
Exercises of Chapter 4

Chuang-Chieh Lin∗

Department of Computer Science and Information Engineering,
National Chung Cheng University, Ming-Hsiung, Chiayi 621, Taiwan.

Exercise 4.10. A casino is testing a new class of simple slot machines. Each game, the
player puts in $1, and the slot machine is supposed to return either $3 to the player with
probability 4/25, $100 with probability 1/200, or nothing with all remaining probability.
Each game is supposed to be independent of other games.

The casino has been surprised to find in testing that the machines have lost $10,000
over the first million games. Derive a Chernoff bound for the probability of this event.
You may want to use a calculator or program to help you choose appropriate values as
you derive your bound.

Solution. Let Xi denote the net loss of the casino for game i, and we denote X =∑1000000

i=1 Xi, which is the net loss over 1000000 games. By the description of the problem,
we know Pr[Xi = 2] = 4/25, Pr[Xi = 99] = 1/200, and Pr[Xi = −1] = 1−4/25−1/200 =
167/200. Since Xi’s are mutually independent, we have

E[etX ] = MX(t)

= MX1+...+X
106

(t)

=
106∏

i=1

E[etXi ]

= (E[etX1 ])10
6

.

Then can derive the Chernoff bound for X as follows.
For t > 0,

Pr[X ≥ 10000] = Pr[etX ≥ et·10000]

≤
E[etX ]

e104t

=
(E[etX1 ])10

6

e104t

=
(167
200

· e−t + 1
200

· e99t + 32
200

· e2t)10
6

e104t

∗
Email address: lincc@cs.ccu.edu.tw

1



Let f(t) = (167
200

· e−t + 1
200

· e99t + 32
200

· e2t)10
6

/e10
4t. By using the software Maxima (or,

MATLAB), we can obtain that the minimum value of f(t) is larger than 0.000577 and a
little bit smaller than 0.000578 (see Fig. 1), and also by Maxima we have f(0.000577) ≈
0.0001586. Hence we have Pr[X ≥ 10000] ≤ 0.0001586. From the point of view of the
boss of the casino, we recommend that the slot machines should be checked!

Fig. 1: Gnuplot of f(t) by Maxima.

Exercise 4.20. We prove that the Randomized Quicksort algorithm sorts a set of n num-
bers in time O(n log n) with high probability. Consider the following view of Randomized
Quicksort. Every point in the algorithm where it decides on a pivot element is called a
node. Suppose the size of the set to be sorted at a particular node is s. The node is called
good if the pivot element divides the set into two parts, each of size not exceeding 2s/3.
Otherwise the node is called bad. The nodes can be thought of as forming a tree in which
the root node has the whole set to be sorted and its children have the two sets formed after
the first pivot step and so on.

(a) Show that the number of good nodes in any path from the root to a leaf in this tree
is not greater than c log2 n, where c is some positive constant.

(b) Show that, with high probability (greater than 1 − 1/n2), the number of nodes in a
given root to leaf path of the tree is not greater than c′ log2 n, where c′ is another
constant.

(c) Show that, with high probability (greater than 1− 1/n), the number of nodes in the
longest root to leaf path is not greater than c′ log2 n. (Hint: How many nodes are
there in the tree?)

2



(d) Use your answers to show that the running time of Quicksort is O(n log n) with
probability at least 1− 1/n.

Solution. (a) Let D(s) denote the depth of tree representing the behavior of Random-
ized Quicksort algorithm which sorts a set of s numbers. We denote by N(s) the
node of the tree which stands for sorting s numbers. Then for the tree node N(s)
which has two children N(a) and N(s− a), we have the following recurrence:

D(s) = max{D(a), D(s− a)}+ 1,

where D(1) = 1 and D(s) is monotonically nondecreasing with respect to s. Each
recursion, say D(s), stands for a node having two children, say D(a) and D(s− a),
of the tree. From the description of the problem, we call a node N(s), which has two
children N(a) and N(s−a), is good, if max{a, s−a} ≤ 2s/3, i.e., max{D(a), D(s−
a)} ≤ D(2s/3). Hence for a good node N(s), we have D(s) ≤ D(2s/3) + 1. Thus
the number of good nodes in any path from the root to a leaf in the tree is at most
log3/2 n = log2(2/3) · log2 n. Here log2(2/3) ≈ 0.631 can be chosen to be the desired
constant c.

(b) Let c′ = 36 (i.e., the number of nodes in a given root-to-leaf path of the tree is at
least 36) and δ = 9/20. By (a) we know the number of good nodes in any path
from the root to a leaf in this tree is not greater than c log2 n, where c ≈ 0.631,
we obtain that the number of bad nodes in the path is at least 35 log2 n. Let Xi

be an indicator random variable such that Xi = 1 if the ith node in the path is
bad, and Xi = 0 otherwise. Then what we want to estimate is the probability that
Pr[X =

∑36 log2 n
i=1 Xi ≥ 35.369 log2 n]. Note that a node is good if and only if the

chosen pivot is greater than or equal to the (s/3)th smallest element, or less than or
equal to the (2s/3)th smallest element of the current set of s numbers to be sorted.
Hence we have Pr[Xi = 1] ≤ 2/3, Pr[Xi = 0] ≥ 1/3, and E[X] ≤ (2/3) · 36 log2 n =
24 log2 n. Besides, by extending Theorem 4.4 of [2] we have the following corollary
(refer to Exercise 4.7 at page 84 of [2]):

Corollary 1. Let Y =
∑n

i=1 Yi, where Yi’s are independent 0-1 random variables.
Let µ = E[Y ]. Choose any µ ≤ µH . Then for any 0 < δ ≤ 1,

Pr[Y ≥ (1 + δ)µH ] ≤ e−µHδ2/3.

Let µH = 24 log2 n. Therefore we have

Pr[X ≥ 35.369 log2 n] ≤ Pr[X ≥ 34.8 log2 n]

= Pr[X ≥ (1 + δ) · µH ]

≤ e−µHδ2/3

= e−
81

50
·
lnn

ln 2

≤ n−2.337

< n−2.

Hence we have the desired probability 1− 1/n2.

3



(c) Note that the number of root-to-leaf paths of the tree is n. Let Ai denote the
event that the number of nodes in the ith fixed root-to-leaf path is greater than
c′ log2 n for some constant c′ (where c′ is chosen to be 36). We have shown that
Pr[Ai] ≤ 1/n2. Thus by the union-bound, the probability that the number of nodes
in the longest root-to-leaf path is greater than c′ log2 n, that is, Pr[

⋃n
i=1 Ai], is at

most
∑n

i=1 Pr[Ai] = 1/n. Hence we have the desired probability.

(d) Let T (n) be the running time of the Randomized Quicksort which sorts n numbers,
then we have T (n) = T (a) + T (n− a) +O(n), where O(n) comes from comparisons
between the pivot with other (n − 1) numbers in one recursion. Since the depth
of the recursion of the Randomized Quicksort algorithm is at most the number of
nodes of the longest root-to-leaf path of the corresponding tree, and it is O(log n)
with probability 1 − 1/n, by using the recursion-tree method [1] for analyzing the
recurrences, we derive that T (n) = O(n log n) with probability 1− 1/n.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms. 2nd
Edition. The MIT Press, 2001.

[2] M. Mitzenmacher and E. Upfal: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

4


