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Exercise 5.8. Our analysis of Bucket sort in Section 5.2.2 (in [3]) assumed that n ele-
ments were chosen independently and uniformly at random from the range [0, 2k). Suppose
instead that n elements are chosen independently from the range [0, 2k) according to a dis-
tribution with the property that any number x ∈ [0, 2k) is chosen with probability at most
a/2k for some fixed constant a > 0. Show that, under these conditions, Bucket sort still
requires linear expected time.

Solution. Suppose that we have a set of n = 2m elements to be sorted and that each
element is an integer chosen independently from the range [0, 2k), where k ≥ m, according
to a distribution with the property that any number x ∈ [0, 2k) is chosen with probability
at most a/2k for some constant a > 0. Using Bucket sort, we can sort these n numbers
in two stages. In the first stage, we place the elements into n buckets. The jth bucket
holds all elements whose first m binary digits corresponds to the number j. For example,
if n = 210, bucket 3 contains all elements whose first 10 binary digits are 0000000011.
When j < l, the elements of the jth bucket all come before the elements in the lth bucket
in the sorted order. Assuming that each element can be placed in the appropriate bucket
in O(1) time, this stage requires only O(n) time. The probability that a chosen element
is placed into jth bucket (note that j has m digits) is at most

a

2k
· 2k−m =

a

2m
=

a

n
,

since an element chosen from the range [0, 2k) has k digits and the first m of them are
fixed to be j (i.e., there are 2k−m numbers whose first m digits are j). Thus number of
elements that land in a specific bucket follows a binomial distribution B(n, a/n). Buckets
can be implemented using linked lists.

In the second stage, each bucket is sorted using any standard quadratic time algorithm.
Concatenating the sorted lists from each bucket in order gives us the sorted order for the
elements. It remains to show that the expected time spent in the second stage is only
O(n).

Under the assumed input distribution, Bucket sort falls naturally into balls-and-bins
model: the elements are balls, buckets are bins, and each ball falls into a certain bin with
probability at most a/2k for some constant a > 0. Let Xj be the number of elements that
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land in the jth bucket. The time to sort the jth bucket is then at most c(Xj)
2 for some

constant c. The expected time spent sorting in the second stage is at most

E

[

n
∑

j=1

c(Xj)
2

]

= c
n
∑

i=1

E[X2
j ] = cnE[X2

1 ],

where the first equality follows from the linearity of expectations and the second follows
from symmetry, as E[X2

j ] is the same for all buckets. By using the results of Section 3.2.1
(page 48 in [3]), we have

E[X2
1 ] ≤ n(n − 1)

(a

n

)2

+ n ·
a

n
=

(

1 −
1

n

)

· a2 + a,

therefore, the expected running time of Bucket sort is cnE[X2
1 ] ≤ cn · ((1− 1/n)a2 + a) =

O(n), which is still linear.

Exercise 5.15. We consider another way to obtain Chernoff-like bounds in the setting
of balls and bins without using Theorem 5.7 (page 101 in [3]). Consider n balls thrown
randomly into n bins. Let Xi = 1 if the ith bin is empty and 0 otherwise. Let X =
∑n

i=1 Xi. Let Yi, i = 1, . . . , n, be independent Bernoulli random variables that are 1 with
probability p = (1 − 1/n)n. Let Y =

∑n
i=1 Yi.

(a) Show that E[X1X2 . . .Xk] ≤ E[Y1Y2 . . . Yk] for any k ≥ 1.

(b) Show that E[etX ] ≤ E[etY ] for all t ≥ 0. (Hint: Use the expansion for ex and
compare E[Xk] to E[Y k].)

(c) Derive a Chernoff bound for Pr[X ≥ (1 + δ)E[X]].

Solution. (a) Since Xi’s are indicator random variables, we have

E[X1X2 . . .Xk] = 1 · Pr

[

k
⋂

i=1

{Xi = 1}

]

=

(

1 −
k

n

)n

.

Similarly, we have

E[Y1Y2 . . . Yk] = 1 · Pr

[

k
⋂

i=1

{Yi = 1}

]

=

(

1 −
1

n

)nk

.

Since 1 − k/n ≤ (1 − 1/n)k (by Bernoulli’s inequality or Taylor expansion of (1 −
1/n)k), we have

(

1 −
k

n

)n

≤

(

1 −
1

n

)nk

,

that is, E[X1X2 . . .Xk] ≤ E[Y1Y2 . . . Yk], for any k ≥ 1.

(b) By the Taylor expansion of etX , we have

E[etX ] = E

[

1 + tX +
(tX)2

2!
+ . . .

]

=
∑

j≥0

E

[

(tX)j

j!

]

.
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and

E[etY ] =
∑

j≥0

E

[

(tY )j

j!

]

.

Moreover,

E[Xk] = E[(X1 + . . .Xk)
k]

= E

[

∑

r1+...+rk=k

Xr1

1 Xr2

2 . . .Xrk

k

]

=
∑

r1+...+rk=k

E[X1 . . .Xk] (by linearity of expectation)

≤
∑

r1+...+rk=k

E[Y1 . . . Yk] (by the result of (a)

= E[(Y1 + . . . Yk)
k]

= E[Y k],

for every k ≥ 1, thus we have E[etX ] ≤ E[etY ].

(c) Note that it can be easily derived that E[X] = E[Y ] = n · (1 − 1/n)n. Let p =
(1 − 1/n)n. We have the following inequality:

Pr[X ≥ (1 + δ)E[X]] = Pr[etX ≥ et(1+δ)E[X]]

≤
E[etX ]

et(1+δ)E[X]

≤
E[etY ]

et(1+δ)E[Y ]
(by the result of (b))

≤
(pet + (1 − p))n

et(1+δ)np

≤
enp(et−1)

et(1+δ)np
.

Let t = ln(1 + δ), we have the following Chernoff-like bound:

Pr[X ≥ (1 + δ)E[X]] ≤

(

eδ

(1 + δ)(1+δ)

)E[X]

.

Exercise 5.18. An undirected graph on n vertices is disconnected if there exists a set
of k < n vertices such that there is no edge between this set and the rest of the graph.
Otherwise, the graph is said to be connected. Show that there exists a constant c such
that if N > cn log n then, with probability O(e−n), a graph randomly chosen from Gn,N is
connected.

Solution. The problem can be viewed as throwing 2N balls into n bins, where balls
and bins are edges and vertices of Gn,N respectively. However, since each edge has two
endpoints, each edge is like throwing two balls at once into two different bins.
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Let Ai be the event that vertex i is disconnected from the other n − 1 vertices, then
from the balls-and-bins model of analysis, we have

Pr[Ai] =

(

1 −
(n − 1)
(

n
2

)

)N

=

(

1 −
2

n

)N

.

What we want to have is actually the probability Pr[
⋃

i∈V Ai], which can be calculated
as follows.

Pr

[

⋃

i∈V

Ai

]

= Pr[A1 ∩ A2 ∩ . . . ∩ An]

≤ Pr[A1]

= 1 −

(

1 −
2

n

)N

≤ 1 −

(

1 −
2

n

)cn log n

≈ 1 − e−2c ln n (we assume that log n = ln n)

= 1 − n−2c

≤ e−n−2c

.

Actually, there might be something missing or wrong with this exercise. Note that we
cannot obtain

Pr[A1 ∩ A2 ∩ . . . ∩ An] =

n
∏

i=1

Pr[Ai],

since Ai’s are not mutually independent! The following are derived the comments from
Dr. Ton Kloks.

Since N = cn log n, we may assume that each edge of G appears with probability p =
cn log n/

(

n
2

)

. Pr[The probability that G is disconnected] ≥ Pr[some vertex v is isolated] =

qn−1. Then we have Pr[G is disconnected] ≥ (1 − p)n = n−c′ · (1 + O(log n/n)) for some
constant c′. But the statements of the exercise makes no sense. If N is big enough, say
Θ(n2), then almost surely G is connected, but it says that the probability goes to zero
when n gets big enough.

Please refer to Erdős and Rényi’s paper [1], which shows that G is connected with
probability e−e−2y

when n approaches to infinity, where N = (n/2) log n + yn + o(n).
Taking y = −c log n we get that, for N = (1/2−c)n log n, G is connected with probability
e−n2c

. Obviously we need c < 1/2.
In addition, please also refer to Gilbert’s result [2], which shows that a graph is con-

nected with probability EXACTLY 1−nqn−1+O(n2q3n/2), where p is the edge probability
and q = 1 − p. Yet by further calculations, we still cannot obtain the desired probability
O(e−n). obtained.
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