
Exercises of Chapter 3

Chuang-Chieh Lin∗

Department of Computer Science and Information Engineering,
National Chung Cheng University, Ming-Hsiung, Chiayi 621, Taiwan.

Exercise 3.1. Let X be a number chosen uniformly at random from [1, n]. Find Var[X].

Solution. Since we have

E[X] =
n
∑

i=1

1

n
· i =

1 + n

2

and

E[X2] =
n
∑

i=1

1

n
· i2 =

(n + 1)(2n + 1)

6

we obtain that

Var[X] = E[X2] − (E[X])2 =
(n + 1)(n − 1)

12
.

Exercise 3.2. Let X be a number chosen uniformly at random from [−k, k]. Find Var[X].

Solution. Similar to Exercise 3.1, we have

E[X] =

−1
∑

i=−k

1

2k + 1
· i +

k
∑

i=1

1

2k + 1
· i + 0 · 1

2k + 1
= 0

and

E[X2] = 2
k
∑

i=1

1

2k + 1
· i2 + 0 =

k(k + 1)

3
,

so we derive that

Var[X] =
k(k + 1)

3
.

Exercise 3.3. Suppose that we roll a standard fair die 100 times. Let X be the sum of
the numbers that appear over the 100 rolls. Use Chebyshev’s inequality to bound Pr[|X −
350| ≥ 50].

∗
Email address: lincc@cs.ccu.edu.tw

1

Solution. Let Xi be a random variable denoting the outcome of the ith rolling of a
standard fair die. Note that Xi’s are mutually independent for all i. We can easily derive
E[Xi] = 7/2 and

Var[Xi] = E[X2] − (E[X])2 =
6
∑

j=1

j2/6 − (
7

2
)2 =

91

6
− 49

4

for each i. Since X =
∑

100

i=1
Xi, we have

E[X] = 100 · 7

2
= 350.

and since Xi’s are mutually independent, we have

Var[X] = 100 ·
(

91

6
− 49

4

)

=
875

3

Therefore, by using Chebyshev’s inequality we have

Pr[|X − 350| ≥ 50] ≤ 875/3

502
=

7

60
≈ 0.1167.

Exercise 3.4. Prove that, for any real number c and any discrete random variable X,
Var[cX] = c2Var[X].

Solution.

Var[cX] = E[(cX)2] − (E[cX])2

= E[c2X2] − (cE[X])2 (by linearity of expectation)

= c2E[X2] − c2(E[X])2 (also by linearity of expectation)

= c2(E[X2] − (E[X])2)

= c2Var[X].

Exercise 3.8. Suppose that we have an algorithm that takes as input a string of n bits. We
are told that the expected running time is O(n2) if the input bits are chosen independently
and uniformly at random. What can Markov’s inequality tell us about the worst-case
running time of this algorithm on inputs of size n?

Solution. Let X be a random variable, which represents the running time of the algo-
rithm. Since its expected running time is O(n2), we assume that E[X] ≤ cn2 for some
constant c > 0. Let a ≥ 2c be a constant. By Markov’s inequality, the probability that
the algorithm runs for an2 time is

Pr[X ≥ an2] ≤ E[X]

an2
≤ c

a
≤ 1

2
.

If we choose k sufficiently and let a ≥ kc, we will derive that the above probability is at
most 1/k, which can be very small. Therefore we know the worst-case running time of
the algorithm will be still O(n2) with probability arbitrarily close to 1. Furthermore, if a
is not O(1), we can conclude that the algorithm has worst-case running time ω(n2) with
probability 0 when n approaches infinity (i.e., n → ∞).

2

Exercise 3.22. Suppose that we flip a fair coin n times to obtain n random bits. Consider
all m =

(

n
2

)

pairs of these bits in some order. Let Yi be the exclusive-or of the ith pair of
bits, and let Y =

∑m
i=1

Yi be the number of Yi that equal 1.

(a) Show that each Yi is 0 with probability 1/2 and 1 with probability 1/2.

(b) Show that the Yi are not mutually independent.

(c) Show that the Yi satisfy the property that E[YiYj] = E[Yi]E[Yj].

(d) Using Exercise 3.15, find Var[Y].

(e) Using Chebyshev’s inequality, prove a bound on Pr[|Y − E[Y]| ≥ n].

Solution.

(a) All possible ith pair of bits, say (bii , bi2), are (0, 0), (0, 1), (1, 0), and (1, 1). The
result of exclusive-or of bi1 and bi2 , which is denoted by bi1 ⊕ bi2 , is 1 if bi1 6= bi2 and
0 otherwise. Thus we have Pr[Yi = 0] = Pr[Yi = 1] = 1/2.

(b) Let b1, b2, . . . , bn be the n random bits. Let the symbol ⊕ denote the binary operator
exclusive-or. With slight abuse of notation, let Y1 = b1 ⊕ b2, Y2 = b2 ⊕ b3, and
Y3 = b3 ⊕ b1. From (1) we know that Pr[Y1 = 1] = Pr[Y2 = 1] = Pr[Y3 = 1] = 1/2.
However, we can easily obtain that

Pr[Y1 = 1 ∩ Y2 = 1 ∩ Y3 = 1] = 0 6= Pr[Y1 = 1] ·Pr[Y2 = 1] · Pr[Y3 = 1],

since when Y1 = Y2 = 1, we have b1 = b3 so that Y3 will never be 1. Therefore, the
Yi’s are not mutually independent.

(c) Two pairs of bits Yi and Yj , which do not share any bit, are independent and
hence we have E[YiYj] = E[Yi]E[Yj] from Theorem 3.3 in Mitzenmacher and Upfal’s
textbook [1]. Consider the case that Yi = b1 ⊕ b2 and Yj = b2 ⊕ b3 (i.e., they share
one bit, say b2). By enumerating all possible outcomes of b1, b2, b3, we can derive
that Pr[Yi = 1 ∩ Yj = 1] = 2/8 = 1/4. Thus we have

E[YiYj] = 1 · Pr[Yi = 1 ∩ Yj = 1]

=
1

4
= E[Yi]E[Yj].

(d) Exercise 3.15 says that, if E[YiYj] = E[Yi]E[Yj] for every pair of i and j with

3

1 ≤ i < j ≤ m, then Var[Y] =
∑m

i=1
Var[Yi]. Hence by the result of (c) we have

Var[Y] =

m
∑

i=1

Var[Yi]

=
m
∑

i=1

E[Y 2

i] − (E[Yi])
2

= m ·
(

1 · 1

2
−
(

1 · 1

2

)2
)

=

(

n
2

)

4
.

(e) Since we have Var[Y] =
(

n
2

)

/4 from the result of (d), we can derive

Pr[|Y −E[Y]| ≥ n] ≤ Var[Y]

n2

=
n(n − 1)/8

n2

=
1

8
− 1

8n
.

That is,

Pr[|Y − E[Y]| ≥ n] ≤ 1

8
− Ω(n−1).

Exercise 3.24. Generalize the median-finding algorithm to find the kth largest item in a
set of n items for any given value of k. Prove that your resulting algorithm is correct and
bound its running time.

Solution. For simplicity, we give each element in S a minus weight so that the smallest k
element will be the largest k element in the original S. The pseudo-code of the generalized
algorithm is as follows.

4

Randomized kth largest Element Finding Algorithm

Input: A set S of n elements over a totally ordered universe.
Output: The kth largest element of S, denoted by K.

1. Pick a multiset R of ⌈n3/4⌉ elements in S, chosen independently and

uniformly at random with replacement.

2. Sort the set R.

3. Let d be the
(

⌊
(

k
n

)

n3/4 −√
n⌋
)

th smallest element in the sorted set R.

4. Let u be the
(

⌊
(

k
n

)

n3/4 +
√

n⌋
)

th smallest element in the sorted set R.

5. By comparing every element in S to d and u, compute the set

C = {x ∈ S | d ≤ x ≤ u} and the numbers

ld = |{x ∈ S : x < d}| and lu = |{x ∈ S : x > u}|.
6. If ld > k or lu > n − k then FAIL.

7. If |C| ≤ 4n3/4 then sort the set C, otherwise FAIL.

8. Output the (k − ld + 1)th element in the sorted order of C.

Theorem 1. The randomized algorithm terminates in linear time, and if it does not
output FAIL, then it outputs the correct kth largest element of the input set S.

Proof: Correctness follows because the algorithm could only give an incorrect answer
if the kth largest element were not found in the set C. But then either ld > k or lu > n−k
and thus step 6 of the algorthm guarantees that, in these cases, the algorithm outputs
FAIL. Similarly, as long as C is sufficiently small, the total work is only linear in the size
of S. Step 7 of the algorithm therefore guarantees that the algorithm does not take more
than linear time; if the sorting might take too long, the algorithm outputs FAIL without
sorting.

�

Now we try to bound the error probability of the algorithm as follows. We identify
“bad” events, as the textbook shows, such that if none of these bad events occurs, the
algorithm does not fail. In a series of lemmas, we then bound the probability of each of
these events and show that the sum of these probabilities is only O(n−1/4).

Consider the following bad events:

E1: Y1 = |{r ∈ R | r ≤ m}| <
(

k
n

)

n3/4 −√
n;

E2: Y2 = |{r ∈ R | r ≥ m}| <
(

k
n

)

n3/4 −√
n;

E3: |C| > 4n3/4.

Lemma 1. The randomized algorithm fails if and only if at least one of E1, E2, or E3

occurs.

Proof: Failure in step 7 of the algorithm is equivalent to the event E3. Failure in
step 6 of the algorithm occurs if and only if ld > k or lu > n − k. But for ld > k, the
((k/n)n3/4 −√

n)th smallest element of R must be larger than m; this is equivalent to the
event E1. Similarly, lu > n − k is equivalent to the event E2.

5

�

Lemma 2.

Pr[E1] ≤
1

4
n−1/4.

Proof: Define a random variable Xi such that Xi = 1 if the ith sample is less than or
equal to K, i.e., the kth largest element of S, and 0 otherwise. The Xi’s are independent,
since the sampling is done with replacement. Because there are k elements in S that are
less than or equal to K, the probability that a randomly chosen element of S is less than
or equal to K can be written as

Pr[Xi = 1] =
k

n
.

The event E1 is equivalent to

Y1 =
n3/4

∑

i=1

Xi <

(

k

n

)

n3/4 −
√

n.

Since Y1 is the sum of Bernoulli trials, it is a binomial random variable with parameters
n3/4 and k/n. Hence, using the result of Section 3.2.1 (i.e., the variance of B(n, p) is
np(1 − p)) yields

Var[Y1] = n3/4

(

k

n

)(

1 − k

n

)

≤ 1

4
n3/4.

The above inequality holds since x(1−x) ≤ 1/4 for any real number x. Applying Cheby-
shev’s inequality then yields

Pr[E1] = Pr[Y1 <

(

k

n

)

n3/4 −
√

n]

≤ Pr[|Y1 −E[Y1]| >
√

n]

≤ Var[Y1]

n

<
1

4
n−1/4.

�

Similarly we can obtain the same bound for the probability of the event E2. We now
bound the probability of the third bad event E3.

Lemma 3.

Pr[E3] ≤
1

2
n−1/4.

Proof: If E3 occurs, so |C| > 4n3/4, then at least one of the following two events
occurs:

6

E3.1: at least 2n3/4 elements of C are greater than K.

E3.2: at least 2n3/4 elements of C are smaller than K.

Let us bound the probability that the first event occurs; the second will have the same
bound by symmetry. If there are at least 2n3/4 elements of C above K, then the order of u
in the sorted order of S was at least k+2n3/4 and thus the set R has at least

(

k
n

)

n3/4−√
n

samples among the k − 2n3/4 elements in S. Let X =
∑n3/4

i=1
Xi, where Xi = 1 if the ith

sample is among the k − 2n3/4 largest elements in S, and 0 otherwise. Again, X is a
binomial random variable, and we can derive

E[X] = n3/4 ·
(

k

n
− 2n−1/4

)

= kn−1/4 − 2
√

n

and

Var[X] = n3/4 · (kn−1/4 − 2
√

n)(1 − (kn−1/4 − 2
√

n)) ≤ 1

4
n3/4.

Applying Chebyshev’s inequality yields

Pr[E3.1] = Pr[X ≥
(

k

n

)

n3/4 −
√

n]

≤ Pr[|X −E[X]| ≥
√

n]

≤ Var[X]

n

≤ 1

4
n−1/4.

Similarly,

Pr[E3.2] ≤
1

4
n−1/4

and

Pr[E3] ≤ Pr[E3,1] + Pr[E3,2] ≤
1

2
n−1/4.

�

Combining the bounds we derive, we conclude that the probability that the algorithm
outputs FAIL is bounded by

Pr[E1] + Pr[E2] + Pr[E3] ≤ n1/4.

Thus we have proved the bound of the error probability of the algorithm.

References

[1] M. Mitzenmacher and E. Upfal: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

7

