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Brief introduction to property testing

@ Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.
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Brief introduction to property testing

@ Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

» Does the input satisfy a designated property, or

» is e-far from satisfying the property?
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Brief introduction to property testing (contd.)

@ In property testing, we use e-far to say that the input is far from a
certain property.

@ ¢: the least fraction of the input needs to be modified.
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The model used in this talk (graph property)

@ A graph G(V, E) represented by an adjacency-matrix.
» A query: to see if two vertices u and v are adjacent or not.

o c-far from satisfying P:

» > en® edges should be deleted or added to make G satisfy P.
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Focus of this talk

Theorem (Main Theorem)

Let H be a fixed undirected graph that contains at least one triangle.

Then there exists a constant ¢ = c(H) > 0 such that the query complexity
of any one-sided error property tester for induced H-freeness is at least

1 clog(1/e)
)
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© Two technical skills

@ h-sum-free sets
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h-sum-free sets

@ An approach in additive number theory.
» Invented by Felix A. Behrend (1946)
> On sets of integers which contain no three terms in arithmetic
progression.
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h-sum-free sets

@ An approach in additive number theory.

» Invented by Felix A. Behrend (1946)
> On sets of integers which contain no three terms in arithmetic
progression.

@ Aset X C [m]={1,...,m} is called h-sum-free if
> for every pair of positive integers a, b < h, if x,y,z € X satisfy the
equation ax + by = (a+ b)z then x =y = z.
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h-sum-free sets

@ An approach in additive number theory.

» Invented by Felix A. Behrend (1946)
> On sets of integers which contain no three terms in arithmetic
progression.

@ Aset X C [m]={1,...,m} is called h-sum-free if

> for every pair of positive integers a, b < h, if x,y,z € X satisfy the
equation ax + by = (a+ b)z then x =y = z.

@ That is, whenever a, b < h, the only solution to the equation that
uses values from X is one of the |X| trivial solutions.
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h-sum-free sets (contd.)

@ Example 1: h=1, m=28§,
» The only equation is x + y = 2z,

» X =1{1,2,4,8} is h-sum-free (i.e., no three terms in arithmetic
progression).
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h-sum-free sets (contd.)

@ Example 1: h=1, m=28§,
» The only equation is x + y = 2z,

» X =1{1,2,4,8} is h-sum-free (i.e., no three terms in arithmetic
progression).

@ Example 2: h=2, m=28§,

» The possible equations are
xX+y=2z x+2y =3z, 2x+y =3z, and 2x + 2y = 4z.
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@ Example 1: h=1, m=28§,
» The only equation is x + y = 2z,

» X =1{1,2,4,8} is h-sum-free (i.e., no three terms in arithmetic
progression).
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h-sum-free sets (contd.)

@ Example 1: h=1, m=28§,
» The only equation is x + y = 2z,

» X =1{1,2,4,8} is h-sum-free (i.e., no three terms in arithmetic
progression).

@ Example 2: h=2, m=28§,

» The possible equations are
X+y=2z x+2y =3z, 2x+y =3z, and 2x + 2y = 4z.

» X ={1,2,4,8}is NOT h-sum-free.
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h-sum-free sets (contd.)

@ Example 1: h=1, m=28§,
» The only equation is x + y = 2z,
» X =1{1,2,4,8} is h-sum-free (i.e., no three terms in arithmetic
progression).
@ Example 2: h=2, m=28§,

» The possible equations are
xX+y=2z x+2y =3z, 2x+y =3z, and 2x + 2y = 4z.

» X ={1,2,4,8}is NOT h-sum-free.
» X' ={1,2,8} is h-sum-free.
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Lemma 1
For every positive integer m, there exists an h-sum-free subset
X C [m] ={1,2,...,m} of size at least

m

‘X‘ = elO\/Ioghlogm'
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© Two technical skills

@ s-blow-up

o>
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s-blow-up

For convenience, we start the discussion with digraphs (the results for
undirected graphs will be obtained as a special case).

@ An s-blow-up of a digraph H = (V(H), E(H)) on h vertices:

replaced by
—

» v; € V(H) an independent set /; of size s;

laced b
> (vi,vj) € E(H) _replaced by complete bipartite directed
subgraph (/;, I;) with edges directed from /; to /;.
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s-blow-up (contd.)

@ 3-blow-up of an edge.
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s-blow-up (contd.)

H 2-blow-up of H

@ Taking an s-blow-up of H
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s-blow-up (contd.)

H 2-blow-up of H

@ Taking an s-blow-up of H =
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s-blow-up (contd.)

H 2-blow-up of H
@ Taking an s-blow-up of H = getting a digraph on sh vertices that
contains s induced copies of H.

@ Each of these copies is called a special copy of H.
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s-blow-up (contd.)

H 2-blow-up of H

@ Each pair of vertices in the blow-up is contained in < s"~2 special
copies of H.
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H 2-blow-up of H

@ Each pair of vertices in the blow-up is contained in < s"~2 special
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s-blow-up (contd.)

H 2-blow-up of H

@ Each pair of vertices in the blow-up is contained in < s"~2 special
copies of H.

@ . adding or removing an edge from the blow-up can destroy < s"—2

special copies of H.

@ One must add or remove > s"/s"~2 = 52 edges from the blow-up to
destroy all its special copies of H.

16 /48
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© Two main lemmas
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Assumptions

@ We start the discussion with digraphs.

@ A triangle in a digraph is like:

VANRVANRVAN

X

18 /48



The first main lemma

We have seen the following lemma:

Lemma 1
For every positive integer m, there exists an h-sum-free subset
X C [m]={1,2,...,m} of size at least

m
‘X‘ = elO\/Ioghlogm'
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The second main lemma

Lemma 2

For every fixed digraph H on h vertices, that contains at least one triangle,
there is a constant ¢ = c(H) > 0, such that for every positive € < eo(H)
and every integer n > no(€), there is an n-vertex digraph G such that

o G is e-far from being induced H-free;

@ yet G contains < €€ log(1/€) ph jnduced copies of H.

20/48



Proof of Lemma 2

@ Given a small € > 0, and let m be the largest integer satisfying

—1 >
h#e10y/logmlogh — €

@ It is easy to check that this m satisfies

1 clog(1/¢)
" Z <_> ’
€

for an appropriate ¢ = ¢(H) > 0.
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Proof of Lemma 2 (contd.)

@ Let X C{1,2,...,m} be the set as in Lemma 1.

o Call the vertices of H vi,va, ..., vp.
o Let Vi, Vo, ..., V), be pairwise disjoint sets of vertices, where
» |V;| = im and the vertices in V; are denoted by 1,2, ..., im.

» With a slight abuse of notation, we think of the sets V; as being
pairwise disjoint.
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Proof of Lemma 2 (contd.)

@ We now construct a graph F whose vertex setis ViU VL U ... U V}.

@ For each j, 1 < j < m, for each x € X and for each directed edge
(vp, vq) of H:

j+(p—1)xeV, — j+(g—1)xeV,.

» Thatis, for each 1 <j < m and x € X, the graph F contains a copy
of H spanned by the vertices j, j+x, j+2x, ..., j+ (h—1)x.

t=j+(p-1)x — j+(g—1)x

t — t+(qg—p)x
» m|X]| copies of H.
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Proof of Lemma 2 (contd.)

@ Each of these m|X| copies of H corresponds to an arithmetic
progression whose first element is j (1 < j < m) and whose difference
is x (x € X).

@ F contains m|X| copies of H such that each pair of copies have at
most one common vertex.

@ Since each edge of F belongs to one of these copies, these m|X]|
copies of H in F are in particular induced.

@ We call these copies essential copies of H.
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Proof of Lemma 2 (contd.)

@ Define

T LvFF)\J - {h(hinl)mJ‘

o Let G be the s-blow-up of F
» Add some isolated vertices, if needed, to make sure the number of
vertices is precisely n.

o After s-blow-up of F, we will derive special copies of the essential
copies of H.

25/48



An illustration of F

Assume that h =3, m = 3, so we have an h-sum-free set X = {1,2}.
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truct F . .
Use X and H °OPSTUCE P essential copies of H

s-blow-up (construct G)

essential copies special copies of H
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The following two claims complete the proof of this lemma.

Claim 1
The digraph G is e-far from being induced H-free.

Claim 2

The digraph G contains at most ¢€'°8(1/€) ph induced copies of H.

28 /48




Proof of Claim 1

Claim 1
The digraph G is e-far from being induced H-free. J

Proof.

@ The main idea of the proof:

Show that adding or removing an edge from G can destroy special

copies that belong to at most one of the blow-ups of the essential
copies of H in F.

(Recall) Two essential copies of H in F share at most one common
vertex in F.
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Claim 1
The digraph G is e-far from being induced H-free. J

Proof.

@ The main idea of the proof:

Show that adding or removing an edge from G can destroy special
copies that belong to at most one of the blow-ups of the essential
copies of H in F.

(Recall) Two essential copies of H in F share at most one common
vertex in F.

Their corresponding blow-ups in G, say Y1 and Y2, share at most one
common independent set.
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Proof of Claim 1

Claim 1
The digraph G is e-far from being induced H-free.

Proof.

@ The main idea of the proof:

Show that adding or removing an edge from G can destroy special
copies that belong to at most one of the blow-ups of the essential
copies of H in F.

(Recall) Two essential copies of H in F share at most one common
vertex in F.

Their corresponding blow-ups in G, say Y1 and Y2, share at most one
common independent set.

Hence a special copy of H in Y; and a special copy of H in Y, share at
most one common vertex.

~
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Proof of Claim 1 (contd.)
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Proof of Claim 1 (contd.)

Proof. (contd.)

@ To destroy all the special copies of one s-blow-up of H, one needs to
add or delete > s? edges from the blow-up.

@ Since G contains m|X| blow-ups of essential copies of H which are all
induced in F, we conclude that one has to add or delete

4n’m|X| | X |n? n? 5
>

2 _
>s'm|X| = h2(h+1)2m2 = h*m = p4el0Viogmlogh 2 en

edges to make G induced H-free. O

31/48



Proof of Claim 2

Claim 2

The digraph G contains at most €€'°8(1/€) ph induced copies of H.
Proof.

@ Our goal is to show that G contains < €€'°8(1/€) n3 triangles.

*.© H contains > 1 triangle and each triangle belongs to
< (,"5) < n"~3 copies of H.

@ Let BP(V;) denote the blow-up of the im vertices that belonged to V;
in F.

@ We denote by /, the independent set of vertices in G which replace
the vertex v in F (. BP(Vi) = U,y Iv)-

@ Consider a partition of V(G) into h subsets Uy, ..., Up, where
BP(V;) C U

o
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A remark

@ Note that if we show that:

the induced subgraphs of G on any three of the subsets Uy, ..., Uy
contains < €< log(1/¢) p3 triangles,

then the total number of triangles in G is < (§)e< '8(1/<)p3,

which is still < e€'°8(1/9)p3 when a small enough ¢ = c(H) is chosen.

33/48



Proof. (contd.)
@ Fix any three subsets U;, U;, Uy such that 1 </ <j < k < h.

@ A triangle spanned by U;, U;, Ux must have exactly one vertex in each
of them.
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Proof. (contd.)
o If Ui, U;, Uk span a triangle with vertices belonging to I, C U;,
l, € Uj, and I, C Uy, then the three vertices x € V;, y € V}, z € V)
in F must also span a triangle.

o Conversely, if x € V;, y € V}, z € V) span a triangle in F, then for
every choice of three vertices uc I, C U;, ve l, C U;, we l, C Uy,
the vertices u, v, w span a triangle in G.

@ Therefore,

#{triangles spanned by U;, U;, Uy}
= 53 . #{triangles spanned by V;, V;, V,}.
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Proof. (contd.)

@ Assume that v;, vj, v, span a triangle in H in the following discussion.

If not, then by the definition of F, V;, V;, Vi do not span any triangle,
and similarly U;, U;, Uk in G.

@ Then by the definition of F, for any triangle spanned by V;, V;, V,
there are x,y € X and 1 < t < im such that the three vertices of this
triangle are

teV,, t+(-—ixeV;, t+(—ix+(k—JjyeE Vi

36 /48
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@ Then by the definition of F, for any triangle spanned by V;, V;, V,
there are x,y € X and 1 < t < im such that the three vertices of this
triangle are

teV, t+(-ixeV, t+(-ix+(k—jye€ V.

t connects to t + (j — i)x

36 /48



Proof. (contd.)

@ Assume that v;, vj, v, span a triangle in H in the following discussion.

If not, then by the definition of F, V;, V;, Vi do not span any triangle,
and similarly U;, U;, Uk in G.

@ Then by the definition of F, for any triangle spanned by V;, V;, V,
there are x,y € X and 1 < t < im such that the three vertices of this
triangle are

teVi, t+(—ixeV;, t+(—ix+(k—Jjy € Ve

t connects to t + (j — i)x and t + (j — i)x connects to
t+(—i)x+(k—J)y.
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Proof. (contd.)

@ Assume that v;, vj, v, span a triangle in H in the following discussion.

If not, then by the definition of F, V;, V;, Vi do not span any triangle,
and similarly U;, U;, Uk in G.

@ Then by the definition of F, for any triangle spanned by V;, V;, V,
there are x,y € X and 1 < t < im such that the three vertices of this
triangle are
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Proof. (contd.)

@ As this is a triangle, there must also be an edge connecting t to
t+ (G —i)x+(k—))y.

@ Hence there exists z € X such that

t+(k—iNz=t+ (G —i)x+(k—))y.

@ Thus we have (j — i)x + (k — j)y = (k — i)z.

@ Since X is h-sum-free, we have x = y = z.



Proof. (contd.)

@ Therefore, V;, V;, Vi span precisely m|X| triangles, which are spanned
by the vertices

t+(i—1)xeV,, t+(—-1xeV), t+(k—1)x¢e V.,
for every possible choice t € {1,..., m} and x € X.

@ We conclude that U;, U;, Uy span

3
W €
m|X|s* < m*(n/m)® < n*/m < PR _ (Clog(1/e) ;3

triangles.
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@ Proof of the main theorem
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The main theorem can be proved by the previous lemmas

Main Theorem

Let H be a fixed undirected graph that contains at least one triangle.
Then there exists a constant ¢ = c¢(H) > 0 such that the query complexity
of any one-sided error property tester for induced H-freeness is at least

1 clog(1/e¢)
)

@ Here we left the details of the proof as an exercise.
> Hint: use Lemma 2, and apply two probabilistic strategies: union
bound and Markov'’s inequality.
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Outline

© Go back to the proof of Lemma 1
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Recall Lemma 1

Lemma 1

For every positive integer m, there exists an h-sum-free subset
X C [m] ={1,2,..., m} of size at least

m

‘X‘ = elO\/Ioghlogm'
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Proof of Lemma 1

Proof.

@ Let d and r be integers (to be chosen later) and define:

K K
] d
S,:{Ex,-d’\x,-<ﬂfor0§i§kand§x,-2:r
i=0 i=0

where k = |logm/logd| — 1 = |loggm| — 1.

2

x is represented in base d

X = [ X% PWror | Xiz| oo Xy | X1 [ Xo

bit

digits
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Proof. (contd.)
@ We claim that S, is h-sum-free for every d and r.

@ Assume that there are x, y,z € S, that satisfy the equation
ax + by = (a+ b)z, where a, b < h are positive integers and

k k k
X:ZXidiv y:Z}/idi, Z:ZZidi.
i=0 i=0 i=0

@ By definition, x;,yi,zi < d/(2h), and a, b < h, there is no carry in the
base-d addition of the numbers in S,.
That is, ax; + by; = (a + b)z (i.e., z is a weighted average of x; and
}/i)-
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Proof. (contd.)

@ Fact: f(z) = z% is a convex function, so by Jensen's inequality we
have
ax? + by? > (a+ b)Z?,

and the inequality is strict unless x; = y; = z;.
@ However, if for some i the inequality is strict, we have

k
azx —I—be, (a+b) Z 2,
i=0

which is impossible since by definition

® Thus x; = y; = z; for all / and S, is h-sum-free.



Proof of Lemma 1 (contd.)

Proof. (contd.)

@ Next we complete the proof by showing that, for some r, the set S,
has size at least m/e!0Vvioghlogm

@ The integer r in the definition of S, satisfies
r=3Kox? < (k+1)(d/2h)? < kd?.

@ The union of the sets S, has size (d/2h)<*1 > (d/2h)k.

o It follows that for some r, the set S, satisfies |S,| > (d/2h)¥/kd?.
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Proof of Lemma 1 (contd.)

Proof. (contd.)
@ Setting d = eV'ogmlogh

ko logm | log m _ [logm
o " |logd | | Viegmlogh|  \ logh’

E dk e\/w-\/log m/ log h
> =
15 = (2h)kkd? (2h)kkd?

m

(2h)\/logm/ log h \/Iog m/ Iog h- e2\/Iogm|ogh
m

e(log 2h)4/logm/logh \/Iog m/ |0g h - e2V/log mlog h
m
elO\/Iogmlogh ’

which is as required.
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Thank you!



