
Exercises of Chapter 6

Chuang-Chieh Lin∗

Department of Computer Science and Information Engineering,
National Chung Cheng University, Ming-Hsiung, Chiayi 621, Taiwan.

Exercise 6.16. Use the Lovasz local lemma to show that, if

4

(

k

2

)(

n

k − 2

)

21−(k

2
) ≤ 1,

then it is possible to color the edges of Kn with two colors so that it has no monochromatic
Kk subgraph.

Solution. There are
(

n

k

)

Kk cliques in Kn. We let Ai be a bad event such that the ith

clique Kk is monochromatic. Since each clique Kk has
(

k

2

)

edges, Pr[Ai] = 2/2(k

2
) = 21−(k

2
).

We can construct a dependency graph G = (V, E), where each vertex vi ∈ V corresponds
to the event Ai. Furthermore, (vi, vj) /∈ E if and only if Ai and Aj are independent. Note
that for a fixed clique, the number of other cliques sharing at least two edges with it is at
most

(

k

2

)(

n−2

k−2

)

<
(

k

2

)(

n

k−2

)

, so we know that each vertex in the dependency graph has degree

at most
(

k

2

)(

n

k−2

)

, i.e., d ≤
(

k

2

)(

n

k−2

)

. Let p denote Pr[Ai]. Since 4
(

k

2

)(

n

k−2

)

21−(k

2
) ≤ 1, we

have 4dp ≤ 1. Hence by Lovasz local lemma, it is possible that none of the bad events
(i.e., Ai’s) happens, that is, there exists a monochromatic Kk subgraph in Kn.

Exercise 6.18. Let G = (V, E) be an undirected graph and suppose each v ∈ V is
associated with a set S(v) of 8r colors, where r ≥ 1. Suppose, in addition, that for
each v ∈ V and c ∈ S(v) there are at most r neighbors u of v such that c lies in S(u).
Prove that there is a proper coloring of G assigning to each vertex v a color from its class
S(v) such that, for any edge (u, v) ∈ E, the colors assigned to u and v are different. You
may want to let Au,v,c be the event that u and v are both colored with color c and then
consider the family of such events.

Solution. As the hint given in the problem description, we let Au,v,c be the bad event
that u and v, where u and v are adjacent, are both colored with color c. It is clear that the
event happens only when the color c lies in both S(u) and S(v). If c /∈ S(u) or c /∈ S(v),
then Pr[Au,v,c] = 0, so we consider the case that c ∈ S(u) and c ∈ S(v). We derive that

Pr[Au,v,c] ≤
1

(8r)2
=

1

64r2
.

∗
Email address: lincc@cs.ccu.edu.tw

1



We can construct a dependency graph G = (V, E), where V consists of the events {Au,v,c |
(u, v) ∈ E}. Since for each v ∈ V and c ∈ S(v) there are at most r neighbors u of v such
that c lies in S(u), we have that Au,v,c has dependency on at most 8r ·r+8r ·r = 16r2 other
events, the degree of G, i.e., d, is at most 16r2. Since 4·Pr[Au,v,c]·d ≤ 4·(1/64r2)·16r2 ≤ 1,
by Lovasz local lemma, we have the desired result.

Extra problem. Suppose that we have a set S of numbers {x1, x2, . . . , xn} and we want
to select one of them that belongs to the “upper half” (i.e., it is greater than or equal to
the median).

(a) Prove that is is impossible to guarantee that a number belongs to the upper half by
making less than n/2 comparisons.

(b) Give a Monte-Carlo algorithm to obtain a number that belongs to the upper half with
high probability.

Solution.

(a) Let X = {x1, x2, . . . , xn}. For any algorithm to select a number that belongs to
the “upper half” of X, comparisons must be performed, and to ensure a number xi

belongs to the upper half, one must guarantee that xi is greater than ⌊n/2⌋ numbers
in X. However, for any algorithm solving this problem, we can always create a worst
case input such that the first ⌊n/2⌋ numbers chosen by the algorithm belong to the
lower half of X. That is, even though the algorithms choose the largest number
of them by applying ⌊n/2⌋ − 1 < ⌊n/2⌋ ≤ n/2 comparisons, it can not obtain a
number belonging to the upper half.

(b) We propose a very simple algorithm as follows. The algorithm Monte-Carlo upper-

Monte-Carlo upper-half-choosing (X)
Choose two numbers xi, xj ∈ X uniformly at random.
Return max{xi, xj};

half-choosing only costs one comparison. The algorithm errors only when two chosen
numbers xi, xj are both in the lower half of X. Hence the error probability of
the algorithm is Pr[{xi is in the lower half of X}∩{xj is in the lower half of X}] <
1/2 · 1/2 = 1/4.

2


