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Exercise 2.6. Suppose that we independently roll two standard six-sided dice. Let X1 be
the number that shows on the first die, X2 the number on the second die, and X the sum
of the numbers on the two dice.

(a) What is E[X | X1 is even]?

(b) What is E[X | X1 = X2]?

(c) What is E[X1 | X = 9]?

(d) What is E[X1 − X2 | X = k] for k in the range [2, 12]?

Solution.

(a)

E[X | X1 is even]

=

12
∑

i=1

i · Pr[X = i | X1 is even]

=

12
∑

i=1

i · Pr[{X = i} ∩ {X1 ∈ {2, 4, 6}}]
Pr[X1 ∈ {2, 4, 6}]

= 1 · 0 + 2 · 0 + 3 · 1/36

1/2
+ 4 · 1/36

1/2
+ 5 · 2/36

1/2
+ 6 · 2/36

1/2
+ 7 · 3/36

1/2

+8 · 3/36

1/2
+ 9 · 2/36

1/2
+ 10 · 2/36

1/2
+ 11 · 1/36

1/2
+ 12 · 1/36

1/2

=
135

18

=
15

2
.
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(b)

Pr[X | X1 = X2]

=
6
∑

i=1

(2i) · Pr[X = 2i | X1 = X2]

= 2 · 1/36

6/36
+ 4 · 1/36

6/36
+ 6 · 1/36

6/36
+ 8 · 1/36

6/36
+ 10 · 1/36

6/36
+ 12 · 1/36

6/36
= 7.

(c)

E[X1 | X = 9]

=
6
∑

i=1

i · Pr[X1 = i | X = 9]

= 1 · 0

4/36
+ 2 · 0

4/36
+ 3 · 1/36

4/36
+ 4 · 1/36

4/36
+ 5 · 1/36

4/36
+ 6 · 1/36

4/36

=
18

4

=
9

2
.

(d) By the linearity of conditional expectation, we have

E[X1 − X2 | X = k] = E[X1 | X = k] −E[X2 | X = k].

Note that

Pr[X1 = i ∩ X2 = j]

= Pr[X1 = i] ·Pr[X2 = j] (since X1 and X2 are independent)

=
1

6
· 1

6
= Pr[X1 = j] · Pr[X2 = i]

= Pr[X1 = j ∩ X2 = i].

So we have
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Pr[X1 = i | X = k]

= Pr[{X1 = i} ∩ {X2 = k − i} | X = k]

=
Pr[{X1 = i} ∩ {X2 = k − i} ∩ {X = k}]

Pr[X = k]

=
Pr[{X1 = i} ∩ {X2 = k − i}]

Pr[X = k]

=
Pr[{X1 = k − i} ∩ {X2 = i}]

Pr[X = k]

=
Pr[{X1 = k − i} ∩ {X2 = i} ∩ {X = k}]

Pr[X = k]

= Pr[X2 = i | X = k].

Therefore,

E[X1 − X2 | X = k]

= E[X1 | X = k] −E[X2 | X = k]

=

6
∑

i=1

i · Pr[X1 = i | X = k] −
6
∑

i=1

i · Pr[X2 = i | X = k]

= 0.

Exercise 2.7. Let X and Y be independent geometric random variables, where X has
parameter p and Y has parameter q.

(a) What is the probability that X = Y ?

(b) What is E[max(X, Y )]?

(c) What is Pr[min(X, Y ) = k]?

(d) What is E[X | X ≤ Y ]?

Solution.

(a) Note that {X = Y } =
⋃

i≥1({X = i} ∩ {Y = i}), and ({X = 1} ∩ {Y = 1}), ({X =
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2} ∩ {Y = 2}), . . . are mutually disjoint. Then we have the following deduction:

Pr[X = Y ] = Pr

[

⋃

i≥1

({X = i} ∩ {Y = i})
]

=
∑

i≥1

Pr[{X = i} ∩ {Y = i}]

=
∑

i≥1

Pr[{X = i}] ·Pr[{Y = i}] (since X, Y are independent)

=
∑

i≥1

(1 − p)i−1p · (1 − q)i−1q

= pq
∑

i≥1

((1 − p)(1 − q))i−1

= pq · 1

1 − (1 − p)(1 − q)
(since (1 − p)(1 − q) < 1)

=
pq

p + q − pq
.

(b)

E[max(X, Y )]

=

∞
∑

x=1

x−1
∑

y=1

xPr[{X = x} ∩ {Y = y}] +

∞
∑

y=1

y−1
∑

x=1

yPr[{X = x} ∩ {Y = y}]

+
∑

x≥1

xPr[{X = x} ∩ {Y = x}]

=

∞
∑

x=1

x−1
∑

y=1

x(1 − p)x−1p(1 − q)y−1q +

∞
∑

y=1

y−1
∑

x=1

y(1 − p)x−1p(1 − q)y−1q

+
∞
∑

x=1

x(1 − p)x−1p(1 − q)x−1q

= pq
∞
∑

x=1

x(1 − p)x−1
x−1
∑

y=1

(1 − q)y−1 + pq
∞
∑

y=1

y(1 − q)y−1

y−1
∑

x=1

(1 − p)x−1

+pq
∞
∑

x=1

x((1 − p)(1 − q))x−1

= p
∞
∑

x=1

x(1 − p)x−1(1 − (1 − q)x−1) + q
∞
∑

y=1

y(1 − q)y−1(1 − (1 − p)y−1)

+
pq

(p + q − pq)2

= A + B + C,
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where

A = p

(

∞
∑

x=1

x(1 − p)x−1 −
∞
∑

x=1

x[(1 − p)(1 − q)]x−1

)

B = q

(

∞
∑

y=1

y(1 − q)y−1 −
∞
∑

y=1

y[(1 − p)(1 − q)]y−1

)

C =
pq

(p + q − pq)2
.

A =
∞
∑

x=1

x(1 − p)x−1p − p · 1

(p + q − pq)2

=
1

p
− p

(p + q − pq)2
.

Similarly we have B = 1
q
− q

(p+q−pq)2
. Thus E[max(X, Y )] = A + B + C = 1

p
+ 1

q
−

1
p+q−pq

.

(c)

Pr[min(X, Y ) = k]

= Pr[{X = k} ∩ {Y ≥ k + 1}] + Pr[{Y = k} ∩ {X ≥ k + 1}]
+Pr[{Y = k} ∩ {X = k}]

= p(1 − p)k−1(1 − q)k + q(1 − q)k−1(1 − p)k + ((1 − p)k−1p) · ((1 − q)k−1q)

= (1 − p)k−1(1 − q)k−1(p + q − pq).

(d) Thanks for Dr. Ton Kloks for giving us the following arguments. First we note that

Pr[{X = x} ∩ {Y ≥ x}] =
∑

y≥x

Pr[{X = x} ∩ {Y = y}] (Law of total probablility)

=
∑

y≥x

Pr[X = x] · Pr[Y = y]

= Pr[X = x] ·
∑

y≥x

Pr[Y = y]

= Pr[X = x] · Pr[Y ≥ x].

Hence we have
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E[X | X ≤ Y ] =
∞
∑

x=1

x · Pr[X = x | Y ≥ x]

=

∞
∑

x=1

x · Pr[{X = x} ∩ {Y ≥ x}]
Pr[Y ≥ x]

=

∞
∑

x=1

x · Pr[X = x] · Pr[Y ≥ x]

Pr[Y ≥ x]
(since X, Y are independent)

=

∞
∑

x=1

x · Pr[X = x]

=
1

p
.

Actually, we can simply derive E[X | X ≤ Y ] = E[X] = 1/p since X and Y are
independent random variables.

Exercise 2.8.

(a) Alice and Bob decide to have children until either they have their first girl or they
have k ≥ 1 children. Assume that each child is a boy or girl independently with
probability 1/2 and that there are no multiple births. What is the expected number
of female children that they have? What is the expected number of male children
that they have?

(b) Suppose that Alice and Bob simply decide to keep having children until they have
their first girl. Assuming that this is possible, what is the expected umber of boys
that they have?

Solution. Let X, Xg, Xb be random variables denoting the number of children they have,
the number of girls they have, and the number of boys they have respectively (until either
they have their first girl or they have k ≥ 1 children). Hence it is clear that X = Xg +Xb.

(a) From the description of the problem, we know that Pr[Xg = i] = 0 for i ≥ 2. Let
Gi be the event that their ith child is a girl, and let Bi be the event that their ith
child is a boy. So we know {Xg = 1} =

⋃k
i=1({X = i} ∩ Gi). Thus we obtain that

E[Xg] = 0 · Pr[Xg = 0] + 1 · Pr[Xg = 1] = 1 · (1 − 2−k) = (1 − 2−k).

Before calculate E[Xb], we calculate E[Xb] so that E[Xb] can be obtained by E[Xb] =
E[X] − E[Xg]. Note that

k−1
∑

i=1

ipi−1 =
d

dp

(

k−1
∑

i=1

pi

)

=
d

dp

(

p(1 − pk−1)

1 − p

)

=
1 − kpk−1 + (k − 1)pk

(1 − p)2
.
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When p = 1/2, from the above equality we have

k−1
∑

i=1

i

(

1

2

)i

=
1

2
·

k−1
∑

i=1

i

(

1

2

)i−1

=
1

2
·
(

4 − k

(

1

2

)k−3

+ (k − 1)

(

1

2

)k−2
)

= 2 − (k + 1)

(

1

2

)k−1

.

Now it is clear that

E[X] =

k
∑

i=1

i ·Pr[X = i]

=

k−1
∑

i=1

i ·Pr[{first i − 1 are boys and the ith one is a girl}]

+ k · Pr[{first k − 1 are boys and the kth one is a boy or a girl}]

=

(

k−1
∑

i=1

i ·
(

1

2

)i−1

·
(

1

2

)

)

+ k ·
(

1

2

)k−1

= 2 −
(

1

2

)k−1

.

Hence we derive that E[Xb] = E[X] −E[Xg] = 2 − (1/2)k−1 − (1 − 2−k) = 1 − 2−k.

(b) By the assumption that it is possible for Alice and Bob to have their first girl while
keeping having children, we calculate E[Xb] as follows.

E[Xb] =
∞
∑

i=1

i · Pr[Xb = i]

=

∞
∑

i=1

i · Pr[X = i + 1]

=
∞
∑

i=1

i

(

1

2

)i+1

=

(

1

2

)2

·
∞
∑

i=0

i

(

1

2

)i−1

=

(

1

2

)2

· 1

(1 − 1/2)2

= 1.

Note that when x < 1, we have 0+1+2x+3x2+. . . = d
dx

(1+x+x2+x3+. . .) = 1
(1−x)2

.

We can also use the result of (a) and take its limit when k → ∞, then we will have
lim
k→∞

(1 − 2−k) = 1.
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Exercise 2.18. The following approach is often called reservoir sampling. Suppose we
have a sequence of items passing by one at a time. We want to maintain a sample of one
item with the probability that it is uniformly distributed over all the items that we have
seen at each step. Moreover, we want to accomplish this without knowing the total number
of items in advance or storing all of the items that we see.

Consider the following algorithm, which stores just one item in memory at all times.
when the first item appears, it is stored in the memory. When the kth item appears, it
replaces the item in memory with probability 1/k. Explain why this algorithm solves the
problem.

Solution. Let pi be the probability that the ith item is stored in the memory when k
items have been seen. For 1 ≤ i ≤ k, we have

p1 = 1 · 1

2
· 2

3
. . .

k − 1

k
=

1

k

p2 =
1

2
· 2

3
· 3

4
. . .

k − 1

k
=

1

k
...

pi =
1

i
· i

i + 1
· i + 1

i + 2
. . .

k − 1

k
=

1

k
.

Thus each of the k items we have seen has the same probability of being stored in the
memory, i.e., they are uniformly distributed over all the items we have seen. Since each
time only one item is stored by the algorithm, the algorithm really solves the problem.

Exercise 2.25. A blood test is being performed on n individuals. Each person can be
tested separately, but this is expensive. Pooling can decrease the cost. The blood samples
of k people can be pooled and analyzed together. If the test is negative, this one test suffices
for the group of k individuals. If the test is positive, then each of the k persons must be
tested separately and thus k + 1 total tests are required for the k people.

Suppose that we create n/k disjoint groups of k people (where k divides n) and use the
pooling method. Assume that each person has a positive result on the test independently
with probability p.

(a) What is the probability that the test for a pooled sample of k people will be positive?

(b) What is the expected number of tests necessary?

(c) Describe how to find the best value of k.

(d) Give an inequality that shows for what values of p pooling is better than just testing
every individual.

Solution.

(a) Since a pooled sample has a negative result of testing only when everyone in the
pooled sample has a negative result of testing, we obtain the probability that the
test for a pooled sample of k people is positive is 1 − (1 − p)k.
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(b) Let Xi be a random variable denoting the number of tests for group i, where
i = 1, 2, . . . , n/k. Let X be a random variable denoting the total number of test nec-
essary. We can derive that Pr[Xi = k+1] = 1− (1−p)k and Pr[Xi = 1] = (1−p)k.
Hence we have

E[X] = E





n/k
∑

i=1

Xi





=

n/k
∑

i=1

E[Xi]

=

n/k
∑

i=1

(

(k + 1)[1 − (1 − p)k] + 1 · (1 − p)k
)

= (k + 1)(n/k) − n(1 − p)k

= n

(

1 +
1

k
− (1 − p)k

)

.

(c) Let g(p, k) = 1 + 1/k − (1 − p)k. The derivative of g with respect to k is

f(p, k) =
d

dk
g(p, k) =

−1

k2
− (1 − p)k ln(1 − p).

Our goal is to find the minimum of g(p, k), and this can be done by setting the first
derivative of g(p, k) with respect to k equal to 0. Consider the case that p is very
small. Recall that the Taylor series (Maclaurin series) for ln(1 − x) is

ln(1 − x) =

∞
∑

i=1

xi

i
, for |x| ≤ 1, x 6= −1,

so ln(1 − p) can be approximated by −p. Besides, (1 − p)k is close to 1 since p is
small. We can approximate ln(1 − p) and (1 − p)k by −p and 1 respectively, so
we can approximate f(p, k) by −1/k2 + p. Let f(p, k) = 0 we have the equality
k2(1−p)k ln(1−p)+1 = 0. By the previous approximations of some terms, we have
k2 · 1 · (−p) + 1 = 0, hence we obtain that k = 1/

√
p. Since −1/k2 + p is smaller

than 0 when k < 1/
√

p and greater than 0 when k > 1/
√

p, it is clear that we can
obtain a minimum value of E[X] by taking 1/

√
p to be the value of k. As to further

discussions, for example, the cases about the value of p, please refer to [1, 2] for
more detailed analysis.

(d) Let h(k, n, p) = n
(

1 + 1
k
− (1 − p)k

)

− n = n
(

1
k
− (1 − p)k

)

. That is, h(k, n, p) is
the difference between the pooling method and just testing every individual. Let
h(k, n, p) < 0 we have 1

k
− (1− p)k < 0. Therefore, we derive that p < 1− (1/k)1/k.
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