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Exercise 1.12. The following problem is known as the Monty Hall problem, after the host
of the game show “Let’s Make a Deal!”. There are three curtains. Behind one curtain is a
new car, and behind the other two are goats. The game is played as follows. The contestant
chooses the curtain that she thinks the car is behind. Monty then opens one of the other
curtains to show a goat. (Monty may have more than one goat to choose from; in this case,
assume he chooses which goat to show uniformly at random.) The contestant can then
stay with the curtain she originally chose or switch to the other unopened curtain. After
that, the location of the car is revealed, and the contestant wins the car or the remaining
goat. Should the contestant switch curtains or not, or does it make no different.?

Solution. The contestant should switch to the other unopened curtain. Of course you
can use Bayes’ Law to prove this claim. Here we give another explanation from the
concept of sample space.

What if the host does NOT know where the car is? Assume that the goats have names
as GA and GB. Let C denote the car. Consider the Figure 1 to understand what the
sample space is.
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Figure 1: The sample space when the host does not know where the car is.

It is obvious that the probability of getting a car when you change your mind is
2/6 = 1/3. However, if the host knows where the car is, the sample space changes since
he or she must reveal the door of goats. Consider the Figure 2 for an illustration.
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Figure 2: The sample space when the host does knows where the car is.

As Figure 2 shows, the probability of getting a car when you change your mind in-
creases to 4/6 = 2/3.

What confuse the readers (or audience) is that the description of the Monty Hall
problem is not precise and clear. We do not know whether the host is honest or not, and
whether he knows where the car is or not. Even though we have the solution obtained
by Bayes’ theorem, it assumes that the host knows where the car is at first. This paradox
teaches us that the paradox sometimes comes from misleading or imprecise descriptions.

Exercise 1.13. A medical company touts its new test for a certain genetic disorder. The
false negative rate is small: if you have the disorder, the probability that the test returns
a positive result is 0.999. The false positive rate is also small: if you do not have the
disorder, the probability that the test returns a positive result is only 0.005. Assume that
2% of the population has the disorder. If a person chosen uniformly from the population
is tested and the result comes back positive, what is the probability that the person has the
disorder?

Solution. Let us define some events first.

D: a person chosen uniformly at random has the disorder;

P : the test result for a person is positive;

N : the test result for a person is negative.

Hence from the description of the problem, we have

Pr[P | D] = 0.999

Pr[P | D̄] = 0.005

Pr[D] = 0.02

Pr[D̄] = 0.98
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Thus we have what we want to know is Pr[D | P ], which is calculated as follows (by
Bayes’ Law).

Pr[D | P ] =
Pr[D ∩ P ]

Pr[P ]

=
Pr[P | D] · Pr[D]

Pr[P | D] · Pr[D] + Pr[P | D̄] · Pr[D̄]

=
0.999 · 0.02

0.999 · 0.02 + 0.005 · 0.98
≈ 0.80305466.

Exercise 1.21. Give an example of three random events X, Y, Z for which any pair are
independent but all three are not mutually independent.

Solution. Let a0a1a2 be a 0-1 sequence of length 3. Let X be an event that a0 6= a1,
Y be an event that a1 6= a2, and Z be an event that a0 6= a2. It is clear that Pr[X] =
Pr[Y ] = Pr[Z] = 1/2, and Pr[X ∩ Y ] = Pr[Y ∩ Z] = Pr[X ∩ Z] = 1/4 (this can be
verified by simply checking the sample space of size 23 and you will obtain two of them
matches the event X ∩ Y , Y ∩ Z, or X ∩ Z). However, Pr[X ∩ Y ∩ Z] = 0 since if
a0 = a1, a1 = a2 (i.e., X ∩ Y occurs) then a0 = a2 (i.e., Z never occurs). We have
Pr[X ∩ Y ∩ Z] 6= Pr[X] ·Pr[Y ] ·Pr[Z]. Therefore, the three events X, Y, Z are what we
want.

Exercise 1.22.

(a) Consider the set {1, . . . , n}. We generate a subset X of this set as follows: a fair
coin is flipped independently for each element of the set; if the coin lands heads then
the element is added to X, and otherwise it is not. Argue that the resulting set X
is equally likely to be any one of the 2n possible subsets.

(b) Suppose that two sets X and Y are chosen independently and uniformly at random
from all the 2n subsets of {1, . . . , n}. Determine Pr[X ⊆ Y ] and Pr[X ∪ Y =
{1, . . . , n}] (Hint: Use the part (a) of this problem).

Solution.

(a) Let vX = (x1, x2, . . . , xn) be a set vector showing the result of generating X by the
algorithm, where Pr[xi = 0] = Pr[xi = 1] = 1/2. What we have to prove is that
every subset S ⊆ {1, . . . , n} has the same probability of being generated. That is,
Pr[X = S] = 1/2n. S can be viewed as an ordered 0-1 sequence s1, s2, . . . , sn, where
si = 0 or 1, and si = 1 if and only if i ∈ S. S is exactly X if xi = si for each i.
Since

Pr[xi = si] =
|{(0, 0), (1, 1)}|

|{(0, 0), (0, 1), (1, 0), (1, 1)}|
=

1

2
,

Hence we have Pr[X = S] = Pr [∩n

i=1
xi = si] =

∏

n

i=1
Pr[xi = si] = (1/2)n (since

the coin is flipped independently for each element). Therefore, the claim of the
problem is proved.
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(b) As we have defined in (a), let vX = (x0, . . . , xn) and vY = (y0, . . . , yn) be the
corresponding set vector of X and Y respectively. Assume that i0, . . . , ik ∈ X, that
is, X contains k elements of {1, . . . , n}, so xij

= 1 for j = 0, . . . , k. If X ⊆ Y , then yij

has to be 1 for each j = 0, . . . , k, and yr can be 0 or 1 for r ∈ {1, . . . , n}\{i0, . . . , ik}.
Note that k, which stands for the size of X, ranges from 0 to n, so the number of
possible pairs of (X, Y ) satisfying X ⊆ Y is

∑

n

k=0

(

n

k

)

1k · 2n−k. Hence we have

Pr[X ⊆ Y ] =

∑

n

k=0

(

n

k

)

1k · 2n−k

2n · 2n

=

∑

n

k=0

(

n

k

)

2−k

2n

=
(1 + 1/2)n

2n

=

(

3

4

)n

=
1

(4/3)n
.

Consider the case that X ∪ Y = {1, . . . , n}. As the above analysis, we assume
that i0, i1, . . . , ik ∈ X so xij

= 1 for j = 0, . . . , k. Here yij
has to be 1 for j ∈

{1, . . . , n} \ {i0, . . . , ik}, and yr can be 0 or 1 for r ∈ {i0, i1, . . . , ik}. Hence we have

Pr[X ∪ Y = {1, . . . , n}] =

∑

n

k=0

(

n

k

)

1n−k · 2k

2n · 2n

=

∑

n

k=0

(

n

k

)

2k

4n

=
(2 + 1)n

4n

=

(

3

4

)n

=
1

(4/3)n
.

Exercise 1.23. There may be several different min-cut sets in a graph. Using the analysis
of the randomized min-cut algorithm, argue that there can be at most n(n − 1)/2 distinct
min-cut sets.

Solution. Every possible min-cut can be generated by the randomized min-cut algorithm
(as long as the edges in the min-cut set are not contracted). Thus every min-cut set can be
generated (with probability at least 2/(n(n− 1))). Note that at the end of the execution
of the algorithm there are two vertices left (as well as the multi-edges standing for a cut
set). In addition, there are

(

n

2

)

pairs of vertices in an n-vertex graph, so there are at most
(

n

2

)

different result of the algorithm, each of which stands for a candidate of min-cuts.
Therefore the number of distinct min-cut sets are at most n(n − 1)/2.
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