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IntroductionIntroduction

Goal: Goal: 

The Chernoff boundThe Chernoff bound can be used in the analysis on the can be used in the analysis on the tail tail 
of the distributionof the distribution of the of the sum of independent random sum of independent random 
variablesvariables, with some extensions to the case of dependent or , with some extensions to the case of dependent or 
correlated random variables.correlated random variables.

MarkovMarkov’’s Inequalitys Inequality and and Moment generating Moment generating 
functionsfunctions which we shall introduce will be greatly which we shall introduce will be greatly 
needed.needed.
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Math toolMath tool

Professor Herman Professor Herman ChernoffChernoff’’ss bound,bound,
AnnalAnnal of Mathematical Statistics of Mathematical Statistics 19521952
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Chernoff boundsChernoff bounds

A moment generating 
function

In it0s most general form, the Chernoff bound for a random vari-
able X is obtained as follows: for any t > 0,

Pr[X ≥ a] ≤ E[e
tX ]

eta

or equivalently,

lnPr[X ≥ a] ≤ −ta+ lnE[etX ].

The value of t that minimizes
E[etX ]
eta

gives the best possible
bounds.
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MarkovMarkov’’s Inequalitys Inequality

’
’

For any random variable X ≥ 0 and any a > 0,

Pr[X ≥ a] ≤ E[X]a .

We can use Markov s Inequality to derive the famous
Chebyshev s Inequality:

Pr[|X−E[X]| ≥ a] = Pr[(X−E[X])2 ≥ a2] ≤ Var[X]
a2

.
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Proof of the Chernoff boundProof of the Chernoff bound

So, how to calculate this term?So, how to calculate this term?

’It follows directly from Markov s inequality:

Pr[X ≥ a] = Pr[etX ≥ eta]
≤ E[e

tX ]

eta
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Moment Generating FunctionsMoment Generating Functions

The ith moment of r.v. X

Remark: E[Xi] =
P
x∈X

xi ·Pr[X = x]

MX(t) = E[e
tX ].

This function gets its name because we can generate the ith mo-
ment by differentiating MX(t) i times and then evaluating the
result for t = 0:

di

dti
MX(t)

¯̄̄̄
t=0

= E[X i].
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Moment Generating Functions (contMoment Generating Functions (cont’’d)d)

We can easily see why the moment generating function
works as follows:

di

dti
MX(t)

¯̄̄̄
t=0

=
di

dti
E[etX ]

¯̄̄̄
t=0

=
di

dti

X
s

etsPr[X = s]

¯̄̄̄
¯
t=0

=
X
s

di

dti
etsPr[X = s]

¯̄̄̄
t=0

=
X
s

sietsPr[X = s]
¯̄
t=0

=
X
s

siPr[X = s]

= E[X i].
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Moment Generating Functions Moment Generating Functions 
(cont(cont’’d)d)

The concept of the moment generating function The concept of the moment generating function 
((mgfmgf) is connected with a distribution rather than ) is connected with a distribution rather than 
with a random variable.with a random variable.

Two different random variables with the same Two different random variables with the same 
distribution will have the same distribution will have the same mgfmgf..
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Moment Generating Functions Moment Generating Functions 
(cont(cont’’d)d)

’

F Fact: If MX(t) = MY (t) for all t ∈ (−c, c) for some
c > 0, then X and Y have the same distribution.

F If X and Y are two independent random variables, then

MX+Y (t) =MX(t)MY (t).

F Let X1, . . . , Xk be independent random variables with
mgf s M1(t), . . . ,Mk(t). Then the mgf of the random

variable Y =
Pk

i=1Xi is given by

MY (t) =
kY
i=1

Mi(t).
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Moment Generating Functions Moment Generating Functions 
(cont(cont’’d)d)

F If X and Y are two independent random variables, then

MX+Y (t) =MX(t)MY (t).

Proof:

MX+Y (t) = E[et(X+Y )]

= E[etXetY ]

= E[etX ]E[etY ]

= MX(t)MY (t).

Here we have used that X and Y are independent — and hence
etX and etY are independent — to conclude that E[etXetY ] =
E[etX ]E[etY ].
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Chernoff bound for the sum of Chernoff bound for the sum of 
Poisson trialsPoisson trials

Poisson trials:Poisson trials:

The distribution of a sum of independent 0The distribution of a sum of independent 0--1 random variables, 1 random variables, 
which which may not be identicalmay not be identical..

Bernoulli trials:Bernoulli trials:

The same as above except that all the random variables areThe same as above except that all the random variables are
identicalidentical..
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Chernoff bound for the sum of Chernoff bound for the sum of 
Poisson trials (contPoisson trials (cont’’d)d)

(Since 1 + (Since 1 + yy ≤≤ ee yy.).)

F MX(t) = E[e
tX ] =MX1

(t)MX2
(t) . . .MXn

(t) ≤ e(p1+p2+...+pn)(et−1)

= e(e
t−1)μ,

since μ = p1 + p2 + . . .+ pn.
We will use this result later.

F Xi : i = 1, . . . , n, mutually independent 0-1 random variables with
Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi.

Let X = X1 + . . .+Xn and E[X] = μ = p1 + . . .+ pn.

MXi
(t) = E[etXi ] = pie

t·1 + (1− pi)et·0 = piet + (1− pi)
= 1 + pi(e

t − 1) ≤ epi(et−1).
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Chernoff bound for the sum of Chernoff bound for the sum of 
Poisson trials (contPoisson trials (cont’’d)d)

Poisson trials

Theorem 1: Let X = X1 + · · · + Xn, where X1, . . . , Xn
are n independent trials such that Pr[Xi = 1] = pi holds
for each i = 1, 2, . . . , n. Then,

(1) for any d > 0, Pr[X ≥ (1 + d)μ] ≤
³

ed

(1+d)1+d

´μ
;

(2) for d ∈ (0, 1], Pr[X ≥ (1 + d)μ] ≤ e−μd2/3;
(3) for R ≥ 6μ, Pr[X ≥ R] ≤ 2−R.
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Proof of Theorem 1:Proof of Theorem 1:
For any random vari-

able X ≥ 0 and any

a > 0, Pr[X ≥ a] ≤
E[X]
a
.

from (1)

By Markov inequality, for any t > 0 we have

Pr[X ≥ (1 + d)μ] = Pr[etX ≥ et(1+d)μ] ≤ E[etX ]/et(1+d)μ ≤
e(e

t−1)μ/et(1+d)μ. For any d > 0, set t = ln(1 + d) > 0 we

have (1).

To prove (2), we need to show for 0 < d ≤ 1, ed/(1+d)(1+d) ≤
e−d

2/3.

Taking the logarithm of both sides, we have d−(1+d) ln(1+
d) + d2/3 ≤ 0, which can be proved with calculus.

To prove (3), let R = (1+d)μ. Then, for R ≥ 6μ, d = R/μ−
1 ≥ 5. Hence, using (1), Pr[X ≥ (1+d)μ] ≤

³
ed

(1+d)(1+d)

´μ
≤

( e
1+d

)(1+d)μ ≤ (e/6)R ≤ 2−R.
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Similarly,  we have: Similarly,  we have: 
μ+ dμμ− dμ μ

X

probability

Theorem: Let X =
Pn

i=1Xi, where X1, . . . , Xn are n
independent Poisson trials such that Pr[Xi = 1] = pi. Let
μ = E[X]. Then, for 0 < d < 1:

(1) Pr[X ≤ (1− d)μ] ≤
³

e−d

(1−d)(1−d)

´μ
;

(2) Pr[X ≤ (1− d)μ] ≤ e−μd2/2.

Corollary: For 0 < d < 1, Pr[|X − μ| ≥ dμ] ≤ 2e−μd2/3.
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Example:Example: Let Let XX be the number of heads of be the number of heads of nn
independent fair coin flips.  Applying the above independent fair coin flips.  Applying the above 
Corollary, we have:Corollary, we have:

Better!!

’

Pr[|X − n/2| ≥ √6n lnn/2] ≤ 2 exp(− 13 n2 6 lnnn ) = 2/n.

Pr[|X − n/2| ≥ n/4] ≤ 2 exp(− 13 n2 14 ) = 2e−n/24.

By Chebyshev s inequality, i.e. Pr[|X − E[X ]| ≥ a]
≤ Var[X]

a2 , we have Pr[|X − n/2| ≥ n/4] ≤ 4/n.
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Better bounds for special casesBetter bounds for special cases
Theorem Let X = X1 + · · · + Xn, where X1, . . . ,Xn are n
independent random variables with Pr[Xi = 1] = Pr[Xi =

−1] = 1/2. For any a > 0, Pr[X ≥ a] ≤ e−a2/2n.

Proof: For any t > 0, E[etXi ] = et·1/2 + et·(−1)/2.

Since et = 1 + t + t2/2! + · · · + ti/i! + · · · and e−t = 1 − t +
t2/2! + · · ·+ (−1)iti/i! + · · · , using Taylor series, we have

E[etXi ] =
P

i≥0 t
2i/(2i)! ≤Pi≥0(t

2/2)i/i! = et
2/2.

E[etX ] =
nQ
i=1

E[etXi ] ≤ et2n/2 and Pr[X ≥ a] = Pr[etX ≥ eta] ≤

E[etX ]/eta ≤ et2n/2/eta. Setting t = a/n, we have Pr[X ≥ a] ≤
e−a

2/2n. By symmetry, we have Pr[X ≤ −a] ≤ e−a2/2n.
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Better bounds for special cases Better bounds for special cases 
(cont(cont’’d)d)

Corollary Let X = X1 + · · · + Xn, where
X1, . . . , Xn are n independent random variables
with Pr[Xi = 1] = Pr[Xi = −1] = 1/2. For any a > 0,
Pr[|X | ≥ a] ≤ 2e−a2/2n.

Let Yi = (Xi + 1)/2, we have the following corollary.
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Better bounds for special cases Better bounds for special cases 
(cont(cont’’d)d)

Corollary Let Y = Y1 + · · · + Yn, where Y1, . . . , Yn
are n independent random variables with Pr[Yi = 1] =
Pr[Yi = 0] = 1/2. Let μ = E[Y ] = n/2.

(1) For any a > 0, Pr[Y ≥ μ + a] ≤ e−2a2/n.
(2) For any d > 0, Pr[Y ≥ (1 + d)μ] ≤ e−d2μ.
(3) For any μ > a > 0, Pr[Y ≤ μ − a] ≤ e−2a2/n.
(4) For any 1 > d > 0, Pr[Y ≤ (1− d)μ] ≤ e−d2μ.

Note: The details can be left for exercises. (See [MU05], pp. 70-71.)
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An application: Set BalancingAn application: Set Balancing

Given an Given an n n ×× mm matrix matrix AA with entries in {0,1}, let with entries in {0,1}, let 

Suppose that we are looking for a vector Suppose that we are looking for a vector vv with entries in {with entries in {−−1, 1} 1, 1} 
that that minimizesminimizes

k Av k∞= max
i=1,...,n

|ci|.

⎛⎜⎜⎝
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

⎞⎟⎟⎠
⎛⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎠ =
⎛⎜⎜⎝
c1
c2
...
cn

⎞⎟⎟⎠
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Set Balancing (contSet Balancing (cont’’d)d)

The problem arises in designing statistical experiments. The problem arises in designing statistical experiments. 

Each column of matrix Each column of matrix AA represents a subject in the represents a subject in the 
experiment and each row represents a feature.experiment and each row represents a feature.

The vector The vector vv partitions the subjects into two disjoint partitions the subjects into two disjoint 
groups, so that each feature is roughly as balanced as groups, so that each feature is roughly as balanced as 
possible between the two groups.possible between the two groups.
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Set Balancing (contSet Balancing (cont’’d)d)

00111111哺乳類哺乳類

00

00
00

鯨魚鯨魚

00

11
11

老虎老虎

1100產卵產卵

0011陸生陸生

0000肉食性肉食性

企鵝企鵝斑馬斑馬 v:

−−11
−−11
11
11A:

−−1 1 
11
22
11

For example,

Av:

We obtain that k Av k∞= 2.



2006/10/25 25Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Set Balancing (contSet Balancing (cont’’d)d)

00111111哺乳類哺乳類

00

00
00

鯨魚鯨魚

00

11
11

老虎老虎

1100產卵產卵

0011陸生陸生

0000肉食性肉食性

企鵝企鵝斑馬斑馬 v:

−−11
11
11
−−11A:

−−1 1 
11
00
11

For example,

Av:

We obtain that k Av k∞= 1.
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Set Balancing (contSet Balancing (cont’’d)d)

A
v

m

m
n c n=×

randomly chosen

Set balancing: Given an n×m matrix A with entries
0 or 1, let v be an m-dimensional vector with entries
in {1,−1} and c be an n-dimensional vector such that
Av = c.

Theorem For a random vector v with entries cho-
sen randomly and with equal probability from the set
{1,−1}, Pr[maxi |ci| ≥

√
4m lnn] ≤ 2/n.
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Proof of Set Balancing:Proof of Set Balancing:

A
v

m

m
n

ai

Pr[
nS
i=1

(|Zi| >
√
4m lnn)]

Proof: Consider the i-th row of A: ai = (ai,1, · · · , ai,m). Sup-
pose there are k 1s in ai. If k <

√
4m lnn, then clearly

|aiv| ≤
√
4m lnn. Suppose k ≥

√
4m lnn, then there are

k non-zero terms in Zi =
Pm

j=1 ai,jvj, which are independent
random variables, each with probability 1/2 of being either +1
or −1.
By the Chernoff bound and the fact m ≥ k, we have
Pr[|Zi| ≥

√
4m lnn] ≤ 2e−4m lnn/2k ≤ 2/n2. By the union

bound we have the bound for every row is at most 2/n.
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Another application: ErrorAnother application: Error--reduction reduction 
in in BPPBPP

The class BThe class BPPPP (for Bounded(for Bounded--error Probabilistic error Probabilistic 
Polynomial time) consists of all languages Polynomial time) consists of all languages LL that have that have 
a randomized algorithm a randomized algorithm AA running in running in worstworst--case case 
polynomial timepolynomial time that for any input that for any input x x ∈∈ ∑∑**,,

x x ∈∈ LL ⇒⇒ PrPr[[AA((xx) accepts] ) accepts] ≥≥ ¾¾ ..
x x ∉∉ LL ⇒⇒ PrPr[[AA((xx) rejects] ) rejects] ≥≥ ¾¾ ..

That is, the error probability is at most ¼.
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)

Consider the following variant definition:Consider the following variant definition:

The class The class BPPBPP (for Bounded(for Bounded--error Probabilistic error Probabilistic 
Polynomial time) consists of all languages Polynomial time) consists of all languages LL that have that have 
a randomized algorithm a randomized algorithm AA running in running in worstworst--case case 
polynomial timepolynomial time that for any input that for any input x x ∈∈ ∑∑* * with |with | xx | = | = nn
and some positive integer and some positive integer k k ≥≥ 2,2,

x x ∈∈ LL ⇒⇒ PrPr[[AA((xx) accepts] ) accepts] ≥≥ ½½ + + nn−− kk..
x x ∉∉ LL ⇒⇒ PrPr[[AA((xx) rejects] ) rejects] ≥≥ ½½ + + nn−− kk..
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)

The previous two definitions of The previous two definitions of BPPBPP are equivalent.are equivalent.

We will show that the latter one can be transferred to We will show that the latter one can be transferred to 
the former one by Chernoff bounds as follows.the former one by Chernoff bounds as follows.

Let Let MMAA be an algorithm simulating algorithm be an algorithm simulating algorithm AA for     for     
““tt”” times and output the majority answer.times and output the majority answer.

That is, if there are more than That is, if there are more than tt/2 /2 ““acceptsaccepts””, , MMAA will output will output 
““AcceptAccept””. . 
Otherwise, Otherwise, MMA A will output will output ““RejectReject””..
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)

Let Let XXi i , for 1, for 1≤≤ ii ≤≤ tt,, be a random variable such that be a random variable such that XXii
= 1 if the = 1 if the iithth execution of execution of MMAA (running algorithm (running algorithm AA) ) 
produces a produces a correctcorrect answer and answer and XXii = 0 otherwise.= 0 otherwise.

That is, accepts if That is, accepts if xx∈∈LL and rejects if and rejects if xx∉∉LL. . 

Let X =
Pt

i=1Xi, we have μX ≥ (12 + 1
nk
)t = t · nk+2

2nk
.

So t
2 ≤ nk

nk+2
· μX .
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)

Recall one of the previous results of the Chernoff Recall one of the previous results of the Chernoff 
bound:bound:

Theorem: Let X =
Pn

i=1Xi, where X1, . . . , Xn are n
independent Poisson trials such that Pr[Xi = 1] = pi. Let
μ = E[X ]. Then, for 0 < d < 1:

(1) Pr[X ≤ (1 − d)μ] ≤
³

e−d

(1−d)(1−d)
´μ
;

(2) Pr[X ≤ (1 − d)μ] ≤ e−μd2/2.
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)
We have the error probability

Pr[X < t/2] ≤ Pr[X <
nk

nk + 2
· μX ]

≤ Pr[X ≤
µ
1− 2

nk + 2

¶
μX]

≤ e
−μX( 2

nk+2
)2/2

= e
−μX 2

(nk+2)2

≤ e
− t

nk(nk+2) .

Let e
− t
nk(nk+2) ≤ 1/4, we can derive that the value of t as

follows.
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)
By taking logarithm on both sides, we have

− t

nk(nk + 2)
≤ ln 1

4

So we can take t to be ln 4 · nk(nk + 2), then we have

Pr[X < t/2] ≤ e
− t

nk(nk+2)

= e
− ln 4·nk(nk+2)

nk(nk+2)

= e− ln 4

= 1/4.
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ErrorError--reduction in reduction in BPP (contBPP (cont’’d)d)

Since                                   is still polynomial, theSince                                   is still polynomial, the
running time of running time of MMAA will be still polynomial. Hence will be still polynomial. Hence 
the latter definition for the latter definition for BPPBPP is equivalent to the is equivalent to the 
former one!former one!

t = ln 4 · (n2k + 2nk)
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