Exercises of Chapter 4

Chuang-Chieh Lin*
Department of Computer Science and Information Engineering, National Chung Cheng University, Ming-Hsiung, Chiayi 621, Taiwan.

Exercise 4.10. A casino is testing a new class of simple slot machines. Each game, the player puts in $\$ 1$, and the slot machine is supposed to return either $\$ 3$ to the player with probability 4/25, $\$ 100$ with probability $1 / 200$, or nothing with all remaining probability. Each game is supposed to be independent of other games.

The casino has been surprised to find in testing that the machines have lost $\$ 10,000$ over the first million games. Derive a Chernoff bound for the probability of this event. You may want to use a calculator or program to help you choose appropriate values as you derive your bound.

Solution. Let X_{i} denote the net loss of the casino for game i, and we denote $X=$ $\sum_{i=1}^{1000000} X_{i}$, which is the net loss over 1000000 games. By the description of the problem, we know $\operatorname{Pr}\left[X_{i}=2\right]=4 / 25, \operatorname{Pr}\left[X_{i}=99\right]=1 / 200$, and $\operatorname{Pr}\left[X_{i}=-1\right]=1-4 / 25-1 / 200=$ $167 / 200$. Since X_{i} 's are mutually independent, we have

$$
\begin{aligned}
\mathbf{E}\left[e^{t X}\right] & =M_{X}(t) \\
& =M_{X_{1}+\ldots+X_{106}}(t) \\
& =\prod_{i=1}^{10^{6}} \mathbf{E}\left[e^{t X_{i}}\right] \\
& =\left(\mathbf{E}\left[e^{t X_{1}}\right]\right)^{10^{6}} .
\end{aligned}
$$

Then can derive the Chernoff bound for X as follows.
For $t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X \geq 10000] & =\operatorname{Pr}\left[e^{t X} \geq e^{t \cdot 10000}\right] \\
& \leq \frac{\mathbf{E}\left[e^{t X}\right]}{e^{10^{4} t}} \\
& =\frac{\left(\mathbf{E}\left[e^{t X_{1}}\right]\right)^{10^{6}}}{e^{10^{4} t}} \\
& =\frac{\left(\frac{167}{200} \cdot e^{-t}+\frac{1}{200} \cdot e^{99 t}+\frac{32}{200} \cdot e^{2 t}\right)^{10^{6}}}{e^{10^{4} t}}
\end{aligned}
$$

[^0]Let $f(t)=\left(\frac{167}{200} \cdot e^{-t}+\frac{1}{200} \cdot e^{99 t}+\frac{32}{200} \cdot e^{2 t}\right)^{10^{6}} / e^{10^{4} t}$. By using the software Maxima (or, MATLAB), we can obtain that the minimum value of $f(t)$ is larger than 0.000577 and a little bit smaller than 0.000578 (see Fig. 1), and also by Maxima we have $f(0.000577) \approx$ 0.0001586 . Hence we have $\operatorname{Pr}[X \geq 10000] \leq 0.0001586$. From the point of view of the boss of the casino, we recommend that the slot machines should be checked!

Fig. 1: Gnuplot of $f(t)$ by Maxima.

Exercise 4.20. We prove that the Randomized Quicksort algorithm sorts a set of n numbers in time $O(n \log n)$ with high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm where it decides on a pivot element is called a node. Suppose the size of the set to be sorted at a particular node is s. The node is called good if the pivot element divides the set into two parts, each of size not exceeding $2 s / 3$. Otherwise the node is called bad. The nodes can be thought of as forming a tree in which the root node has the whole set to be sorted and its children have the two sets formed after the first pivot step and so on.
(a) Show that the number of good nodes in any path from the root to a leaf in this tree is not greater than $c \log _{2} n$, where c is some positive constant.
(b) Show that, with high probability (greater than $1-1 / n^{2}$), the number of nodes in a given root to leaf path of the tree is not greater than $c^{\prime} \log _{2} n$, where c^{\prime} is another constant.
(c) Show that, with high probability (greater than $1-1 / n$), the number of nodes in the longest root to leaf path is not greater than $c^{\prime} \log _{2} n$. (Hint: How many nodes are there in the tree?)
(d) Use your answers to show that the running time of Quicksort is $O(n \log n)$ with probability at least $1-1 / n$.

Solution. (a) Let $D(s)$ denote the depth of tree representing the behavior of Randomized Quicksort algorithm which sorts a set of s numbers. We denote by $N(s)$ the node of the tree which stands for sorting s numbers. Then for the tree node $N(s)$ which has two children $N(a)$ and $N(s-a)$, we have the following recurrence:

$$
D(s)=\max \{D(a), D(s-a)\}+1
$$

where $D(1)=1$ and $D(s)$ is monotonically nondecreasing with respect to s. Each recursion, say $D(s)$, stands for a node having two children, say $D(a)$ and $D(s-a)$, of the tree. From the description of the problem, we call a node $N(s)$, which has two children $N(a)$ and $N(s-a)$, is good, if $\max \{a, s-a\} \leq 2 s / 3$, i.e., $\max \{D(a), D(s-$ $a)\} \leq D(2 s / 3)$. Hence for a good node $N(s)$, we have $D(s) \leq D(2 s / 3)+1$. Thus the number of good nodes in any path from the root to a leaf in the tree is at most $\log _{3 / 2} n=\log _{2}(2 / 3) \cdot \log _{2} n$. Here $\log _{2}(2 / 3) \approx 0.631$ can be chosen to be the desired constant c.
(b) Let $c^{\prime}=36$ (i.e., the number of nodes in a given root-to-leaf path of the tree is at least 36) and $\delta=9 / 20$. By (a) we know the number of good nodes in any path from the root to a leaf in this tree is not greater than $c \log _{2} n$, where $c \approx 0.631$, we obtain that the number of bad nodes in the path is at least $35 \log _{2} n$. Let X_{i} be an indicator random variable such that $X_{i}=1$ if the i th node in the path is bad, and $X_{i}=0$ otherwise. Then what we want to estimate is the probability that $\operatorname{Pr}\left[X=\sum_{i=1}^{36 \log _{2} n} X_{i} \geq 35.369 \log _{2} n\right]$. Note that a node is good if and only if the chosen pivot is greater than or equal to the $(s / 3)$ th smallest element, or less than or equal to the $(2 s / 3)$ th smallest element of the current set of s numbers to be sorted. Hence we have $\operatorname{Pr}\left[X_{i}=1\right] \leq 2 / 3, \operatorname{Pr}\left[X_{i}=0\right] \geq 1 / 3$, and $\mathbf{E}[X] \leq(2 / 3) \cdot 36 \log _{2} n=$ $24 \log _{2} n$. Besides, by extending Theorem 4.4 of [2] we have the following corollary (refer to Exercise 4.7 at page 84 of [2]):

Corollary 1. Let $Y=\sum_{i=1}^{n} Y_{i}$, where Y_{i} 's are independent 0-1 random variables. Let $\mu=\mathbf{E}[Y]$. Choose any $\mu \leq \mu_{H}$. Then for any $0<\delta \leq 1$,

$$
\operatorname{Pr}\left[Y \geq(1+\delta) \mu_{H}\right] \leq e^{-\mu_{H} \delta^{2} / 3}
$$

Let $\mu_{H}=24 \log _{2} n$. Therefore we have

$$
\begin{aligned}
\operatorname{Pr}\left[X \geq 35.369 \log _{2} n\right] & \leq \operatorname{Pr}\left[X \geq 34.8 \log _{2} n\right] \\
& =\operatorname{Pr}\left[X \geq(1+\delta) \cdot \mu_{H}\right] \\
& \leq e^{-\mu_{H} \delta^{2} / 3} \\
& =e^{-\frac{81}{50} \cdot \frac{\ln n}{\ln 2}} \\
& \leq n^{-2.337} \\
& <n^{-2} .
\end{aligned}
$$

Hence we have the desired probability $1-1 / n^{2}$.
(c) Note that the number of root-to-leaf paths of the tree is n. Let A_{i} denote the event that the number of nodes in the i th fixed root-to-leaf path is greater than $c^{\prime} \log _{2} n$ for some constant c^{\prime} (where c^{\prime} is chosen to be 36). We have shown that $\operatorname{Pr}\left[A_{i}\right] \leq 1 / n^{2}$. Thus by the union-bound, the probability that the number of nodes in the longest root-to-leaf path is greater than $c^{\prime} \log _{2} n$, that is, $\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right]$, is at most $\sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right]=1 / n$. Hence we have the desired probability.
(d) Let $T(n)$ be the running time of the Randomized Quicksort which sorts n numbers, then we have $T(n)=T(a)+T(n-a)+O(n)$, where $O(n)$ comes from comparisons between the pivot with other $(n-1)$ numbers in one recursion. Since the depth of the recursion of the Randomized Quicksort algorithm is at most the number of nodes of the longest root-to-leaf path of the corresponding tree, and it is $O(\log n)$ with probability $1-1 / n$, by using the recursion-tree method [1] for analyzing the recurrences, we derive that $T(n)=O(n \log n)$ with probability $1-1 / n$.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms. 2nd Edition. The MIT Press, 2001.
[2] M. Mitzenmacher and E. Upfal: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[^0]: *Email address: lincc@cs.ccu.edu.tw

