ヨン ・ヨン

æ

・ロン ・四と ・ヨン ・ヨン

æ

4 5

・ロト ・四ト ・ヨト ・ヨト

æ

・ロト ・四ト ・ヨト ・ヨト

æ

・ロト ・四ト ・ヨト ・ヨト

æ

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

・ロト ・回ト ・ヨト ・ヨト

æ

◆□ → <□ → < ≥ → < ≥ →</p>

590

æ

The property tester for k-colorability

• If G is k-colorable, then the algorithm always returns YES.

・ロト ・同ト ・ヨト ・ヨト

5900

• What if G is ϵ -far from being k-colorable?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability
The property tester for k-colorability

• If G is k-colorable, then the algorithm always returns YES.

・ロト ・ 同ト ・ ヨト ・ ヨト

5900

• What if G is ϵ -far from being k-colorable?

Some notations Main idea of the proof

DQC

< **₽** ► <

3

Outline

- 2 The algorithm
- Preliminaries
 Some notations
 Main idea of the proof

Detailed analysis

Some notations Main idea of the proof

《曰》 《圖》 《臣》 《臣》

5900

Some notations

• Given
$$S \subseteq V$$
 and its k-partition $\phi: S \rightarrow [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$ $L_{\phi}(v) = [k] \setminus \{1 \le i \le k : \exists u \in S \cap N(v), \phi(u) = i\}.$

• $v \in V \setminus S$ is called colorless if $L_{\phi}(v) = 0$.

Some notations Main idea of the proof

イロト イヨト イヨト イヨト

Э

5900

Some notations

• Given
$$S \subseteq V$$
 and its k-partition $\phi: S \rightarrow [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$

$$L_{\phi}(v) = [k] \setminus \{1 \leq i \leq k : \exists u \in S \cap N(v), \phi(u) = i\}.$$

• $v \in V \setminus S$ is called colorless if $L_{\phi}(v) = 0$.

Some notations Main idea of the proof

イロト イポト イヨト イヨト

Э

5900

Some notations

• Given
$$S \subseteq V$$
 and its k-partition $\phi: S \rightarrow [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$

$$L_{\phi}(v) = [k] \setminus \{1 \leq i \leq k : \exists u \in S \cap N(v), \phi(u) = i\}.$$

• $v \in V \setminus S$ is called colorless if $L_{\phi}(v) = 0$.

Some notations Main idea of the proof

イロト イヨト イヨト

5900

Some notations (contd.)

• $S = \{A, B, E, H, I\}.$

• $\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1.$

• No colorless vertices w.r.t. (S, ϕ) .

Some notations Main idea of the proof

<ロ> (四) (四) (三) (三)

DQC

Some notations (contd.)

•
$$S = \{A, B, E, H, I\}.$$

• $\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1.$

• No colorless vertices w.r.t. (S, ϕ) .

Some notations Main idea of the proof

<ロト <回ト < 三</td>

DQC

Some notations (contd.)

•
$$S = \{A, B, E, H, I\}.$$

•
$$\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1.$$

• No colorless vertices w.r.t. (S, ϕ) .

Some notations Main idea of the proof

Main idea of the proof

• Assume that G is ϵ -far from being k-colorable.

- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

(ロ) (同) (三) (三)

Some notations Main idea of the proof

Main idea of the proof

- Assume that G is ϵ -far from being k-colorable.
- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-*k*-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

(ロ) (同) (三) (三)

Some notations Main idea of the proof

Main idea of the proof

- Assume that G is ϵ -far from being k-colorable.
- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-*k*-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

・ロト ・同ト ・ヨト ・ヨ

Some notations Main idea of the proof

Main idea of the proof

- Assume that G is ϵ -far from being k-colorable.
- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-*k*-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

・ロト ・同ト ・ヨト ・ヨト

Some notations Main idea of the proof

Main idea of the proof

- Assume that G is ϵ -far from being k-colorable.
- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-*k*-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

(ロ) (同) (三) (三)

Some notations Main idea of the proof

Main idea of the proof

- Assume that G is ϵ -far from being k-colorable.
- Suppose we are given a subset S ⊂ R ⊂ V(G) and its k partition φ : S → [k].
- Our aim is to find w.h.p. that:
- ▷ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) *k*-coloring.
 - Witness: a set of vertices which can be used to find out non-*k*-colorability. (colorless or restricting vertices)
 - Extending ϕ : giving other vertices colors based on (S, ϕ) .

・ロト ・同ト ・ヨト ・ヨト

Some notations Main idea of the proof

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of $\phi.$

What if the number of colorless vertices is small?
 As G is ε-far from being k-colorable, one can show that

▷ $\exists W \subset V$ (|W| is large) s.t. coloring every vertex $v \in W$ by any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon)n$ neighbors of v.

Some notations Main idea of the proof

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of $\phi.$

• What if the number of colorless vertices is small?

- As G is ϵ -far from being k-colorable, one can show that:
 - ▷ $\exists W \subset V$ (|W| is large) s.t. coloring every vertex $v \in W$ by any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon)n$ neighbors of v.

▲ □ ▶ ▲ □

Some notations Main idea of the proof

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of ϕ .
- What if the number of colorless vertices is small?
 - As G is ϵ -far from being k-colorable, one can show that:
 - ▷ $\exists W \subset V (|W| \text{ is large}) \text{ s.t. coloring every vertex } v \in W \text{ by}$ any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon)n$ neighbors of v.

Some notations Main idea of the proof

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of ϕ .
- What if the number of colorless vertices is small?
 - As G is ϵ -far from being k-colorable, one can show that:
 - ▷ $\exists W \subset V (|W| \text{ is large}) \text{ s.t. coloring every vertex } v \in W \text{ by any feasible color w.r.t. } \phi \text{ reduces the number of feasible colors of at least } \Omega(\epsilon)n \text{ neighbors of } v.$

Some notations Main idea of the proof

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of ϕ .
- What if the number of colorless vertices is small?
 - As G is ϵ -far from being k-colorable, one can show that:
 - ▷ $\exists W \subset V (|W| \text{ is large}) \text{ s.t. coloring every vertex } v \in W \text{ by any feasible color w.r.t. } \phi \text{ reduces the number of feasible colors of at least } \Omega(\epsilon)n \text{ neighbors of } v.$

Some notations Main idea of the proof

Main idea of the proof (contd.)

• The above process can be represented by an auxiliary tree T.

- Every node of T corresponds to a colorless or a restricting vertex v.
 - Each node is labeled by a vertex of G or by the symbol # (*terminal node*).
- Every edge of T corresponds to a feasible color for v.

Some notations Main idea of the proof

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v.
 - Each node is labeled by a vertex of G or by the symbol # (*terminal node*).
- Every edge of T corresponds to a feasible color for v.

Some notations Main idea of the proof

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v.
 - Each node is labeled by a vertex of G or by the symbol # (*terminal node*).
- Every edge of T corresponds to a feasible color for v.

Some notations Main idea of the proof

DQC

Some notations Main idea of the proof

→ 同 → → 三 →

- Let t be a node of T.
- The path from the root of T to t not including t itself defines a k-partition (we call it φ(t)) of the labels (i.e., vertices of G; we call it S(t)) along this path.
- If t is labeled by v and v has a neighbor in S(t) whose color in φ(t) is also i, the the son of v along the edge labeled by i is labeled by #.

Some notations Main idea of the proof

- Let t be a node of T.
- The path from the root of T to t not including t itself defines a k-partition (we call it φ(t)) of the labels (i.e., vertices of G; we call it S(t)) along this path.
- If t is labeled by v and v has a neighbor in S(t) whose color in φ(t) is also i, the the son of v along the edge labeled by i is labeled by #.

Some notations Main idea of the proof

・ロト ・同ト ・ヨト ・ヨト

- Let t be a node of T.
- The path from the root of T to t not including t itself defines a k-partition (we call it φ(t)) of the labels (i.e., vertices of G; we call it S(t)) along this path.
- If t is labeled by v and v has a neighbor in S(t) whose color in φ(t) is also i, the the son of v along the edge labeled by i is labeled by #.

Some notations Main idea of the proof

- Since the degree of each node of *T* can be as large as *k*, the size of *T* grows exponentially.
- We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1.

Some notations Main idea of the proof

< 17 > <

- Since the degree of each node of *T* can be as large as *k*, the size of *T* grows exponentially.
- We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1.

Outline

- 2 The algorithm
- 3 Preliminaries
 - Some notations
 - Main idea of the proof

4 Detailed analysis

Image: A □ = A

Ξ.

DQC

Reducing feasible colors

• For every
$$v \in V \setminus (S \cup U)$$
:

Estimation of # excluded feasible colors of N(v) outside $S \cup U$

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\delta_{\phi}(v) = \min_{i \in L_{\phi}(v)} |\{u \in \mathcal{N}(v) \setminus (S \cup U) : i \in L_{\phi}(u)\}|.$$

• U is the set of colorless vertices w.r.t. (S, ϕ) .

(日) (四) (王) (王) (王)

æ

DQC

•
$$\delta_{\phi}(B) = \min_{i \in \{3,4,5\}} \{4,4,4\} = 4.$$

 C_{c}

•
$$\delta_{\phi}(C) = \min_{i \in \{2,3,4,5\}} \{0,1,1,1\} = 0.$$

•
$$\delta_{\phi}(D) = \min_{i \in \{2,3,4,5\}} \{0, 2, 2, 2\} = 0.$$

•
$$\delta_{\phi}(F) = \min_{i \in \{2,3,4,5\}} \{0,2,2,2\} = 0.$$

•
$$\delta_{\phi}(G) = \min_{i \in \{3,4,5\}} \{4,4,4\} = 4.$$

•
$$\delta_{\phi}(H) = \min_{i \in \{1,3,4,5\}} \{0,4,4,4\} = 0.$$

Restricting vertices

Restricting vertices

Given a pair (S, ϕ) , a vertex is called restricting if $\delta_{\phi}(v) \ge \epsilon n/2$.

(a)

Э

DQC

•
$$W := \{ v \in V \setminus (S \cup U) \mid \delta_{\phi}(v) \ge \epsilon n/2 \}.$$

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v)$ edges.

- **A B A B A B A**

- " ϵ -far from being k-colorable" makes sense only if $\epsilon n^2 < (n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v).$
- Thus we have the following corollary.

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v)$ edges.

- **A B A B A B A**

- " ϵ -far from being k-colorable" makes sense only if $\epsilon n^2 < (n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v)$.
- Thus we have the following corollary.

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v)$ edges.

- " ϵ -far from being k-colorable" makes sense only if $\epsilon n^2 < (n-1)(|S|+|U|) + \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v)$.
- Thus we have the following corollary.

Corollary 4.1

If G is ϵ -far from being k-colorable, then for any pair (S, ϕ) , where $S \subset V(G)$, $\phi : S \rightarrow [k]$, one has

$$\sum_{\boldsymbol{\nu}\in\boldsymbol{V}\setminus(\boldsymbol{S}\cup\boldsymbol{U})}\delta_{\phi}(\boldsymbol{\nu})>\epsilon n^{2}-n(|\boldsymbol{S}|+|\boldsymbol{U}|),$$

- ∢ ⊒ ⊳

æ

where U is the set of colorless vertices w.r.t. (S, ϕ) .
The number of restricting vertices must be large

Claim 2

If G is ϵ -far from being k-colorable, then for any pair (S, ϕ) , where $S \subset V(G)$, $\phi : S \rightarrow [k]$, one has

$$|U|+|W|>\frac{\epsilon n}{2}-|S|.$$

$$\epsilon n^{2} - n(|S| + |U|)$$

$$< \sum_{v \in V \setminus S \cup U} \delta_{\phi}(v) \leq |W|(n-1) + \sum_{V \setminus (S \cup U \cup W)} \delta_{\phi}(v)$$

$$< |W|n + \frac{\epsilon n^{2}}{2}.$$

The number of restricting vertices must be large

Claim 2

If G is ϵ -far from being k-colorable, then for any pair (S, ϕ) , where $S \subset V(G)$, $\phi : S \rightarrow [k]$, one has

$$|U|+|W|>\frac{\epsilon n}{2}-|S|.$$

$$\begin{aligned} &\epsilon n^2 - n(|S| + |U|) \\ &< \sum_{v \in V \setminus S \cup U} \delta_{\phi}(v) \leq |W|(n-1) + \sum_{V \setminus (S \cup U \cup W)} \delta_{\phi}(v) \\ &< |W|n + \frac{\epsilon n^2}{2}. \end{aligned}$$

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- U(t): the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- W(t): the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- U(t): the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- W(t): the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- U(t): the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- W(t): the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.

- A 🗇 N - A 🖻 N - A 🖻 N

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- U(t): the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- W(t): the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.

- **A B A B A B A**

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: *nk*.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.
- We cannot make more than nk/(εn/2) = 2k/ε steps down from the roof of T to a leaf of T.

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.
- We cannot make more than $nk/(\epsilon n/2) = 2k/\epsilon$ steps down from the roof of T to a leaf of T.

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.

 We cannot make more than nk/(εn/2) = 2k/ε steps down from the roof of T to a leaf of T.

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.
- We cannot make more than nk/(εn/2) = 2k/ε steps down from the roof of T to a leaf of T.

#'s and no-proper k-coloring

Claim 4

If a leaf t^* of T is labeled by #, then $\phi(t^*)$ is not a proper k-coloring of $S(t^*)$.

Claim 5

If all leaves t^* 's of T are terminal nodes after j rounds of the algorithm, then the subgraph induced by the labels along the path from the root of T to t^* is not k-colorable.

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ -far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k,\frac{2k}{\epsilon}}$ of depth $\frac{2k}{\epsilon}$.
 - $T_{k,\frac{2k}{e}}$ has at most $1 + k + \ldots + k^{\frac{2k}{e}} \le k^{\frac{2k}{e}+1}$ vertices.
- A round of the algorithm is called successful a colorless vertex or a restricting vertex is picked.

▲ □ ▶ ▲ □

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ -far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

• T can be embedded into a k-ary tree
$$T_{k,\frac{2k}{\epsilon}}$$
 of depth $\frac{2k}{\epsilon}$.

•
$$T_{k,\frac{2k}{\epsilon}}$$
 has at most $1 + k + \ldots + k^{\frac{2k}{\epsilon}} \le k^{\frac{2k}{\epsilon}+1}$ vertices.

• A round of the algorithm is called **successful** a colorless vertex or a restricting vertex is picked.

< 🗇 🕨

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ -far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

• T can be embedded into a k-ary tree $T_{k,\frac{2k}{\epsilon}}$ of depth $\frac{2k}{\epsilon}$.

•
$$T_{k,\frac{2k}{\epsilon}}$$
 has at most $1 + k + \ldots + k^{\frac{2k}{\epsilon}} \le k^{\frac{2k}{\epsilon}+1}$ vertices.

• A round of the algorithm is called successful a colorless vertex or a restricting vertex is picked.

▲ □ ▶ ▲ □

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., U(t) ∪ W(t)) is at least ε/2 − S(t)/n = ε/2 − o(1) ≥ ε/3.

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.

 Besides, the probability of choosing a colorless or restricting vertex (i.e., U(t) ∪ W(t)) is at least ε/2 − S(t)/n = ε/2 − o(1) ≥ ε/3.

・ロト ・同ト ・ヨト ・ヨト

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., U(t) ∪ W(t)) is at least ε/2 - S(t)/n = ε/2 - o(1) ≥ ε/3.

- 4 同 🖌 4 三 🖌 4 三 🖡

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., U(t) ∪ W(t)) is at least ε/2 - S(t)/n = ε/2 - o(1) ≥ ε/3.

Proof of Claim 6 (contd.)

Proof.

- $\Pr[t \text{ is a nonterminal leaf of } T]$ can be bounded by $\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon].$
 - B(n, p) is the Binomial random variable of n Bernoulli trials with probability p of success.

• The Chernoff bound for B(n, p):

$$\mathbf{Pr}[B(m,p) \le k] \le \exp\left(-\frac{1}{2p}\frac{(mp-k)^2}{m}\right)$$

▲ □ ► ▲ □ ►

Proof of Claim 6 (contd.)

Proof.

- $\Pr[t \text{ is a nonterminal leaf of } T]$ can be bounded by $\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon].$
 - B(n, p) is the Binomial random variable of n Bernoulli trials with probability p of success.
- The Chernoff bound for B(n, p):

$$\mathbf{Pr}[B(m,p) \le k] \le \exp\left(-\frac{1}{2p}\frac{(mp-k)^2}{m}\right)$$

Proof of Claim 6 (contd.)

Proof.

- Pr[B(36k ln k/ε², ε/3) < 2k/ε] < k^{-3k/ε} by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k,\frac{2k}{\epsilon}}$ is a nonterminal leaf is $\leq |V(T_{k,\frac{2k}{\epsilon}})| \cdot k^{\frac{-3k}{\epsilon}} < 1/3.$
- That means, the probability that the algorithm finds a proper *k*-coloring is less than 1/3.
- Hence we derive the error probability of the algorithm < 1/3.

<ロト <回ト < 注ト < 注ト

Proof of Claim 6 (contd.)

Proof.

- Pr[B(36k ln k/ε², ε/3) < 2k/ε] < k^{-3k/ε} by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k,\frac{2k}{\epsilon}}$ is a nonterminal leaf is $\leq |V(T_{k,\frac{2k}{\epsilon}})| \cdot k^{\frac{-3k}{\epsilon}} < 1/3.$
- That means, the probability that the algorithm finds a proper *k*-coloring is less than 1/3.
- Hence we derive the error probability of the algorithm < 1/3.

・ロト ・回ト ・ヨト ・ヨト

Proof of Claim 6 (contd.)

Proof.

- Pr[B(36k ln k/ε², ε/3) < 2k/ε] < k^{-3k/ε} by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k,\frac{2k}{\epsilon}}$ is a nonterminal leaf is $\leq |V(T_{k,\frac{2k}{\epsilon}})| \cdot k^{\frac{-3k}{\epsilon}} < 1/3.$
- That means, the probability that the algorithm finds a proper *k*-coloring is less than 1/3.
- Hence we derive the error probability of the algorithm < 1/3.

イロト イヨト イヨト

Proof of Claim 6 (contd.)

Proof.

- Pr[B(36k ln k/ε², ε/3) < 2k/ε] < k^{-3k/ε} by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k,\frac{2k}{\epsilon}}$ is a nonterminal leaf is $\leq |V(T_{k,\frac{2k}{\epsilon}})| \cdot k^{\frac{-3k}{\epsilon}} < 1/3.$
- That means, the probability that the algorithm finds a proper *k*-coloring is less than 1/3.
- Hence we derive the error probability of the algorithm < 1/3.

イロト イヨト イヨト

Thank you!

イロト イポト イヨト イヨト

Э

DQC

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability