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Introduction

m Goal:

m The Chernoff bound can be used in the analysis on the tail
of the distribution of the sum of Independent random
variables, with some extensions to the case of dependent or
correlated random variables.

m Markov’s Inequality and Moment generating
functions which we shall introduce will be greatly
needed.




Math tool

Professor Herman Chernoff’s bound,
Annal of Mathematical Statistics 1952




Chernoff bounds

In it’s most general form, the Chernoff bound for a random vari-
able X is obtained as follows: for any ¢t > 0,

Pr[X > a <A moment generating

=== function
or equivalently,
InPr[X > a] < —ta + InE[e**].
E[etX]

The value of ¢ that minimizes ota gives the best possible
bounds.




Markov's Inequality Ry
\

For any random variable X > 0 and any a > 0,

E[X]

a

Pr|X >a| <

We can use Markov's Inequality to derive the famous
Chebyshev s Inequality:

P Var[X].

Pr(|X —E[X]| > a] = Pr[(X -E[X])" > a’] < —



Proof of the Chernoff bound

It follows directly from Markov s inequality:

Pr[X > a] = Pr[e™* > "]

So, how to calculate this term?




Moment Generating Functions

Mx(t) = E[etX].

This function gets its name because we can generate the ¢th mo-
ment by differentiating M x (t) ¢ times and then evaluating the

result for ¢ = 0:

t=0

&
dt’

Mx(t)

The 7th moment of r.v. X

Remark: E[X'] = Y z'-Pr[X = 1]
zeX




Moment Generating Functions (cont d)

We can easily see why the moment generating function
works as follows:

d d
— Mx(t = —E[*
i Mx (¢) . bl ]t:o
= : e”Pr[X = s] »
di
= ) —e"Pr[X =4
dt’ o

S

= Z s'e*Pr[X = Stho

S

= ZsiPr[X = 5]

S

= E[X'].




Moment Generating Functions
(cont d)

m The concept of the moment generating function
(mgf) 1s connected with a distribution rather than
with a random variable.

m Two different random variables with the same
distribution will have the same mgf.
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Moment Generating Functions
(cont'd)

* Fact: If Mx(t) = My(t) for all t € (—c,c) for some
c > 0, then X and Y have the same distribution.

* If X and Y are two independent random variables, then
Mx v (t) = Mx(t)My(t).

* Let Xy,...,X; be independent random variables with
mgf’s M;i(t),..., Mg(t). Then the mgf of the random

variable Y = Z,’f:l X; is given by
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Moment Generating Functions
(cont d)
% If X and Y are two independent random variables, then
Mx.y (t) = My () My (t).
Proof:

Mxiy(t) = E[EHY)]
— E'etXetY]
= E[e'*|Ele!Y]
= Mx(t)My(¢).

Here we have used that X and Y are independent — and hence
e!* and et are independent — to conclude that E[e!*et?] =
E[et* |EletY].
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Chernoff bound for the sum of
Poisson trials

m Poisson trials:

m The distribution of a sum of independent 0-1 random variables,
which

m Bernoulli trials:

m The same as above except that all the random variables are
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Chernoff bound for the sum of
Poisson trials (cont d)

* X;:1=1,...,n, mutually independent 0-1 random variables with
Pr(X; =1] = p; and Pr[X; =0] =1 — p;.

Let X =X1+...+ X, and EX|=pu=p1+...+ pn.

MXi (t) — E[eth-] — piet'l i (1 . p,,;)et'o — piet s (1 . ]%;)
=1+4p;(ef—1) < epi(e—1), (Since 1 +y<e’.)

* | Mx () = EleX] = My, (t)Mx, (t) ... Mx,, (t) < e@HPet-Fpa)(e=1)

t
_ e —1
e( ):u’

since p =p1 +p2+ ...+ pn. \

We will use this result later.
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Chernoff bound for the sum of
Poisson trials (cont d)

Poisson trials

Theorem 1: Let X = X; +---+ X,,, where X;,...,X,

are n independent trials such that Pr[X; = 1] = p; holds
for each : = 1,2,...,n. Then,

d H
(1) for any d > 0, Pr[X > (1 +d)u] < ((1_|_Z)1—|—d) :
(2) for d € (0,1], Pr[X > (1 + d)u] < e~#4°/3;

(3) for R > 6u, Pr[X > R] < 27 &,
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For any random vari-
Proof of Theorem 1: ERRS N e

a >0, Pr(X > a] <
By Markov inequality, for any ¢ > 0 we have  g[x

/'

< E[ ]/et(1+d)u <
= In

Pr[X > (14 d)u] = Pr[e!* > eI TdH]
e(et_l)“/et(Hd)“. For any d > 0, set ¢

(1+d) > 0 we
have (1).
To prove (2), we need to show for 0 < d < 1, e?/(14d)* 4 <
—d?/3
e .

Taking the logarithm of both sides, we have d — (14 d) In(1 -+
d) + d?/3 < 0, which can be proved with calculus.

To prove (3), let R = (14+d)u. Then, for R > 6u, d = R/u—

1 > 5. Hence, using (1), Pr[X > (1+d)u] < ( <

d P
(1+d><1+d>) -
(=) AHDr < (¢/6)R < 27E,

L==al — from (1)
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7 \

probability

= Similarly, we have: B — - X
p—dp p ptdu

Theorem: Let X = > " X;, where Xi,...,X, are n
independent Poisson trials such that Pr|X; = 1] = p;. Let
p = E[X]. Then, for 0 < d < 1:

(1) Pr(X < (1—d)u] < (=500 )

(2) Pr[X < (1 — d)u] < e #4/2,

Corollary: For 0 < d < 1, Pr[|X — u| > du] < 2e#4°/3,
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m Example: Let X be the number of heads of n
independent fair coin flips. Applying the above
Corollary, we have:

e
Pr{|X —n/2| > V 6n Inn/2| < 2exp(—

%61nn) _ 2/n

Pr|X —n/2| > n/4] < 2exp(—32%) = 2e~ /24,

By Chebyshev’s inequality, i.e. Pr||X — E|X]|| > a]

< YarXl ' we have Pr[|X —n/2| > n/4] < 4/n.
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Better bounds for special cases

Theorem Let X = X; +---+ X, where X1,...,X,, are n
independent random variables with Pr|X; = 1] = Pr|X; =

—1] =1/2. For any a > 0, Pr[X > a] < 2=

Proof: For any t > 0, E[e!*i] = 1 /2 + (71 /2,
Since e = 1+t +t?/21 4+ - - +t'/il + .- and e P =1 —t +
t2 /20 4+ .. 4+ (=1)¢"/i! + - - -, using Taylor series, we have

Ele!Xi] = 3,00 t%/(20)! < 3,00(t2/2)1 /il = et /2.

E[e’] = H E[e!*i] < e’ /2 and Pr[X > a] = Pr[e’* > '

VAN

1=

E'etX'/eta’ < etQ”/Q/eta Setting t = a/n, we have Pr|X > a]

—a?/2n

<
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Better bounds for special cases

(cont d)
Corollary Let X = X3 + --- 4+ X,, where
X1,...,X,, are n independent random variables

with Pr|X; = 1| = Pr|X;, = —1] = 1/2. For any a > 0,

Pr@z al < 2e—a /2n

Let Y; = (X; + 1)/2, we have the following corollary.
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Better bounds for special cases
(cont d)

Corollary Let Y =Y, + .-+ Y, where Y7,....Y,
are n independent random variables with Pr|Y; = 1| =
Pr|Y; =0]=1/2. Let u = E[Y] =n/2.

1) For any a > 0, PrlY > pu+a] < g=2a"/n,

3) For any p > a >0, Pr[Y < p—a] < e 20°/n,
2

(1)
(2) For any d > 0, Pr[Y > (1 + d)u] < e=4~.
(3)
(4) For any 1 >d > 0, Pr[Y < (1 —d)u] < e 4+,

Note: The details can be left for exercises. (See [MUO05], pp. 70-71.)
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An application: Set Balancing

m Given an N x M matrix A with entries in {0,1}, let

[ @ alm\ /2\ /2\

as1 A9y

NPT I U B

m Suppose that we are looking for a vector v with entries in {—1, 1}
that

22




Set Balancing (cont d)

m The problem arises in designing statistical experiments.

m Each column of matrix A represents a subject in the
experiment and each row represents a feature.

m The vector V partitions the subjects into two disjoint
groups, so that each feature is roughly as balanced as
possible between the two groups.
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Set Balancing (cont d)

For example,

A: s | [grg | aag| V[ | AV 1
sap| 0o | 1] o | o 1 \2)
A T S I O I = 1
st |1 1 1 0 —1 i
b 0 0 0 |

We obtain that || Av ||.= 2.
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Set Balancing (cont d)

For example,

A: w5 | =4 |ma | ea| V[0 | Avi (L)
dsr]| o | 1| o | o 1 0
2 | 1 | 1 ] 0 |0 : 1
wataE |1 1 1 0 = L
b 0 0 0 |

We obtain that || Av ||.= 1.
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Set Balancing (cont d)

Set balancing: Given an n X m matrix A with entries
0 or 1, let v be an m-dimensional vector with entries
in {1,—1} and c be an n-dimensional vector such that

Av = c.

Theorem For a random vector v with entries cho-

sen randomly and with equal probability from the set
{1, -1}, Pr[max; |c;| > v4mInn] < 2/n.

1

n X = n

A
\ 4

/ randomly chosen
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Proof of Set Balancing:

Proof: Consider the i-th row of A: a; = (a1, - ,Qi,m). Sup-
pose there are k 1s in a;. If & < vV4mlnn, then clearly
la;v| < V4mInn. Suppose k > v4mlnn, then there are
k non-zero terms in Z; = )" a;;v;, which are independent
random variables, each with probability 1/2 of being either +1

or —1.

By the Chernoff bound and the fact m > k, we have
Pr[|Z;| > V4Amlnn] < 2e~4mn/2k < 9/p2 By the union

bound we have the bound for every row is at most 2/n.

‘ m  Pr[) (12| > VamInn)]

1=1

A
\ 4
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Another application: Error-reduction

in BPP

m The class BPP (for Bounded-error Probabilistic

Polynomial time) consists of all languages L that have
a randomized algorithm A running in worst-case
polynomial time that for any input X € >_7,

m X € L= Pr[A(x) accepts| = 7 .
m X ¢ L= Pr[A(x) rejects| = % .

That 1s, the error probability 1s at most ..
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Error-reduction in BPP (cont’d)

m Consider the following variant definition:

m The class BPP (for Bounded-error Probabilistic
Polynomial time) consists of all languages L that have
a randomized algorithm A running in worst-case
polynomial time that for any input X € >." with |X| =n
and some positive integer k > 2,
= X € L = Pr[A(X) accepts] = %4 + n.
= X ¢ L = Pr{A(X) rejects] = % + n .

29




Error-reduction in BPP (cont’d)

m The previous two definitions of BPP are equivalent.

m We will show that the latter one can be transferred to
the former one by Chernoff bounds as follows.

m [et M, be an algorithm simulating algorithm A for
“” times and output the majority answer.

m That 1s, if there are more than t/2 “accepts”, M, will output
“Accept”.

= Otherwise, M, will output “Reject”.
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Error-reduction in BPP (cont’d)

m Let X;, for I<1 <t, be a random variable such that X;
= 1 if the Ith execution of M, (running algorithm A)
produces a correct answer and X; = 0 otherwise.

m That 1s, accepts if X e L and rejects if x ¢ L.

mLet X =35 | X;, we have ux > 3+ F)t=t- 2

2nk

k

S S k_|_2 luX

13
2
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Error-reduction in BPP (cont’d)

m Recall one of the previous results of the Chernoff
bound:

Theorem: Let X = > " X, where X;,...,X,, are n
independent Poisson trials such that Pr|X; = 1] = p;. Let
u = E[X]|. Then, for 0 < d < 1:

(1) Pr(X < (1 - d)u] < (=500 )

(1—d)a-d)
(2) Pr[X < (1 —d)y] < e Hd /2
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Error-reduction in BPP (cont’d)

m We have the error probability

k

n
Pri X <t/2] < Prl X< :
(X <t/ < PrlX <
2

< Pri X< (1-—-

< G_MX(nk2—|—2 )2/2
p— Q_NXW

. t
< e nF@F+2)

. t
B Let e »*"+2) < 1/4, we can derive that the value of ¢ as
follows.
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Error-reduction in BPP (cont’d)

m By taking logarithm on both sides, we have

t <1 1
— n_
nk(nk+2) = 4

So we can take t to be In4 - n*(n® + 2), then we have

t

PriX <t/2] < e »F&F+2)

_In 4-nk (nk—|—2)

— e In 4
— 1/4.
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Error-reduction in BPP (cont’d)

m Since t =In4 - (n** + 2n*) is still polynomial, the
running time of M, will be still polynomial. Hence
the latter definition for BPP 1s equivalent to the

former one!
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