
Introduction
The algorithm
Preliminaries

Detailed analysis

Testing k-colorability

Noga Alon and Michael Krivelevich:

Testing k-colorability. SIAM J. Discrete Math. 15 (2002) 211–227.

Speaker: Joseph, Chuang-Chieh Lin

Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Dept. Computer Science and Information Engineering

National Chung Cheng University, Taiwan

October 22, 2008

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Outline

1 Introduction

2 The algorithm

3 Preliminaries
Some notations
Main idea of the proof

4 Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Outline

1 Introduction

2 The algorithm

3 Preliminaries
Some notations
Main idea of the proof

4 Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).

undirected, no self-loops, ≤ 1 edge between any u, v ∈ V

|V | = n vertices and |E | = Ω(n2) edges.

A graph property:

A set of graphs closed under isomorphisms.

Let P be a graph property.
ǫ-far from satisfying P:

≥ ǫn2 edges should be deleted or added to let the graph
satisfy P

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).

undirected, no self-loops, ≤ 1 edge between any u, v ∈ V

|V | = n vertices and |E | = Ω(n2) edges.

A graph property:

A set of graphs closed under isomorphisms.

Let P be a graph property.
ǫ-far from satisfying P:

≥ ǫn2 edges should be deleted or added to let the graph
satisfy P

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).

undirected, no self-loops, ≤ 1 edge between any u, v ∈ V

|V | = n vertices and |E | = Ω(n2) edges.

A graph property:

A set of graphs closed under isomorphisms.

Let P be a graph property.
ǫ-far from satisfying P:

≥ ǫn2 edges should be deleted or added to let the graph
satisfy P

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (property testing)

Property testing:

it does NOT precisely determine YES or NO for a decision
problem;
requires sublinear running time

A property tester for P:
A randomized algorithm such that

it answers “YES” with probability of ≥ 2/3 if G satisfies P,
and
it answers “NO” with probability of ≥ 2/3 if G is ǫ-far from
satisfying P

P is testable if

∃ a property tester for P such that its running time complexity
is independent of n.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (property testing)

Property testing:

it does NOT precisely determine YES or NO for a decision
problem;
requires sublinear running time

A property tester for P:
A randomized algorithm such that

it answers “YES” with probability of ≥ 2/3 if G satisfies P,
and
it answers “NO” with probability of ≥ 2/3 if G is ǫ-far from
satisfying P

P is testable if

∃ a property tester for P such that its running time complexity
is independent of n.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (property testing)

Property testing:

it does NOT precisely determine YES or NO for a decision
problem;
requires sublinear running time

A property tester for P:
A randomized algorithm such that

it answers “YES” with probability of ≥ 2/3 if G satisfies P,
and
it answers “NO” with probability of ≥ 2/3 if G is ǫ-far from
satisfying P

P is testable if

∃ a property tester for P such that its running time complexity
is independent of n.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Examples

Testing emptiness of a graph

Testing H-freeness, where H is an edge.
Query complexity and time complexity: O(1/ǫ)
How can it be done?

Testing connectivity is trivial (for dense graphs).

Why?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

a (proper) k-coloring: a function f : V → {1, 2, . . . , k} such
that

f (u) 6= f (v) if (u, v) ∈ E .

Equivalent to a k-partition (V1,V2, . . . ,Vk) of V such that
for each i , (u, v) /∈ E for every u, v ∈ Vi .

For convenience, we denote {1, 2, . . . , k} by [k].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

a (proper) k-coloring: a function f : V → {1, 2, . . . , k} such
that

f (u) 6= f (v) if (u, v) ∈ E .

Equivalent to a k-partition (V1,V2, . . . ,Vk) of V such that
for each i , (u, v) /∈ E for every u, v ∈ Vi .

For convenience, we denote {1, 2, . . . , k} by [k].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

a (proper) k-coloring: a function f : V → {1, 2, . . . , k} such
that

f (u) 6= f (v) if (u, v) ∈ E .

Equivalent to a k-partition (V1,V2, . . . ,Vk) of V such that
for each i , (u, v) /∈ E for every u, v ∈ Vi .

For convenience, we denote {1, 2, . . . , k} by [k].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

a (proper) k-coloring: a function f : V → {1, 2, . . . , k} such
that

f (u) 6= f (v) if (u, v) ∈ E .

Equivalent to a k-partition (V1,V2, . . . ,Vk) of V such that
for each i , (u, v) /∈ E for every u, v ∈ Vi .

For convenience, we denote {1, 2, . . . , k} by [k].

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

NP-complete for k ≥ 3

k-colorability is testable.

Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

Dependency of tower of 2’s of height polynomial in 1/ǫ.

Query complexity: O(k2 ln2 k/ǫ4);
Time complexity: exp(k ln k/ǫ2); [Alon and Krivelevich 2002;
this paper]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

NP-complete for k ≥ 3

k-colorability is testable.

Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

Dependency of tower of 2’s of height polynomial in 1/ǫ.

Query complexity: O(k2 ln2 k/ǫ4);
Time complexity: exp(k ln k/ǫ2); [Alon and Krivelevich 2002;
this paper]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

NP-complete for k ≥ 3

k-colorability is testable.

Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

Dependency of tower of 2’s of height polynomial in 1/ǫ.

Query complexity: O(k2 ln2 k/ǫ4);
Time complexity: exp(k ln k/ǫ2); [Alon and Krivelevich 2002;
this paper]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Introduction (k-colorability)

NP-complete for k ≥ 3

k-colorability is testable.

Hereditary graph property is testable [Alon and Shapira 2008]
(by Szemerédi’s regularity Lemma)

Dependency of tower of 2’s of height polynomial in 1/ǫ.

Query complexity: O(k2 ln2 k/ǫ4);
Time complexity: exp(k ln k/ǫ2); [Alon and Krivelevich 2002;
this paper]

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Outline

1 Introduction

2 The algorithm

3 Preliminaries
Some notations
Main idea of the proof

4 Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The property tester for k-colorability is very simple.

k-coloring-tester (G , s)

Generate a random subset R ⊂ V of size s = 36k ln k/ǫ2

Exhaustively color R by k colors.
Return YES if G [R] is k-colorable, and return NO otherwise.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The property tester for k-colorability

If G is k-colorable, then the algorithm always returns YES.

What if G is ǫ-far from being k-colorable?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The property tester for k-colorability

If G is k-colorable, then the algorithm always returns YES.

What if G is ǫ-far from being k-colorable?

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Outline

1 Introduction

2 The algorithm

3 Preliminaries
Some notations
Main idea of the proof

4 Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations

Given S ⊆ V and its k-partition φ : S → [k].

The list of feasible labels of a vertex v ∈ V \ S

Lφ(v) = [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩ N(v), φ(u) = i}.

v ∈ V \ S is called colorless if Lφ(v) = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations

Given S ⊆ V and its k-partition φ : S → [k].

The list of feasible labels of a vertex v ∈ V \ S

Lφ(v) = [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩ N(v), φ(u) = i}.

v ∈ V \ S is called colorless if Lφ(v) = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations

Given S ⊆ V and its k-partition φ : S → [k].

The list of feasible labels of a vertex v ∈ V \ S

Lφ(v) = [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩ N(v), φ(u) = i}.

v ∈ V \ S is called colorless if Lφ(v) = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations (contd.)

S = {A,B ,E ,H, I}.

φ(A) = 1, φ(B) = 3, φ(E) = 2, φ(H) = 1, φ(I) = 1.

No colorless vertices w.r.t. (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations (contd.)

S = {A,B ,E ,H, I}.

φ(A) = 1, φ(B) = 3, φ(E) = 2, φ(H) = 1, φ(I) = 1.

No colorless vertices w.r.t. (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Some notations (contd.)

S = {A,B ,E ,H, I}.

φ(A) = 1, φ(B) = 3, φ(E) = 2, φ(H) = 1, φ(I) = 1.

No colorless vertices w.r.t. (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof

Assume that G is ǫ-far from being k-colorable.

Suppose we are given a subset S ⊂ R ⊂ V (G) and its k

partition φ : S → [k].

Our aim is to find w.h.p. that:

� a succinct (i.e., short & concise) witness in R \ S to the fact
that φ can NOT be extended to a (proper) k-coloring.

Witness: a set of vertices which can be used to find out
non-k-colorability. (colorless or restricting vertices)

Extending φ: giving other vertices colors based on (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

If there are a lot of colorless vertices w.r.t. (S , φ) ...

It is easy to obtain a witness for nonextendability of φ.

What if the number of colorless vertices is small?
As G is ǫ-far from being k-colorable, one can show that:

� ∃ W ⊂ V (|W | is large) s.t. coloring every vertex v ∈ W by
any feasible color w.r.t. φ reduces the number of feasible
colors of at least Ω(ǫ)n neighbors of v .

It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

If there are a lot of colorless vertices w.r.t. (S , φ) ...

It is easy to obtain a witness for nonextendability of φ.

What if the number of colorless vertices is small?
As G is ǫ-far from being k-colorable, one can show that:

� ∃ W ⊂ V (|W | is large) s.t. coloring every vertex v ∈ W by
any feasible color w.r.t. φ reduces the number of feasible
colors of at least Ω(ǫ)n neighbors of v .

It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

If there are a lot of colorless vertices w.r.t. (S , φ) ...

It is easy to obtain a witness for nonextendability of φ.

What if the number of colorless vertices is small?
As G is ǫ-far from being k-colorable, one can show that:

� ∃ W ⊂ V (|W | is large) s.t. coloring every vertex v ∈ W by
any feasible color w.r.t. φ reduces the number of feasible
colors of at least Ω(ǫ)n neighbors of v .

It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

If there are a lot of colorless vertices w.r.t. (S , φ) ...

It is easy to obtain a witness for nonextendability of φ.

What if the number of colorless vertices is small?
As G is ǫ-far from being k-colorable, one can show that:

� ∃ W ⊂ V (|W | is large) s.t. coloring every vertex v ∈ W by
any feasible color w.r.t. φ reduces the number of feasible
colors of at least Ω(ǫ)n neighbors of v .

It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

If there are a lot of colorless vertices w.r.t. (S , φ) ...

It is easy to obtain a witness for nonextendability of φ.

What if the number of colorless vertices is small?
As G is ǫ-far from being k-colorable, one can show that:

� ∃ W ⊂ V (|W | is large) s.t. coloring every vertex v ∈ W by
any feasible color w.r.t. φ reduces the number of feasible
colors of at least Ω(ǫ)n neighbors of v .

It helps approach the previous case.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

The above process can be represented by an auxiliary tree T .

Every node of T corresponds to a colorless or a restricting
vertex v .

Each node is labeled by a vertex of G or by the symbol #
(terminal node).

Every edge of T corresponds to a feasible color for v .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

The above process can be represented by an auxiliary tree T .

Every node of T corresponds to a colorless or a restricting
vertex v .

Each node is labeled by a vertex of G or by the symbol #
(terminal node).

Every edge of T corresponds to a feasible color for v .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

The above process can be represented by an auxiliary tree T .

Every node of T corresponds to a colorless or a restricting
vertex v .

Each node is labeled by a vertex of G or by the symbol #
(terminal node).

Every edge of T corresponds to a feasible color for v .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Let t be a node of T .

The path from the root of T to t not including t itself defines
a k-partition (we call it φ(t)) of the labels (i.e., vertices of G ;
we call it S(t)) along this path.

If t is labeled by v and v has a neighbor in S(t) whose color
in φ(t) is also i , the the son of v along the edge labeled by i

is labeled by #.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Let t be a node of T .

The path from the root of T to t not including t itself defines
a k-partition (we call it φ(t)) of the labels (i.e., vertices of G ;
we call it S(t)) along this path.

If t is labeled by v and v has a neighbor in S(t) whose color
in φ(t) is also i , the the son of v along the edge labeled by i

is labeled by #.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Let t be a node of T .

The path from the root of T to t not including t itself defines
a k-partition (we call it φ(t)) of the labels (i.e., vertices of G ;
we call it S(t)) along this path.

If t is labeled by v and v has a neighbor in S(t) whose color
in φ(t) is also i , the the son of v along the edge labeled by i

is labeled by #.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Since the degree of each node of T can be as large as k, the
size of T grows exponentially.

We therefore need the probability of choosing colorless or
restricting vertices to be exponentially close to 1.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Some notations
Main idea of the proof

Main idea of the proof (contd.)

Since the degree of each node of T can be as large as k, the
size of T grows exponentially.

We therefore need the probability of choosing colorless or
restricting vertices to be exponentially close to 1.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Outline

1 Introduction

2 The algorithm

3 Preliminaries
Some notations
Main idea of the proof

4 Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Reducing feasible colors

For every v ∈ V \ (S ∪ U):

Estimation of # excluded feasible colors of N(v) outside S ∪ U

δφ(v) = min
i∈Lφ(v)

|{u ∈ N(v) \ (S ∪ U) : i ∈ Lφ(u)}|.

U is the set of colorless vertices w.r.t. (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

δφ(B) = mini∈{3,4,5}{4, 4, 4} = 4.

δφ(C) = mini∈{2,3,4,5}{0, 1, 1, 1} = 0.

δφ(D) = mini∈{2,3,4,5}{0, 2, 2, 2} = 0.

δφ(F) = mini∈{2,3,4,5}{0, 2, 2, 2} = 0.

δφ(G) = mini∈{3,4,5}{4, 4, 4} = 4.

δφ(H) = mini∈{1,3,4,5}{0, 4, 4, 4} = 0.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Restricting vertices

Restricting vertices

Given a pair (S , φ), a vertex is called restricting if δφ(v) ≥ ǫn/2.

W := {v ∈ V \ (S ∪ U) | δφ(v) ≥ ǫn/2}.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the number of monochromatic edges

Claim 1

For every subset S ⊂ V and every k-partition φ of S, to make the

graph be k-colorable requires deleting at most

(n − 1)(|S | + |U|) +
∑

v∈V \(S∪U) δφ(v) edges.

“ǫ-far from being k-colorable” makes sense only if
ǫn2 < (n − 1)(|S | + |U|) +

∑

v∈V \(S∪U) δφ(v).

Thus we have the following corollary.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the number of monochromatic edges

Claim 1

For every subset S ⊂ V and every k-partition φ of S, to make the

graph be k-colorable requires deleting at most

(n − 1)(|S | + |U|) +
∑

v∈V \(S∪U) δφ(v) edges.

“ǫ-far from being k-colorable” makes sense only if
ǫn2 < (n − 1)(|S | + |U|) +

∑

v∈V \(S∪U) δφ(v).

Thus we have the following corollary.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the number of monochromatic edges

Claim 1

For every subset S ⊂ V and every k-partition φ of S, to make the

graph be k-colorable requires deleting at most

(n − 1)(|S | + |U|) +
∑

v∈V \(S∪U) δφ(v) edges.

“ǫ-far from being k-colorable” makes sense only if
ǫn2 < (n − 1)(|S | + |U|) +

∑

v∈V \(S∪U) δφ(v).

Thus we have the following corollary.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Corollary 4.1

If G is ǫ-far from being k-colorable, then for any pair (S , φ), where

S ⊂ V (G), φ : S → [k], one has

∑

v∈V \(S∪U)

δφ(v) > ǫn2 − n(|S | + |U|),

where U is the set of colorless vertices w.r.t. (S , φ).

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The number of restricting vertices must be large

Claim 2

If G is ǫ-far from being k-colorable, then for any pair (S , φ), where

S ⊂ V (G), φ : S → [k], one has

|U| + |W | >
ǫn

2
− |S |.

Proof.

ǫn2 − n(|S | + |U|)

<
∑

v∈V \S∪U

δφ(v) ≤ |W |(n − 1) +
∑

V \(S∪U∪W)

δφ(v)

< |W |n +
ǫn2

2
.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The number of restricting vertices must be large

Claim 2

If G is ǫ-far from being k-colorable, then for any pair (S , φ), where

S ⊂ V (G), φ : S → [k], one has

|U| + |W | >
ǫn

2
− |S |.

Proof.

ǫn2 − n(|S | + |U|)

<
∑

v∈V \S∪U

δφ(v) ≤ |W |(n − 1) +
∑

V \(S∪U∪W)

δφ(v)

< |W |n +
ǫn2

2
.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Recall the auxiliary tree T for the coloring process

Consider a leaf t of T .

U(t): the set of colorless vertices w.r.t. (S(t), φ(t)).

W (t): the set of restricting vertices w.r.t. (S(t), φ(t)).

A nonterminal node of T is labeled only when a vertex in
U(t) ∪ W (t) is chosen.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Recall the auxiliary tree T for the coloring process

Consider a leaf t of T .

U(t): the set of colorless vertices w.r.t. (S(t), φ(t)).

W (t): the set of restricting vertices w.r.t. (S(t), φ(t)).

A nonterminal node of T is labeled only when a vertex in
U(t) ∪ W (t) is chosen.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Recall the auxiliary tree T for the coloring process

Consider a leaf t of T .

U(t): the set of colorless vertices w.r.t. (S(t), φ(t)).

W (t): the set of restricting vertices w.r.t. (S(t), φ(t)).

A nonterminal node of T is labeled only when a vertex in
U(t) ∪ W (t) is chosen.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Recall the auxiliary tree T for the coloring process

Consider a leaf t of T .

U(t): the set of colorless vertices w.r.t. (S(t), φ(t)).

W (t): the set of restricting vertices w.r.t. (S(t), φ(t)).

A nonterminal node of T is labeled only when a vertex in
U(t) ∪ W (t) is chosen.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the depth of T

Claim 3

The depth of T is bounded by 2k
ǫ .

Proof.

The depth of T is mainly due to the restricting vertices.

The total length of the lists of feasible colors initially: nk.

Coloring a vertex w ∈ W : reduces ≥ ǫn/2 colors.

We cannot make more than nk/(ǫn/2) = 2k/ǫ steps down
from the roof of T to a leaf of T .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the depth of T

Claim 3

The depth of T is bounded by 2k
ǫ .

Proof.

The depth of T is mainly due to the restricting vertices.

The total length of the lists of feasible colors initially: nk.

Coloring a vertex w ∈ W : reduces ≥ ǫn/2 colors.

We cannot make more than nk/(ǫn/2) = 2k/ǫ steps down
from the roof of T to a leaf of T .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the depth of T

Claim 3

The depth of T is bounded by 2k
ǫ .

Proof.

The depth of T is mainly due to the restricting vertices.

The total length of the lists of feasible colors initially: nk.

Coloring a vertex w ∈ W : reduces ≥ ǫn/2 colors.

We cannot make more than nk/(ǫn/2) = 2k/ǫ steps down
from the roof of T to a leaf of T .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

An upper bound on the depth of T

Claim 3

The depth of T is bounded by 2k
ǫ .

Proof.

The depth of T is mainly due to the restricting vertices.

The total length of the lists of feasible colors initially: nk.

Coloring a vertex w ∈ W : reduces ≥ ǫn/2 colors.

We cannot make more than nk/(ǫn/2) = 2k/ǫ steps down
from the roof of T to a leaf of T .

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

#’s and no-proper k-coloring

Claim 4

If a leaf t∗ of T is labeled by #, then φ(t∗) is not a proper

k-coloring of S(t∗).

Claim 5

If all leaves t∗’s of T are terminal nodes after j rounds of the

algorithm, then the subgraph induced by the labels along the path

from the root of T to t∗ is not k-colorable.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ǫ-far from being k-colorable, then after 36k ln k/ǫ2 rounds,

with probability ≥ 2/3 all leaves of T are terminal nodes.

Proof.

T can be embedded into a k-ary tree T
k, 2k

ǫ

of depth 2k
ǫ .

T
k,

2k
ǫ

has at most 1 + k + . . . + k
2k
ǫ ≤ k

2k
ǫ

+1 vertices.

A round of the algorithm is called successful a colorless vertex
or a restricting vertex is picked.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ǫ-far from being k-colorable, then after 36k ln k/ǫ2 rounds,

with probability ≥ 2/3 all leaves of T are terminal nodes.

Proof.

T can be embedded into a k-ary tree T
k, 2k

ǫ

of depth 2k
ǫ .

T
k,

2k
ǫ

has at most 1 + k + . . . + k
2k
ǫ ≤ k

2k
ǫ

+1 vertices.

A round of the algorithm is called successful a colorless vertex
or a restricting vertex is picked.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ǫ-far from being k-colorable, then after 36k ln k/ǫ2 rounds,

with probability ≥ 2/3 all leaves of T are terminal nodes.

Proof.

T can be embedded into a k-ary tree T
k, 2k

ǫ

of depth 2k
ǫ .

T
k,

2k
ǫ

has at most 1 + k + . . . + k
2k
ǫ ≤ k

2k
ǫ

+1 vertices.

A round of the algorithm is called successful a colorless vertex
or a restricting vertex is picked.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Fix some leaf node t of T after 36k ln k/ǫ2 rounds of the
algorithm.

The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) ∪ W (t)) is at least
ǫ/2 − S(t)/n = ǫ/2 − o(1) ≥ ǫ/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Fix some leaf node t of T after 36k ln k/ǫ2 rounds of the
algorithm.

The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) ∪ W (t)) is at least
ǫ/2 − S(t)/n = ǫ/2 − o(1) ≥ ǫ/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Fix some leaf node t of T after 36k ln k/ǫ2 rounds of the
algorithm.

The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) ∪ W (t)) is at least
ǫ/2 − S(t)/n = ǫ/2 − o(1) ≥ ǫ/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Fix some leaf node t of T after 36k ln k/ǫ2 rounds of the
algorithm.

The total number of successful rounds for the path from the
root of T to t is equal to the depth of t.

Besides, the probability of choosing a colorless or restricting
vertex (i.e., U(t) ∪ W (t)) is at least
ǫ/2 − S(t)/n = ǫ/2 − o(1) ≥ ǫ/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[t is a nonterminal leaf of T] can be bounded by
Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ].

B(n, p) is the Binomial random variable of n Bernoulli trials
with probability p of success.

The Chernoff bound for B(n, p):

Pr[B(m, p) ≤ k] ≤ exp

(

−
1

2p

(mp − k)2

m

)

.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[t is a nonterminal leaf of T] can be bounded by
Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ].

B(n, p) is the Binomial random variable of n Bernoulli trials
with probability p of success.

The Chernoff bound for B(n, p):

Pr[B(m, p) ≤ k] ≤ exp

(

−
1

2p

(mp − k)2

m

)

.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ] < k−3k/ǫ by the Chernoff
bound.

Thus by the union bound we conclude that the probability
that some node of T

k, 2k
ǫ

is a nonterminal leaf is

≤ |V (T
k, 2k

ǫ

)| · k
−3k

ǫ < 1/3.

That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

Hence we derive the error probability of the algorithm < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ] < k−3k/ǫ by the Chernoff
bound.

Thus by the union bound we conclude that the probability
that some node of T

k, 2k
ǫ

is a nonterminal leaf is

≤ |V (T
k, 2k

ǫ

)| · k
−3k

ǫ < 1/3.

That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

Hence we derive the error probability of the algorithm < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ] < k−3k/ǫ by the Chernoff
bound.

Thus by the union bound we conclude that the probability
that some node of T

k, 2k
ǫ

is a nonterminal leaf is

≤ |V (T
k, 2k

ǫ

)| · k
−3k

ǫ < 1/3.

That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

Hence we derive the error probability of the algorithm < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Proof of Claim 6 (contd.)

Proof.

Pr[B(36k ln k/ǫ2, ǫ/3) < 2k/ǫ] < k−3k/ǫ by the Chernoff
bound.

Thus by the union bound we conclude that the probability
that some node of T

k, 2k
ǫ

is a nonterminal leaf is

≤ |V (T
k, 2k

ǫ

)| · k
−3k

ǫ < 1/3.

That means, the probability that the algorithm finds a proper
k-coloring is less than 1/3.

Hence we derive the error probability of the algorithm < 1/3.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

Introduction
The algorithm
Preliminaries

Detailed analysis

Thank you!

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability

	Introduction
	The algorithm
	Preliminaries
	Some notations
	Main idea of the proof

	Detailed analysis
	

