Exercises of Chapter 6

Chuang-Chieh Lin*
Department of Computer Science and Information Engineering, National Chung Cheng University, Ming-Hsiung, Chiayi 621, Taiwan.

Exercise 6.16. Use the Lovasz local lemma to show that, if

$$
4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1
$$

then it is possible to color the edges of K_{n} with two colors so that it has no monochromatic K_{k} subgraph.

Solution. There are $\binom{n}{k} K_{k}$ cliques in K_{n}. We let A_{i} be a bad event such that the i th clique K_{k} is monochromatic. Since each clique K_{k} has $\binom{k}{2}$ edges, $\operatorname{Pr}\left[A_{i}\right]=2 / 2^{\binom{k}{2}}=2^{1-\binom{k}{2}}$. We can construct a dependency graph $G=(V, E)$, where each vertex $v_{i} \in V$ corresponds to the event A_{i}. Furthermore, $\left(v_{i}, v_{j}\right) \notin E$ if and only if A_{i} and A_{j} are independent. Note that for a fixed clique, the number of other cliques sharing at least two edges with it is at most $\binom{k}{2}\binom{n-2}{k-2}<\binom{k}{2}\binom{n}{k-2}$, so we know that each vertex in the dependency graph has degree at most $\binom{k}{2}\binom{n}{k-2}$, i.e., $d \leq\binom{ k}{2}\binom{n}{k-2}$. Let p denote $\operatorname{Pr}\left[A_{i}\right]$. Since $4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1$, we have $4 d p \leq 1$. Hence by Lovasz local lemma, it is possible that none of the bad events (i.e., A_{i} 's) happens, that is, there exists a monochromatic K_{k} subgraph in K_{n}.

Exercise 6.18. Let $G=(V, E)$ be an undirected graph and suppose each $v \in V$ is associated with a set $S(v)$ of $8 r$ colors, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in $S(u)$. Prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$ such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different. You may want to let $A_{u, v, c}$ be the event that u and v are both colored with color c and then consider the family of such events.

Solution. As the hint given in the problem description, we let $A_{u, v, c}$ be the bad event that u and v, where u and v are adjacent, are both colored with color c. It is clear that the event happens only when the color c lies in both $S(u)$ and $S(v)$. If $c \notin S(u)$ or $c \notin S(v)$, then $\operatorname{Pr}\left[A_{u, v, c}\right]=0$, so we consider the case that $c \in S(u)$ and $c \in S(v)$. We derive that

$$
\operatorname{Pr}\left[A_{u, v, c}\right] \leq \frac{1}{(8 r)^{2}}=\frac{1}{64 r^{2}}
$$

[^0]We can construct a dependency graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where \mathcal{V} consists of the events $\left\{A_{u, v, c} \mid\right.$ $(u, v) \in E\}$. Since for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in $S(u)$, we have that $A_{u, v, c}$ has dependency on at most $8 r \cdot r+8 r \cdot r=16 r^{2}$ other events, the degree of \mathcal{G}, i.e., d, is at most $16 r^{2}$. Since $4 \cdot \operatorname{Pr}\left[A_{u, v, c}\right] \cdot d \leq 4 \cdot\left(1 / 64 r^{2}\right) \cdot 16 r^{2} \leq 1$, by Lovasz local lemma, we have the desired result.

Extra problem. Suppose that we have a set S of numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and we want to select one of them that belongs to the "upper half" (i.e., it is greater than or equal to the median).
(a) Prove that is is impossible to guarantee that a number belongs to the upper half by making less than $n / 2$ comparisons.
(b) Give a Monte-Carlo algorithm to obtain a number that belongs to the upper half with high probability.

Solution.

(a) Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. For any algorithm to select a number that belongs to the "upper half" of X, comparisons must be performed, and to ensure a number x_{i} belongs to the upper half, one must guarantee that x_{i} is greater than $\lfloor n / 2\rfloor$ numbers in X. However, for any algorithm solving this problem, we can always create a worst case input such that the first $\lfloor n / 2\rfloor$ numbers chosen by the algorithm belong to the lower half of X. That is, even though the algorithms choose the largest number of them by applying $\lfloor n / 2\rfloor-1<\lfloor n / 2\rfloor \leq n / 2$ comparisons, it can not obtain a number belonging to the upper half.
(b) We propose a very simple algorithm as follows. The algorithm Monte-Carlo upper-

Monte-Carlo upper-half-choosing (X)
Choose two numbers $x_{i}, x_{j} \in X$ uniformly at random.
Return $\max \left\{x_{i}, x_{j}\right\} ;$

half-choosing only costs one comparison. The algorithm errors only when two chosen numbers x_{i}, x_{j} are both in the lower half of X. Hence the error probability of the algorithm is $\operatorname{Pr}\left[\left\{x_{i}\right.\right.$ is in the lower half of $\left.X\right\} \cap\left\{x_{j}\right.$ is in the lower half of $\left.\left.X\right\}\right]<$ $1 / 2 \cdot 1 / 2=1 / 4$.

[^0]: *Email address: lincc@cs.ccu.edu.tw

