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Brief introduction to property testing

Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

◮ Does the input satisfy a designated property, or

◮ is ǫ-far from satisfying the property?
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Brief introduction to property testing (contd.)

In property testing, we use ǫ-far to say that the input is far from a
certain property.

ǫ: the least fraction of the input needs to be modified.
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The model used in this talk (graph property)

A graph G (V ,E ) represented by an adjacency-matrix.
◮ A query: to see if two vertices u and v are adjacent or not.

ǫ-far from satisfying P:
◮ ≥ ǫn2 edges should be deleted or added to make G satisfy P.
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Focus of this talk

Theorem (Main Theorem)

Let H be a fixed undirected graph that contains at least one triangle.

Then there exists a constant c = c(H) > 0 such that the query complexity

of any one-sided error property tester for induced H-freeness is at least

(

1

ǫ

)c log(1/ǫ)

.
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h-sum-free sets

An approach in additive number theory.
◮ Invented by Felix A. Behrend (1946)
◮ On sets of integers which contain no three terms in arithmetic

progression.

A set X ⊆ [m] = {1, . . . ,m} is called h-sum-free if

� for every pair of positive integers a, b ≤ h, if x , y , z ∈ X satisfy the
equation ax + by = (a + b)z then x = y = z.

That is, whenever a, b ≤ h, the only solution to the equation that
uses values from X is one of the |X | trivial solutions.
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h-sum-free sets (contd.)

Example 1: h = 1, m = 8,

◮ The only equation is x + y = 2z,

◮ X = {1, 2, 4, 8} is h-sum-free (i.e., no three terms in arithmetic
progression).

Example 2: h = 2, m = 8,

◮ The possible equations are
x + y = 2z, x + 2y = 3z, 2x + y = 3z, and 2x + 2y = 4z.

◮ X = {1, 2, 4, 8} is NOT h-sum-free.

◮ X ′ = {1, 2, 8} is h-sum-free.
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Lemma 1

For every positive integer m, there exists an h-sum-free subset

X ⊂ [m] = {1, 2, . . . ,m} of size at least

|X | ≥ m

e10
√

log h log m
.
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s-blow-up

For convenience, we start the discussion with digraphs (the results for
undirected graphs will be obtained as a special case).

An s-blow-up of a digraph H = (V (H),E (H)) on h vertices:

◮ vi ∈ V (H)
replaced by−−−−−−−−−−→ an independent set Ii of size s;

◮ (vi , vj) ∈ E (H)
replaced by−−−−−−−−−−→ a complete bipartite directed

subgraph (Ii , Ij) with edges directed from Ii to Ij .
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s-blow-up (contd.)

3-blow-up of an edge.
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s-blow-up (contd.)

Taking an s-blow-up of H ⇒ getting a digraph on sh vertices that
contains sh induced copies of H.

Each of these copies is called a special copy of H.
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s-blow-up (contd.)

Each pair of vertices in the blow-up is contained in ≤ sh−2 special
copies of H.

∴ adding or removing an edge from the blow-up can destroy ≤ sh−2

special copies of H.

One must add or remove ≥ sh/sh−2 = s2 edges from the blow-up to
destroy all its special copies of H.
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Assumptions

We start the discussion with digraphs.

A triangle in a digraph is like:
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The first main lemma

We have seen the following lemma:

Lemma 1

For every positive integer m, there exists an h-sum-free subset
X ⊂ [m] = {1, 2, . . . ,m} of size at least

|X | ≥ m

e10
√

log h log m
.
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The second main lemma

Lemma 2

For every fixed digraph H on h vertices, that contains at least one triangle,

there is a constant c = c(H) > 0, such that for every positive ǫ < ǫ0(H)
and every integer n > n0(ǫ), there is an n-vertex digraph G such that

G is ǫ-far from being induced H-free;

yet G contains ≤ ǫc log(1/ǫ)nh induced copies of H.
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Proof of Lemma 2

Given a small ǫ > 0, and let m be the largest integer satisfying

1

h4e10
√

log m log h
≥ ǫ.

It is easy to check that this m satisfies

m ≥
(

1

ǫ

)c log(1/ǫ)

,

for an appropriate c = c(H) > 0.
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Proof of Lemma 2 (contd.)

Let X ⊆ {1, 2, . . . ,m} be the set as in Lemma 1.

Call the vertices of H v1, v2, . . . , vh.

Let V1,V2, . . . ,Vh be pairwise disjoint sets of vertices, where

◮ |Vi | = im and the vertices in Vi are denoted by 1, 2, . . . , im.

◮ With a slight abuse of notation, we think of the sets Vi as being
pairwise disjoint.
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Proof of Lemma 2 (contd.)

We now construct a graph F whose vertex set is V1 ∪ V2 ∪ . . . ∪ Vh.

For each j , 1 ≤ j ≤ m, for each x ∈ X and for each directed edge
(vp, vq) of H:

j + (p − 1)x ∈ Vp → j + (q − 1)x ∈ Vq.

◮ That is, for each 1 ≤ j ≤ m and x ∈ X , the graph F contains a copy

of H spanned by the vertices j , j + x , j + 2x , . . . , j + (h − 1)x .

◮

t = j + (p − 1)x → j + (q − 1)x

i.e.,

t → t + (q − p)x .

◮ m|X | copies of H .
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Proof of Lemma 2 (contd.)

Each of these m|X | copies of H corresponds to an arithmetic
progression whose first element is j (1 ≤ j ≤ m) and whose difference
is x (x ∈ X ).

F contains m|X | copies of H such that each pair of copies have at

most one common vertex.

Since each edge of F belongs to one of these copies, these m|X |
copies of H in F are in particular induced.

We call these copies essential copies of H.
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Proof of Lemma 2 (contd.)

Define

s =

⌊

n

|V (F )|

⌋

=

⌊

2n

h(h + 1)m

⌋

.

Let G be the s-blow-up of F
◮ Add some isolated vertices, if needed, to make sure the number of

vertices is precisely n.

After s-blow-up of F , we will derive special copies of the essential
copies of H.
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An illustration of F

Assume that h = 3, m = 3, so we have an h-sum-free set X = {1, 2}.
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Use X and H
construct F−−−−−−−−−→ essential copies of H

essential copies
s-blow-up (construct G )−−−−−−−−−−−−−−−−−−→ special copies of H
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The following two claims complete the proof of this lemma.

Claim 1

The digraph G is ǫ-far from being induced H-free.

Claim 2

The digraph G contains at most ǫc log(1/ǫ)nh induced copies of H.
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Proof of Claim 1

Claim 1

The digraph G is ǫ-far from being induced H-free.

Proof.

The main idea of the proof:
◮ Show that adding or removing an edge from G can destroy special

copies that belong to at most one of the blow-ups of the essential
copies of H in F .

⋆ (Recall) Two essential copies of H in F share at most one common
vertex in F .

⋆ Their corresponding blow-ups in G , say Y1 and Y2, share at most one
common independent set.

⋆ Hence a special copy of H in Y1 and a special copy of H in Y2 share at
most one common vertex.
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Proof of Claim 1 (contd.)
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Proof of Claim 1 (contd.)

Proof. (contd.)

To destroy all the special copies of one s-blow-up of H, one needs to
add or delete ≥ s2 edges from the blow-up.

Since G contains m|X | blow-ups of essential copies of H which are all
induced in F , we conclude that one has to add or delete

≥ s2m|X | =
4n2m|X |

h2(h + 1)2m2
≥ |X |n2

h4m
≥ n2

h4e10
√

log m log h
≥ ǫn2

edges to make G induced H-free.
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Proof of Claim 2

Claim 2

The digraph G contains at most ǫc log(1/ǫ)nh induced copies of H.

Proof.

Our goal is to show that G contains ≤ ǫc log(1/ǫ)n3 triangles.
◮ ∵ H contains ≥ 1 triangle and each triangle belongs to

≤
(

n
h−3

)

≤ nh−3 copies of H .

Let BP(Vi) denote the blow-up of the im vertices that belonged to Vi

in F .

We denote by Iv the independent set of vertices in G which replace
the vertex v in F (∴ BP(Vi ) =

⋃

v∈Vi
Iv ).

Consider a partition of V (G ) into h subsets U1, . . . ,Uh, where
BP(Vi ) ⊆ Ui .
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A remark

Note that if we show that:

the induced subgraphs of G on any three of the subsets U1, . . . ,Uh

contains ≤ ǫc′ log(1/ǫ)n3 triangles,

then the total number of triangles in G is ≤
(

h
3

)

ǫc′ log(1/ǫ)n3,

which is still ≤ ǫc log(1/ǫ)n3, when a small enough c = c(H) is chosen.
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Proof. (contd.)

Fix any three subsets Ui ,Uj ,Uk such that 1 ≤ i < j < k ≤ h.

A triangle spanned by Ui ,Uj ,Uk must have exactly one vertex in each
of them.
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Proof. (contd.)

If Ui ,Uj ,Uk span a triangle with vertices belonging to Ix ⊆ Ui ,
Iy ⊆ Uj , and Iz ⊆ Uk , then the three vertices x ∈ Vi , y ∈ Vj , z ∈ Vk

in F must also span a triangle.

Conversely, if x ∈ Vi , y ∈ Vj , z ∈ Vk span a triangle in F , then for
every choice of three vertices u ∈ Ix ⊆ Ui , v ∈ Iy ⊆ Uj , w ∈ Iz ⊆ Uk ,
the vertices u, v ,w span a triangle in G .

Therefore,

#{triangles spanned by Ui ,Uj ,Uk}
= s3 · #{triangles spanned by Vi ,Vj ,Vk}.
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Proof. (contd.)

Assume that vi , vj , vk span a triangle in H in the following discussion.
◮ If not, then by the definition of F , Vi , Vj , Vk do not span any triangle,

and similarly Ui , Uj , UK in G .

Then by the definition of F , for any triangle spanned by Vi ,Vj ,Vk ,
there are x , y ∈ X and 1 ≤ t ≤ im such that the three vertices of this
triangle are

t ∈ Vi , t + (j − i)x ∈ Vj , t + (j − i)x + (k − j)y ∈ Vk .

◮ t connects to t + (j − i)x and t + (j − i)x connects to
t + (j − i)x + (k − j)y .
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Proof. (contd.)

As this is a triangle, there must also be an edge connecting t to
t + (j − i)x + (k − j)y .

Hence there exists z ∈ X such that

t + (k − i)z = t + (j − i)x + (k − j)y .

Thus we have (j − i)x + (k − j)y = (k − i)z .

Since X is h-sum-free, we have x = y = z .
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Proof. (contd.)

Therefore, Vi ,Vj ,Vk span precisely m|X | triangles, which are spanned
by the vertices

t + (i − 1)x ∈ Vi , t + (j − 1)x ∈ Vj , t + (k − 1)x ∈ Vk .,

for every possible choice t ∈ {1, . . . ,m} and x ∈ X .

We conclude that Ui ,Uj ,Uk span

m|X |s3 < m2(n/m)3 ≤ n3/m ≤ n3

(1/ǫ)c log(1/ǫ)
= ǫc log(1/ǫ)n3

triangles.
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The main theorem can be proved by the previous lemmas

Main Theorem

Let H be a fixed undirected graph that contains at least one triangle.
Then there exists a constant c = c(H) > 0 such that the query complexity
of any one-sided error property tester for induced H-freeness is at least

(

1

ǫ

)c log(1/ǫ)

.

Here we left the details of the proof as an exercise.
◮ Hint: use Lemma 2, and apply two probabilistic strategies: union

bound and Markov’s inequality.

40 / 48



Outline

1 Introduction
Brief introduction to property testing
Focus of this talk

2 Two technical skills
h-sum-free sets
s-blow-up

3 Two main lemmas

4 Proof of the main theorem

5 Go back to the proof of Lemma 1

41 / 48



Recall Lemma 1

Lemma 1

For every positive integer m, there exists an h-sum-free subset
X ⊂ [m] = {1, 2, . . . ,m} of size at least

|X | ≥ m

e10
√

log h log m
.
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Proof of Lemma 1

Proof.

Let d and r be integers (to be chosen later) and define:

Sr =

{

k
∑

i=0

xid
i | xi <

d

2h
for 0 ≤ i ≤ k and

k
∑

i=0

x2
i = r

}

,

where k = ⌊log m/ log d⌋ − 1 = ⌊logd m⌋ − 1.
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Proof. (contd.)

We claim that Sr is h-sum-free for every d and r .

Assume that there are x , y , z ∈ Sr that satisfy the equation
ax + by = (a + b)z , where a, b ≤ h are positive integers and

x =

k
∑

i=0

xid
i , y =

k
∑

i=0

yid
i , z =

k
∑

i=0

zid
i .

By definition, xi , yi , zi < d/(2h), and a, b ≤ h, there is no carry in the
base-d addition of the numbers in Sr .

◮ That is, axi + byi = (a + b)zi (i.e., zi is a weighted average of xi and
yi).
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Proof. (contd.)

Fact: f (z) = z2 is a convex function, so by Jensen’s inequality we
have

ax2
i + by2

i ≥ (a + b)z2
i ,

and the inequality is strict unless xi = yi = zi .

However, if for some i the inequality is strict, we have

a

k
∑

i=0

x2
i + b

k
∑

i=0

y2
i > (a + b)

k
∑

i=0

z2
i ,

which is impossible since by definition

k
∑

i=0

x2
i =

k
∑

i=0

y2
i =

k
∑

i=0

z2
i = r .

Thus xi = yi = zi for all i and Sr is h-sum-free.
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Proof of Lemma 1 (contd.)

Proof. (contd.)

Next we complete the proof by showing that, for some r , the set Sr

has size at least m/e10
√

log h log m.

The integer r in the definition of Sr satisfies
r =

∑k
i=0 x2

i ≤ (k + 1)(d/2h)2 < kd2.

The union of the sets Sr has size (d/2h)k+1 > (d/2h)k .

It follows that for some r , the set Sr satisfies |Sr | ≥ (d/2h)k/kd2.
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Proof of Lemma 1 (contd.)

Proof. (contd.)

Setting d = e
√

log m log h

∴ k =

⌊

log m

log d

⌋

=

⌊

log m√
log m log h

⌋

≈
√

logm

log h
.

|Sr | ≥
dk

(2h)kkd2
=

e
√

log m log h·
√

log m/ log h

(2h)kkd2

=
m

(2h)
√

log m/ log h ·
√

log m/ log h · e2
√

log m log h

=
m

e(log 2h)
√

log m/ log h ·
√

log m/ log h · e2
√

log m log h

>
m

e10
√

log m log h
.

which is as required.
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Thank you!
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