Testing k-colorability

Noga Alon and Michael Krivelevich:
Testing k-colorability. SIAM J. Discrete Math. 15 (2002) 211-227.

Speaker: Joseph, Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
Computation Theory Laboratory
Dept. Computer Science and Information Engineering National Chung Cheng University, Taiwan

October 22, 2008

Outline

(1) Introduction
(2) The algorithm
(3) Preliminaries

- Some notations
- Main idea of the proof
(4) Detailed analysis

Outline

(1) Introduction

(2) The algorithm
(3) Preliminaries

- Some notations
- Main idea of the proof

4 Detailed analysis

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$ - $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$ - $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P} :
- $\geq \in n^{2}$ edges should be deleted or added to let the graph
satisfy \mathbb{P}

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$ - $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P} :
- $\geq \epsilon n^{2}$ edges should be deleted or added to let the graph satisfy \mathbb{P}

Introduction (property testing)

- Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time
- A property tester for \mathbb{P}
- A randomized algorithm such that
- it answers "YES" with probability of $\geq 2 / 3$ if G satisfies \mathbb{P} and - it answers "NO" with probability of $\geq 2 / 3$ if G is ϵ-far from satisfying \mathbb{P}

Introduction (property testing)

- Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time
- A property tester for \mathbb{P} :
- A randomized algorithm such that
- it answers "YES" with probability of $\geq 2 / 3$ if G satisfies \mathbb{P}, and
- it answers "NO" with probability of $\geq 2 / 3$ if G is ϵ-far from satisfying \mathbb{P}
- \mathbb{P} is testable if
- \exists a property tester for \mathbb{P} such that its running time complexity is independent of n.

Introduction (property testing)

- Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time
- A property tester for \mathbb{P} :
- A randomized algorithm such that
- it answers "YES" with probability of $\geq 2 / 3$ if G satisfies \mathbb{P}, and
- it answers "NO" with probability of $\geq 2 / 3$ if G is ϵ-far from satisfying \mathbb{P}
- \mathbb{P} is testable if
- \exists a property tester for \mathbb{P} such that its running time complexity is independent of n.

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1 / \epsilon)$

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1 / \epsilon)$
- How can it be done?

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1 / \epsilon)$
- How can it be done?
- Testing connectivity is trivial (for dense graphs).

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1 / \epsilon)$
- How can it be done?
- Testing connectivity is trivial (for dense graphs).

Examples

- Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1 / \epsilon)$
- How can it be done?
- Testing connectivity is trivial (for dense graphs).
- Why?

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that
- $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of V such that
for each $i,(u, v) \notin E$ for every $u, v \in V_{i}$.
- For convenience, we denote $\{1,2$

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that
- $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of V such that for each $i,(u, v) \notin E$ for every $u, v \in V_{i}$.
- For convenience, we denote $\{1,2$,

Introduction (k-colorability)

- a (proper) k-coloring: a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that
- $f(u) \neq f(v)$ if $(u, v) \in E$.
- Equivalent to a k-partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of V such that for each $i,(u, v) \notin E$ for every $u, v \in V_{i}$.
- For convenience, we denote $\{1,2, \ldots, k\}$ by $[k]$.

Introduction (k-colorability)

- NP-complete for $k \geq 3$

Introduction (k-colorability)

- NP-complete for $k \geq 3$
- k-colorability is testable.
- Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi's regularity Lemma)
- Dependency of tower of 2's of height polynomial in $1 / \epsilon$.

Introduction (k-colorability)

- NP-complete for $k \geq 3$
- k-colorability is testable.
- Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi's regularity Lemma)
- Dependency of tower of 2 's of height polynomial in $1 / \epsilon$.
- Query complexity:

Time complexity: $\exp \left(k \ln k / \epsilon^{2}\right)$; [Alon and Krivelevich 2002 this paper]

Introduction (k-colorability)

- NP-complete for $k \geq 3$
- k-colorability is testable.
- Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi's regularity Lemma)
- Dependency of tower of 2 's of height polynomial in $1 / \epsilon$.
- Query complexity: $O\left(k^{2} \ln ^{2} k / \epsilon^{4}\right)$;

Time complexity: $\exp \left(k \ln k / \epsilon^{2}\right)$; [Alon and Krivelevich 2002; this paper]

Outline

(1) Introduction

(2) The algorithm
(3) Preliminaries

- Some notations
- Main idea of the proof
(4) Detailed analysis
- The property tester for k-colorability is very simple.

$$
\begin{aligned}
& \hline k \text {-coloring-tester }(G, s) \\
& \hline \text { Generate a random subset } R \subset V \text { of size } s=36 k \ln k / \epsilon^{2} \\
& \text { Exhaustively color } R \text { by } k \text { colors. } \\
& \text { Return YES if } G[R] \text { is } k \text {-colorable, and return NO otherwise. }
\end{aligned}
$$

The property tester for k-colorability

- If G is k-colorable, then the algorithm always returns YES.
- What if G is ϵ-far from being k-colorable?

The property tester for k-colorability

- If G is k-colorable, then the algorithm always returns YES.
- What if G is ϵ-far from being k-colorable?

Detailed analysis

Outline

(1) Introduction
(2) The algorithm
(3) Preliminaries

- Some notations
- Main idea of the proof

4 Detailed analysis

Some notations

- Given $S \subseteq V$ and its k-partition $\phi: S \rightarrow[k]$.

Some notations

- Given $S \subseteq V$ and its k-partition $\phi: S \rightarrow[k]$.

> The list of feasible labels of a vertex $v \in V \backslash S$
> $L_{\phi}(v)=[k] \backslash\{1 \leq i \leq k: \exists u \in S \cap N(v), \phi(u)=i\}$.

- $v \in V \backslash S$ is called colorless if $L_{\phi}(v)=0$.

Some notations

- Given $S \subseteq V$ and its k-partition $\phi: S \rightarrow[k]$.

$$
\begin{aligned}
& \text { The list of feasible labels of a vertex } v \in V \backslash S \\
& L_{\phi}(v)=[k] \backslash\{1 \leq i \leq k: \exists u \in S \cap N(v), \phi(u)=i\} .
\end{aligned}
$$

- $v \in V \backslash S$ is called colorless if $L_{\phi}(v)=0$.

Some notations (contd.)

- $S=\{A, B, E, H, I\}$.

Introduction

Some notations (contd.)

- $S=\{A, B, E, H, I\}$.
- $\phi(A)=1, \phi(B)=3, \phi(E)=2, \phi(H)=1, \phi(I)=1$.
- No colorless vertices w.r.t. (S, ϕ)

Some notations (contd.)

- $S=\{A, B, E, H, I\}$.
- $\phi(A)=1, \phi(B)=3, \phi(E)=2, \phi(H)=1, \phi(I)=1$.
- No colorless vertices w.r.t. (S, ϕ).

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.
- Our aim is to find w.h.p. that:

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.
- Our aim is to find w.h.p. that:
a succinct (i.e., short \& concise) witness in $R \backslash S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.
- Our aim is to find w.h.p. that:
\triangleright a succinct (i.e., short \& concise) witness in $R \backslash S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.
- Witness: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.
- Our aim is to find w.h.p. that:
\triangleright a succinct (i.e., short \& concise) witness in $R \backslash S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.
- Witness: a set of vertices which can be used to find out non- k-colorability. (colorless or restricting vertices)
- Extending ϕ : giving other vertices colors based on (S, ϕ)

Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi: S \rightarrow[k]$.
- Our aim is to find w.h.p. that:
\triangleright a succinct (i.e., short \& concise) witness in $R \backslash S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.
- Witness: a set of vertices which can be used to find out non- k-colorability. (colorless or restricting vertices)
- Extending ϕ : giving other vertices colors based on (S, ϕ).

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ)...
- It is easy to obtain a witness for nonextendability of ϕ.
- What if the number of colorless vertices is small?

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ)...
- It is easy to obtain a witness for nonextendability of ϕ.
- What if the number of colorless vertices is small?
- As G is ϵ-far from being k-colorable, one can show that:

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. $(S, \phi) \ldots$
- It is easy to obtain a witness for nonextendability of ϕ.
- What if the number of colorless vertices is small?
- As G is ϵ-far from being k-colorable, one can show that:
any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon) n$ neighbors of v.

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. $(S, \phi) \ldots$
- It is easy to obtain a witness for nonextendability of ϕ.
- What if the number of colorless vertices is small?
- As G is ϵ-far from being k-colorable, one can show that:
$\triangleright \exists W \subset V(|W|$ is large) s.t. coloring every vertex $v \in W$ by any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon) n$ neighbors of v.
- It helps approach the previous case.

Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. $(S, \phi) \ldots$
- It is easy to obtain a witness for nonextendability of ϕ.
- What if the number of colorless vertices is small?
- As G is ϵ-far from being k-colorable, one can show that:
$\triangleright \exists W \subset V(|W|$ is large) s.t. coloring every vertex $v \in W$ by any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon) n$ neighbors of v.
- It helps approach the previous case.

Main idea of the proof (contd.)

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v
- Each node is labeled by a vertex of G or by the symbol \# (terminal node).
- Every edge of T corresponds to a feasible color for v.

Main idea of the proof (contd.)

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v.
- Each node is labeled by a vertex of G or by the symbol \# (terminal node).
- Every edge of T corresponds to a feasible color for v.

Main idea of the proof (contd.)

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v.
- Each node is labeled by a vertex of G or by the symbol \# (terminal node).
- Every edge of T corresponds to a feasible color for v.

Introduction

Main idea of the proof (contd.)

1 | 23

Main idea of the proof (contd.)

- Let t be a node of T.

- The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t))$ along this path.

Main idea of the proof (contd.)

- Let t be a node of T.
- The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t))$ along this path.
- If t is labeled by v and v has a neighbor in $S(t)$ whose color in $\phi(t)$ is also i, the the son of v along the edge labeled by i is labeled by \#.

Main idea of the proof (contd.)

- Let t be a node of T.
- The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t))$ along this path.
- If t is labeled by v and v has a neighbor in $S(t)$ whose color in $\phi(t)$ is also i, the the son of v along the edge labeled by i is labeled by \#.

Main idea of the proof (contd.)

- Since the degree of each node of T can be as large as k, the size of T grows exponentially.
- We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1 .

Main idea of the proof (contd.)

- Since the degree of each node of T can be as large as k, the size of T grows exponentially.
- We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1 .

Outline

(1) Introduction
(2) The algorithm
(3) Preliminaries

- Some notations
- Main idea of the proof
(4) Detailed analysis

Reducing feasible colors

- For every $v \in V \backslash(S \cup U)$:

Estimation of \# excluded feasible colors of $N(v)$ outside $S \cup U$
$\delta_{\phi}(v)=\min _{i \in L_{\phi}(v)}\left|\left\{u \in N(v) \backslash(S \cup U): i \in L_{\phi}(u)\right\}\right|$.

- U is the set of colorless vertices w.r.t. (S, ϕ).

- $\delta_{\phi}(B)=\min _{i \in\{3,4,5\}}\{4,4,4\}=4$.
- $\delta_{\phi}(C)=\min _{i \in\{2,3,4,5\}}\{0,1,1,1\}=0$.
- $\delta_{\phi}(D)=\min _{i \in\{2,3,4,5\}}\{0,2,2,2\}=0$.
- $\delta_{\phi}(F)=\min _{i \in\{2,3,4,5\}}\{0,2,2,2\}=0$.
- $\delta_{\phi}(G)=\min _{i \in\{3,4,5\}}\{4,4,4\}=4$.
- $\delta_{\phi}(H)=\min _{i \in\{1,3,4,5\}}\{0,4,4,4\}=0$.

Restricting vertices

Restricting vertices

Given a pair (S, ϕ), a vertex is called restricting if $\delta_{\phi}(v) \geq \epsilon n / 2$.

- $W:=\left\{v \in V \backslash(S \cup U) \mid \delta_{\phi}(v) \geq \epsilon n / 2\right\}$.

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|)+\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)$ edges.

- " ϵ-far from being k-colorable" makes sense only if

- Thus we have the following corollary.

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|)+\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)$ edges.

- " ϵ-far from being k-colorable" makes sense only if $\epsilon n^{2}<(n-1)(|S|+|U|)+\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)$.
- Thus we have the following corollary.

An upper bound on the number of monochromatic edges

Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most $(n-1)(|S|+|U|)+\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)$ edges.

- " ϵ-far from being k-colorable" makes sense only if $\epsilon n^{2}<(n-1)(|S|+|U|)+\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)$.
- Thus we have the following corollary.

Corollary 4.1

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subset V(G), \phi: S \rightarrow[k]$, one has

$$
\sum_{v \in V \backslash(S \cup U)} \delta_{\phi}(v)>\epsilon n^{2}-n(|S|+|U|),
$$

where U is the set of colorless vertices w.r.t. (S, ϕ).

The number of restricting vertices must be large

Claim 2

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subset V(G), \phi: S \rightarrow[k]$, one has

$$
|U|+|W|>\frac{\epsilon n}{2}-|S| .
$$

Proof.

The number of restricting vertices must be large

Claim 2

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subset V(G), \phi: S \rightarrow[k]$, one has

$$
|U|+|W|>\frac{\epsilon n}{2}-|S| .
$$

Proof.

$$
\begin{aligned}
& \epsilon n^{2}-n(|S|+|U|) \\
< & \sum_{v \in V \backslash S \cup U} \delta_{\phi}(v) \leq|W|(n-1)+\sum_{V \backslash(S \cup U \cup W)} \delta_{\phi}(v) \\
< & |W| n+\frac{\epsilon n^{2}}{2}
\end{aligned}
$$

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.

- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$. - $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$ - A nonterminal node of T is labeled only when a vertex in

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen

Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2 k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2 k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: $n k$.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n / 2$ colors

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2 k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n / 2$ colors.
- We cannot make more than $n k /(\epsilon n / 2)=2 k / \epsilon$ steps down from the ronf of T to a leaf of T

An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2 k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n / 2$ colors.
- We cannot make more than $n k /(\epsilon n / 2)=2 k / \epsilon$ steps down from the roof of T to a leaf of T.

\#'s and no-proper k-coloring

Claim 4

If a leaf t^{*} of T is labeled by $\#$, then $\phi\left(t^{*}\right)$ is not a proper k-coloring of $S\left(t^{*}\right)$.

Claim 5

If all leaves t^{*} 's of T are terminal nodes after j rounds of the algorithm, then the subgraph induced by the labels along the path from the root of T to t^{*} is not k-colorable.

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36 k \ln k / \epsilon^{2}$ rounds, with probability $\geq 2 / 3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k, \frac{2 k}{\epsilon}}$ of depth $\frac{2 k}{\epsilon}$. - $T_{k, \frac{2 k}{}}$ has at most $1+k+\ldots+k^{\frac{2 k}{\epsilon}} \leq k^{\frac{2 k}{\epsilon}+1}$ vertices.

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36 k \ln k / \epsilon^{2}$ rounds, with probability $\geq 2 / 3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k, \frac{2 k}{\epsilon}}$ of depth $\frac{2 k}{\epsilon}$.
- $T_{k, \frac{2 k}{\epsilon}}$ has at most $1+k+\ldots+k^{\frac{2 k}{\epsilon}} \leq k^{\frac{2 k}{\epsilon}+1}$ vertices.
- A round of the algorithm is called successful a colorless vertex or a restricting vertex is nicked

The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36 k \ln k / \epsilon^{2}$ rounds, with probability $\geq 2 / 3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k, \frac{2 k}{\epsilon}}$ of depth $\frac{2 k}{\epsilon}$.
- $T_{k, \frac{2 k}{\epsilon}}$ has at most $1+k+\ldots+k^{\frac{2 k}{\epsilon}} \leq k^{\frac{2 k}{\epsilon}+1}$ vertices.
- A round of the algorithm is called successful a colorless vertex or a restricting vertex is picked.

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36 k \ln k / \epsilon^{2}$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36 k \ln k / \epsilon^{2}$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36 k \ln k / \epsilon^{2}$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t))$ is at least $\epsilon / 2-S(t) / n=\epsilon / 2-o(1) \geq \epsilon / 3$.

Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36 k \ln k / \epsilon^{2}$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t))$ is at least $\epsilon / 2-S(t) / n=\epsilon / 2-o(1) \geq \epsilon / 3$.

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}[t$ is a nonterminal leaf of $T]$ can be bounded by $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]$.
- $B(n, p)$ is the Binomial random variable of n Bernoulli trials with probability p of success.
- The Chernoff bound for $B(n, p)$
$\operatorname{Pr}[B(m, p) \leq k] \leq \exp$

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}[t$ is a nonterminal leaf of $T]$ can be bounded by $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]$.
- $B(n, p)$ is the Binomial random variable of n Bernoulli trials with probability p of success.
- The Chernoff bound for $B(n, p)$:

$$
\operatorname{Pr}[B(m, p) \leq k] \leq \exp \left(-\frac{1}{2 p} \frac{(m p-k)^{2}}{m}\right)
$$

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]<k^{-3 k / \epsilon}$ by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{1,2 k}$ is a nonterminal leaf is
 k-coloring is less than $1 / 3$

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]<k^{-3 k / \epsilon}$ by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k, \frac{2 k}{\epsilon}}$ is a nonterminal leaf is

$$
\leq\left|V\left(T_{k, \frac{2 k}{\epsilon}}\right)\right| \cdot k^{\frac{-3 k}{\epsilon}}<1 / 3 .
$$

- That means, the probability that the algorithm finds a proper k-coloring is less than $1 / 3$
- Hence we derive the error probability of the algorithm

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]<k^{-3 k / \epsilon}$ by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k, \frac{2 k}{\epsilon}}$ is a nonterminal leaf is

$$
\leq\left|V\left(T_{k, \frac{2 k}{\epsilon}}\right)\right| \cdot k^{\frac{-3 k}{\epsilon}}<1 / 3 .
$$

- That means, the probability that the algorithm finds a proper k-coloring is less than $1 / 3$.
- Hence we derive the error probability of the algorithm $<1 / 3$.

Proof of Claim 6 (contd.)

Proof.

- $\operatorname{Pr}\left[B\left(36 k \ln k / \epsilon^{2}, \epsilon / 3\right)<2 k / \epsilon\right]<k^{-3 k / \epsilon}$ by the Chernoff bound.
- Thus by the union bound we conclude that the probability that some node of $T_{k, \frac{2 k}{\epsilon}}$ is a nonterminal leaf is

$$
\leq\left|V\left(T_{k, \frac{2 k}{\epsilon}}\right)\right| \cdot k^{\frac{-3 k}{\epsilon}}<1 / 3 .
$$

- That means, the probability that the algorithm finds a proper k-coloring is less than $1 / 3$.
- Hence we derive the error probability of the algorithm $<1 / 3$.

Thank you!

