A Characterization of Easily Testable Induced Subgraphs (Part II)

Noga Alon and Asaf Shapira
Combinatorics, Probability and Computing 15 (2006) 791-805.
Speaker: Joseph, Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University
Taiwan
May 19, 2009

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas
(4) Proof of the main theorem
(5) Go back to the proof of Lemma 1

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas
(4) Proof of the main theorem
(5) Go back to the proof of Lemma 1

Brief introduction to property testing

- Try to answer "yes" or "no" for the following relaxed decision problems by observing only a small fraction of the input.
- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?

Brief introduction to property testing

- Try to answer "yes" or "no" for the following relaxed decision problems by observing only a small fraction of the input.
- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?

Brief introduction to property testing (contd.)

- In property testing, we use ϵ-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input needs to be modified.

The model used in this talk (graph property)

- A graph $G(V, E)$ represented by an adjacency-matrix.
- A query: to see if two vertices u and v are adjacent or not.
- ϵ-far from satisfying \mathbb{P} :
- $\geq \epsilon n^{2}$ edges should be deleted or added to make G satisfy \mathbb{P}.

Focus of this talk

Theorem (Main Theorem)

Let H be a fixed undirected graph that contains at least one triangle. Then there exists a constant $c=c(H)>0$ such that the query complexity of any one-sided error property tester for induced H-freeness is at least

$$
\left(\frac{1}{\epsilon}\right)^{c \log (1 / \epsilon)}
$$

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas
(4) Proof of the main theorem
(5) Go back to the proof of Lemma 1

h-sum-free sets

- An approach in additive number theory.
- Invented by Felix A. Behrend (1946)
- On sets of integers which contain no three terms in arithmetic progression.
- A set $X \subseteq[m]=\{1, \ldots, m\}$ is called h-sum-free if
$\quad \triangleright$ for every pair of positive integers $a, b \leq h$, if $x, y, z \in X$ satisfy the
equation $a x+$ by $=(a+b) z$ then $x=y=z$.
- That is, whenever $a, b \leq h$, the only solution to the equation that uses values from X is one of the $|X|$ trivial solutions.

h-sum-free sets

- An approach in additive number theory.
- Invented by Felix A. Behrend (1946)
- On sets of integers which contain no three terms in arithmetic progression.
- A set $X \subseteq[m]=\{1, \ldots, m\}$ is called h-sum-free if
\triangleright for every pair of positive integers $a, b \leq h$, if $x, y, z \in X$ satisfy the equation $a x+b y=(a+b) z$ then $x=y=z$.
- That is, whenever $a, b \leq h$, the only solution to the equation that uses values from X is one of the $|X|$ trivial solutions.

h-sum-free sets

- An approach in additive number theory.
- Invented by Felix A. Behrend (1946)
- On sets of integers which contain no three terms in arithmetic progression.
- A set $X \subseteq[m]=\{1, \ldots, m\}$ is called h-sum-free if
\triangleright for every pair of positive integers $a, b \leq h$, if $x, y, z \in X$ satisfy the equation $a x+b y=(a+b) z$ then $x=y=z$.
- That is, whenever $a, b \leq h$, the only solution to the equation that uses values from X is one of the $|X|$ trivial solutions.

h-sum-free sets (contd.)

- Example 1: $h=1, m=8$,
- The only equation is $x+y=2 z$,
- $X=\{1,2,4,8\}$ is h-sum-free (i.e., no three terms in arithmetic progression).
- Example 2: $h=2, m=8$,
- The possible equations are $x+y=2 z, x+2 y=3 z, 2 x+y=3 z$, and $2 x+2 y=4 z$. - $X=\{1,2,4,8\}$ is NOT h-sum-free.

h-sum-free sets (contd.)

- Example 1: $h=1, m=8$,
- The only equation is $x+y=2 z$,
- $X=\{1,2,4,8\}$ is h-sum-free (i.e., no three terms in arithmetic progression).
- Example 2: $h=2, m=8$,
- The possible equations are

$$
x+y=2 z, x+2 y=3 z, 2 x+y=3 z, \text { and } 2 x+2 y=4 z .
$$

- $X=\{1,2,4,8\}$ is NOT h-sum-free.

h-sum-free sets (contd.)

- Example 1: $h=1, m=8$,
- The only equation is $x+y=2 z$,
- $X=\{1,2,4,8\}$ is h-sum-free (i.e., no three terms in arithmetic progression).
- Example 2: $h=2, m=8$,
- The possible equations are $x+y=2 z, x+2 y=3 z, 2 x+y=3 z$, and $2 x+2 y=4 z$.
- $X=\{1,2,4,8\}$ is NOT h-sum-free.

h-sum-free sets (contd.)

- Example 1: $h=1, m=8$,
- The only equation is $x+y=2 z$,
- $X=\{1,2,4,8\}$ is h-sum-free (i.e., no three terms in arithmetic progression).
- Example 2: $h=2, m=8$,
- The possible equations are $x+y=2 z, x+2 y=3 z, 2 x+y=3 z$, and $2 x+2 y=4 z$.
- $X=\{1,2,4,8\}$ is NOT h-sum-free.
- $X^{\prime}=\{1,2,8\}$ is h-sum-free.

h-sum-free sets (contd.)

- Example 1: $h=1, m=8$,
- The only equation is $x+y=2 z$,
- $X=\{1,2,4,8\}$ is h-sum-free (i.e., no three terms in arithmetic progression).
- Example 2: $h=2, m=8$,
- The possible equations are $x+y=2 z, x+2 y=3 z, 2 x+y=3 z$, and $2 x+2 y=4 z$.
- $X=\{1,2,4,8\}$ is NOT h-sum-free.
- $X^{\prime}=\{1,2,8\}$ is h-sum-free.

Lemma 1

For every positive integer m, there exists an h-sum-free subset $X \subset[m]=\{1,2, \ldots, m\}$ of size at least

$$
|X| \geq \frac{m}{e^{10 \sqrt{\log h \log m}}}
$$

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas
(4) Proof of the main theorem
(5) Go back to the proof of Lemma 1

s-blow-up

For convenience, we start the discussion with digraphs (the results for undirected graphs will be obtained as a special case).

- An s-blow-up of a digraph $H=(V(H), E(H))$ on h vertices:
- $v_{i} \in V(H) \xrightarrow{\text { replaced by }}$ an independent set I_{i} of size s;
- $\left(v_{i}, v_{j}\right) \in E(H) \xrightarrow{\text { replaced by }}$ a complete bipartite directed subgraph $\left(I_{i}, I_{j}\right)$ with edges directed from I_{i} to I_{j}.

s-blow-up (contd.)

- 3-blow-up of an edge.

s-blow-up (contd.)

H

2-blow-up of H

- Taking an s-blow-up of H contains s^{n} induced copies of H. - Each of these copies is called a special copy of H.

s-blow-up (contd.)

H

2-blow-up of H

- Taking an s-blow-up of $H \Rightarrow$ getting a digraph on sh vertices that contains s^{h} induced copies of H.
- Each of these copies is called a special copy of H.

s-blow-up (contd.)

H

2-blow-up of H

- Taking an s-blow-up of $H \Rightarrow$ getting a digraph on sh vertices that contains s^{h} induced copies of H.
- Each of these copies is called a special copy of H.

s-blow-up (contd.)

H

2-blow-up of H

- Each pair of vertices in the blow-up is contained in $\leq s^{h-2}$ special copies of H.

s-blow-up (contd.)

H

2-blow-up of H

- Each pair of vertices in the blow-up is contained in $\leq s^{h-2}$ special copies of H.
adding or removing an edge from the blow-up can destroy $\leq s^{h-2}$ special copies of H. - One must add or remove $\geq s^{h} / s^{h-2}=s^{2}$ edges from the blow-up to destroy all its snecial conies of H

s-blow-up (contd.)

H

2-blow-up of H

- Each pair of vertices in the blow-up is contained in $\leq s^{h-2}$ special copies of H.
- \therefore adding or removing an edge from the blow-up can destroy $\leq s^{h-2}$ special copies of H.
- One must add or remove $\geq s^{h} / s^{h-2}=s^{2}$ edges from the blow-up to destroy all its special copies of H.

s-blow-up (contd.)

H

2-blow-up of H

- Each pair of vertices in the blow-up is contained in $\leq s^{h-2}$ special copies of H.
- \therefore adding or removing an edge from the blow-up can destroy $\leq s^{h-2}$ special copies of H.
- One must add or remove $\geq s^{h} / s^{h-2}=s^{2}$ edges from the blow-up to destroy all its special copies of H.

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas

4) Proof of the main theorem
(5) Go back to the proof of Lemma 1

Assumptions

- We start the discussion with digraphs.
- A triangle in a digraph is like:

The first main lemma

We have seen the following lemma:

Lemma 1

For every positive integer m, there exists an h-sum-free subset $X \subset[m]=\{1,2, \ldots, m\}$ of size at least

$$
|X| \geq \frac{m}{e^{10 \sqrt{\log h \log m}}}
$$

The second main lemma

Lemma 2

For every fixed digraph H on h vertices, that contains at least one triangle, there is a constant $c=c(H)>0$, such that for every positive $\epsilon<\epsilon_{0}(H)$ and every integer $n>n_{0}(\epsilon)$, there is an n-vertex digraph G such that

- G is ϵ-far from being induced H-free;
- yet G contains $\leq \epsilon^{c \log (1 / \epsilon)} n^{h}$ induced copies of H.

Proof of Lemma 2

- Given a small $\epsilon>0$, and let m be the largest integer satisfying

$$
\frac{1}{h^{4} e^{10 \sqrt{\log m \log h}} \geq \epsilon}
$$

- It is easy to check that this m satisfies

$$
m \geq\left(\frac{1}{\epsilon}\right)^{c \log (1 / \epsilon)}
$$

for an appropriate $c=c(H)>0$.

Proof of Lemma 2 (contd.)

- Let $X \subseteq\{1,2, \ldots, m\}$ be the set as in Lemma 1 .
- Call the vertices of $H v_{1}, v_{2}, \ldots, v_{h}$.
- Let $V_{1}, V_{2}, \ldots, V_{h}$ be pairwise disjoint sets of vertices, where
- $\left|V_{i}\right|=i m$ and the vertices in V_{i} are denoted by $1,2, \ldots, i m$.
- With a slight abuse of notation, we think of the sets V_{i} as being pairwise disjoint.

Proof of Lemma 2 (contd.)

- We now construct a graph F whose vertex set is $V_{1} \cup V_{2} \cup \ldots \cup V_{h}$.
- For each $j, 1 \leq j \leq m$, for each $x \in X$ and for each directed edge $\left(v_{p}, v_{q}\right)$ of H :

$$
j+(p-1) x \in V_{p} \quad \rightarrow \quad j+(q-1) x \in V_{q}
$$

- That is, for each $1 \leq j \leq m$ and $x \in X$, the graph F contains a copy of H spanned by the vertices $j, j+x, j+2 x, \ldots, j+(h-1) x$.

$$
t=j+(p-1) x \quad \rightarrow \quad j+(q-1) x
$$

i.e.,

$$
t \rightarrow t+(q-p) x .
$$

- $m|X|$ copies of H.

Proof of Lemma 2 (contd.)

- Each of these $m|X|$ copies of H corresponds to an arithmetic progression whose first element is $j(1 \leq j \leq m)$ and whose difference is $x(x \in X)$.
- F contains $m|X|$ copies of H such that each pair of copies have at most one common vertex.
- Since each edge of F belongs to one of these copies, these $m|X|$ copies of H in F are in particular induced.
- We call these copies essential copies of H.

Proof of Lemma 2 (contd.)

- Define

$$
s=\left\lfloor\frac{n}{|V(F)|}\right\rfloor=\left\lfloor\frac{2 n}{h(h+1) m}\right\rfloor .
$$

- Let G be the s-blow-up of F
- Add some isolated vertices, if needed, to make sure the number of vertices is precisely n.
- After s-blow-up of F, we will derive special copies of the essential copies of H.

An illustration of F

Assume that $h=3, m=3$, so we have an h-sum-free set $X=\{1,2\}$.

$$
\text { Use } X \text { and } H \quad \xrightarrow{\text { construct } F} \quad \text { essential copies of } H
$$

essential copies $\xrightarrow{s \text {-blow-up (construct } G \text {) }}$ special copies of H

The following two claims complete the proof of this lemma.

Claim 1

The digraph G is ϵ-far from being induced H-free.

Claim 2

The digraph G contains at most $\epsilon^{c \log (1 / \epsilon)} n^{h}$ induced copies of H.

Proof of Claim 1

Claim 1

The digraph G is ϵ-far from being induced H-free.

Proof.

- The main idea of the proof:
- Show that adding or removing an edge from G can destroy special copies that belong to at most one of the blow-ups of the essential copies of H in F.
(Recall) Two essential copies of H in F share at most one common vertex in F.

Their corresponding blow-ups in G, say Y_{1} and Y_{2}, share at most one common independent set.

Proof of Claim 1

Claim 1

The digraph G is ϵ-far from being induced H-free.

Proof.

- The main idea of the proof:
- Show that adding or removing an edge from G can destroy special copies that belong to at most one of the blow-ups of the essential copies of H in F.
(Recall) Two essential copies of H in F share at most one common vertex in F.
* Their corresponding blow-ups in G, say Y_{1} and Y_{2}, share at most one common independent set.

Hence a special copy of H in Y_{1} and a special copy of H in Y_{2} share at
most one common vertex.

Proof of Claim 1

Claim 1

The digraph G is ϵ-far from being induced H-free.

Proof.

- The main idea of the proof:
- Show that adding or removing an edge from G can destroy special copies that belong to at most one of the blow-ups of the essential copies of H in F.
(Recall) Two essential copies of H in F share at most one common vertex in F.
* Their corresponding blow-ups in G, say Y_{1} and Y_{2}, share at most one common independent set.
* Hence a special copy of H in Y_{1} and a special copy of H in Y_{2} share at most one common vertex.

Proof of Claim 1 (contd.)

Proof of Claim 1 (contd.)

Proof. (contd.)

- To destroy all the special copies of one s-blow-up of H, one needs to add or delete $\geq s^{2}$ edges from the blow-up.
- Since G contains $m|X|$ blow-ups of essential copies of H which are all induced in F, we conclude that one has to add or delete

$$
\geq s^{2} m|X|=\frac{4 n^{2} m|X|}{h^{2}(h+1)^{2} m^{2}} \geq \frac{|X| n^{2}}{h^{4} m} \geq \frac{n^{2}}{h^{4} e^{10} \sqrt{\log m \log h}} \geq \epsilon n^{2}
$$

edges to make G induced H-free.

Proof of Claim 2

Claim 2

The digraph G contains at most $\epsilon^{c \log (1 / \epsilon)} n^{h}$ induced copies of H.

Proof.

- Our goal is to show that G contains $\leq \epsilon^{c \log (1 / \epsilon)} n^{3}$ triangles.
$\because H$ contains ≥ 1 triangle and each triangle belongs to
$\leq\binom{ n}{n-3} \leq n^{h-3}$ copies of H.
- Let $\mathrm{BP}\left(V_{i}\right)$ denote the blow-up of the im vertices that belonged to V_{i} in F.
- We denote by I_{V} the independent set of vertices in G which replace the vertex v in $F\left(\therefore \mathrm{BP}\left(V_{i}\right)=\bigcup_{v \in V_{i}} I_{v}\right)$.
- Consider a partition of $V(G)$ into h subsets U_{1}, \ldots, U_{h}, where $\mathrm{BP}\left(V_{i}\right) \subseteq U_{i}$.

A remark

- Note that if we show that:
the induced subgraphs of G on any three of the subsets U_{1}, \ldots, U_{h} contains $\leq \epsilon^{c^{\prime} \log (1 / \epsilon)} n^{3}$ triangles,
then the total number of triangles in G is $\leq\binom{ h}{3} \epsilon^{c^{\prime} \log (1 / \epsilon)} n^{3}$, which is still $\leq \epsilon^{c \log (1 / \epsilon)} n^{3}$, when a small enough $c=c(H)$ is chosen.

Proof. (contd.)

- Fix any three subsets U_{i}, U_{j}, U_{k} such that $1 \leq i<j<k \leq h$.
- A triangle spanned by U_{i}, U_{j}, U_{k} must have exactly one vertex in each of them.

Proof. (contd.)

- If U_{i}, U_{j}, U_{k} span a triangle with vertices belonging to $I_{x} \subseteq U_{i}$, $I_{y} \subseteq U_{j}$, and $I_{z} \subseteq U_{k}$, then the three vertices $x \in V_{i}, y \in V_{j}, z \in V_{k}$ in F must also span a triangle.
- Conversely, if $x \in V_{i}, y \in V_{j}, z \in V_{k}$ span a triangle in F, then for every choice of three vertices $u \in I_{x} \subseteq U_{i}, v \in I_{y} \subseteq U_{j}, w \in I_{z} \subseteq U_{k}$, the vertices u, v, w span a triangle in G.
- Therefore,
$\#\left\{\right.$ triangles spanned by $\left.U_{i}, U_{j}, U_{k}\right\}$
$=s^{3} \cdot \#\left\{\right.$ triangles spanned by $\left.V_{i}, V_{j}, V_{k}\right\}$.

Proof. (contd.)

- Assume that v_{i}, v_{j}, v_{k} span a triangle in H in the following discussion.
- If not, then by the definition of F, V_{i}, V_{j}, V_{k} do not span any triangle, and similarly U_{i}, U_{j}, U_{K} in G.
- Then by the definition of F, for any triangle spanned by V_{i}, V_{j}, V_{k}, there are $x, y \in X$ and $1 \leq t \leq i m$ such that the three vertices of this triangle are

$$
t \in V_{i}, \quad t+(j-i) x \in V_{j}, \quad t+(j-i) x+(k-j) y \in V_{k}
$$

Proof. (contd.)

- Assume that v_{i}, v_{j}, v_{k} span a triangle in H in the following discussion.
- If not, then by the definition of F, V_{i}, V_{j}, V_{k} do not span any triangle, and similarly U_{i}, U_{j}, U_{K} in G.
- Then by the definition of F, for any triangle spanned by V_{i}, V_{j}, V_{k}, there are $x, y \in X$ and $1 \leq t \leq i m$ such that the three vertices of this triangle are

$$
t \in V_{i}, \quad t+(j-i) x \in V_{j}, \quad t+(j-i) x+(k-j) y \in V_{k}
$$

- t connects to $t+(j-i) x$

Proof. (contd.)

- Assume that v_{i}, v_{j}, v_{k} span a triangle in H in the following discussion.
- If not, then by the definition of F, V_{i}, V_{j}, V_{k} do not span any triangle, and similarly U_{i}, U_{j}, U_{K} in G.
- Then by the definition of F, for any triangle spanned by V_{i}, V_{j}, V_{k}, there are $x, y \in X$ and $1 \leq t \leq i m$ such that the three vertices of this triangle are

$$
t \in V_{i}, \quad t+(j-i) x \in V_{j}, \quad t+(j-i) x+(k-j) y \in V_{k} .
$$

- t connects to $t+(j-i) x$ and $t+(j-i) x$ connects to

$$
t+(j-i) x+(k-j) y
$$

Proof. (contd.)

- Assume that v_{i}, v_{j}, v_{k} span a triangle in H in the following discussion.
- If not, then by the definition of F, V_{i}, V_{j}, V_{k} do not span any triangle, and similarly U_{i}, U_{j}, U_{K} in G.
- Then by the definition of F, for any triangle spanned by V_{i}, V_{j}, V_{k}, there are $x, y \in X$ and $1 \leq t \leq i m$ such that the three vertices of this triangle are

$$
\begin{aligned}
& t \in V_{i}, \quad t+(j-i) x \in V_{j}, \quad t+(j-i) x+(k-j) y \in V_{k} . \\
& t \text { connects to } t+(j-i) x \text { and } t+(j-i) x \text { connects to } \\
& t+(j-i) x+(k-j) y .
\end{aligned}
$$

Proof. (contd.)

- As this is a triangle, there must also be an edge connecting t to $t+(j-i) x+(k-j) y$.
- Hence there exists $z \in X$ such that

$$
t+(k-i) z=t+(j-i) x+(k-j) y .
$$

- Thus we have $(j-i) x+(k-j) y=(k-i) z$.
- Since X is h-sum-free, we have $x=y=z$.

Proof. (contd.)

- Therefore, V_{i}, V_{j}, V_{k} span precisely $m|X|$ triangles, which are spanned by the vertices

$$
t+(i-1) x \in V_{i}, \quad t+(j-1) x \in V_{j}, \quad t+(k-1) x \in V_{k \cdot}
$$

for every possible choice $t \in\{1, \ldots, m\}$ and $x \in X$.

- We conclude that U_{i}, U_{j}, U_{k} span

$$
m|X| s^{3}<m^{2}(n / m)^{3} \leq n^{3} / m \leq \frac{n^{3}}{(1 / \epsilon)^{c \log (1 / \epsilon)}}=\epsilon^{c \log (1 / \epsilon)} n^{3}
$$

triangles.

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas

4. Proof of the main theorem
(5) Go back to the proof of Lemma 1

The main theorem can be proved by the previous lemmas

Main Theorem

Let H be a fixed undirected graph that contains at least one triangle. Then there exists a constant $c=c(H)>0$ such that the query complexity of any one-sided error property tester for induced H-freeness is at least

$$
\left(\frac{1}{\epsilon}\right)^{c \log (1 / \epsilon)}
$$

- Here we left the details of the proof as an exercise.
- Hint: use Lemma 2, and apply two probabilistic strategies: union bound and Markov's inequality.

Outline

(1) Introduction

- Brief introduction to property testing
- Focus of this talk
(2) Two technical skills
- h-sum-free sets
- s-blow-up
(3) Two main lemmas

4. Proof of the main theorem
(5) Go back to the proof of Lemma 1

Recall Lemma 1

Lemma 1

For every positive integer m, there exists an h-sum-free subset $X \subset[m]=\{1,2, \ldots, m\}$ of size at least

$$
|X| \geq \frac{m}{e^{10 \sqrt{\log h \log m}}}
$$

Proof of Lemma 1

Proof.

- Let d and r be integers (to be chosen later) and define:

$$
S_{r}=\left\{\sum_{i=0}^{k} x_{i} d^{i} \left\lvert\, x_{i}<\frac{d}{2 h}\right. \text { for } 0 \leq i \leq k \text { and } \sum_{i=0}^{k} x_{i}^{2}=r\right\}
$$

where $k=\lfloor\log m / \log d\rfloor-1=\left\lfloor\log _{d} m\right\rfloor-1$.
x is represented in base d

Proof. (contd.)

- We claim that S_{r} is h-sum-free for every d and r.
- Assume that there are $x, y, z \in S_{r}$ that satisfy the equation $a x+b y=(a+b) z$, where $a, b \leq h$ are positive integers and

$$
x=\sum_{i=0}^{k} x_{i} d^{i}, \quad y=\sum_{i=0}^{k} y_{i} d^{i}, \quad z=\sum_{i=0}^{k} z_{i} d^{i}
$$

- By definition, $x_{i}, y_{i}, z_{i}<d /(2 h)$, and $a, b \leq h$, there is no carry in the base- d addition of the numbers in S_{r}.

That is, $a x_{i}+b y_{i}=(a+b) z_{i}$ (i.e., z_{i} is a weighted average of x_{i} and y_{i}).

Proof. (contd.)

- Fact: $f(z)=z^{2}$ is a convex function, so by Jensen's inequality we have

$$
a x_{i}^{2}+b y_{i}^{2} \geq(a+b) z_{i}^{2}
$$

and the inequality is strict unless $x_{i}=y_{i}=z_{i}$.

- However, if for some i the inequality is strict, we have

$$
a \sum_{i=0}^{k} x_{i}^{2}+b \sum_{i=0}^{k} y_{i}^{2}>(a+b) \sum_{i=0}^{k} z_{i}^{2}
$$

which is impossible since by definition

$$
\sum_{i=0}^{k} x_{i}^{2}=\sum_{i=0}^{k} y_{i}^{2}=\sum_{i=0}^{k} z_{i}^{2}=r
$$

- Thus $x_{i}=y_{i}=z_{i}$ for all i and S_{r} is h-sum-free.

Proof of Lemma 1 (contd.)

Proof. (contd.)

- Next we complete the proof by showing that, for some r, the set S_{r} has size at least $m / e^{10 \sqrt{\log h \log m}}$.
- The integer r in the definition of S_{r} satisfies $r=\sum_{i=0}^{k} x_{i}^{2} \leq(k+1)(d / 2 h)^{2}<k d^{2}$.
- The union of the sets S_{r} has size $(d / 2 h)^{k+1}>(d / 2 h)^{k}$.
- It follows that for some r, the set S_{r} satisfies $\left|S_{r}\right| \geq(d / 2 h)^{k} / k d^{2}$.

Proof of Lemma 1 (contd.)

Proof. (contd.)

- Setting $d=e^{\sqrt{\log m \log h}}$

$$
\begin{aligned}
& \therefore k=\left\lfloor\frac{\log m}{\log d}\right\rfloor=\left\lfloor\frac{\log m}{\sqrt{\log m \log h}}\right\rfloor \approx \sqrt{\frac{\log m}{\log h}} . \\
& =\frac{\left|S_{r}\right| \geq \frac{d^{k}}{(2 h)^{k} k d^{2}}=\frac{e^{\sqrt{\log m \log h} \cdot \sqrt{\log m / \log h}}}{(2 h)^{k} k d^{2}}}{(2 h)^{\sqrt{\log m / \log h}} \cdot \sqrt{\log m / \log h} \cdot e^{2 \sqrt{\log m \log h}}} \\
& =\frac{m}{e^{(\log 2 h) \sqrt{\log m / \log h}} \cdot \sqrt{\log m / \log h} \cdot e^{2 \sqrt{\log m \log h}}} \\
& >
\end{aligned} \frac{m}{e^{10 \sqrt{\log m \log h}} .}
$$

which is as required.

Thank you!

