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Introduction

= With the recent advances in technology, we are
faced with the need to process increasingly larger
amounts of data In faster times.

m There are practical situations in which the input Is
so large, that even taking a linear time In Its size to
provide an answer Is too much.

m Making a decision after reading only a small
portion of the Input, that Is, in sublinear time, Is
thus considered to be an very important Issue.




Introduction (cont d)

m Sublinear time algorithms have received a lot of
attention recently.

m Recent results have shown that there are optimi-

zation problems whose value can be approximated
In sublinear time.




Introduction (cont d)

= However, most algorithms which run in sublinear
time must necessarily use randomization and must
give an approximate answer.

m Surprisingly though, there are nontrivial problems
for which deterministic exact algorithms exist!

m Let us see the following two examples.
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Example 1: Tournament

= A tournament iIs a digraph such that for each pair
of vertices u and v, exactly one of (u, v) and (v, u)
IS an edge.

= \We can interpret the vertices as players such that
each pair of players play a match, and an edge
from one to another indicates that one player beats
another, hence the name tournament.




Tournament (cont d)
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m Assume that we have a tournament G on n vertices
represented In adjacency matrix form M.

= Thus the size of G is ().
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Tournament (cont d)

m |Input:
= a tournament G on n vertices represented In
adjacency matrix form M .
m Output:

= the source of G If it exists, otherwise output “No source
exists”. (source: the vertex of out-degree n—1)

m [here exists a deterministic algorithm that finds
the source of G (a player who beats all others) If it
exIsts In time.

-



Tournament (cont d)

Algorithm-Source-Finding:

1. S+ {Ul,...,?)n};
2. while |S| > 1 do
(a) Arbitrary pick v;,v; € S;
(b) if M¢g|i, j] = 1 then remove v; from S;
else remove v; from S5;
3. Denote the remaining vertex in S by v,;
4. For 1 =1 ton do
if Mqg|r,¢] = 0 then output “No source
exists.” and return;
5. Return v,;

End of the Algorithm




Example 2: Diameter

m Assume that we have n points In a metric space.

m The input is an n x n distance matrix D such that
D(1, ) Is the distance between I and |J.

m \We seek a sublinear time algorithm that outputs
max; ; D(¢, ), I.e., the diameter.
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Diameter (cont d)

m |Input:

= an n x n distance matrix D such that D(l, ]) Is the
distance between I and |.

m Output:
= diameter of these n points (i.e., max; ; D(¢, 7))

m Consider the following simple algorithm.
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Diameter (cont d)

Algorithm-Diameter:

% Pick a point u arbitrary and output z := max, D(u,v).

End of the Algorithm

m Clearly this algorithm runs in O(n) time. Moreover,
we argue that z, the value returned by this naive
looking algorithm, Is a good approximation for the
diameter d of the input.




Diameter (cont d)

m Clam: d/2<z<d.

m Proof:

= Let aand b be two points such that D(a,b) = d and
assume that z = D(u,V)

= Since D Is a metric space, we have

d= D(a,b) < D(a,u) + D(u,b) < D(u,v) + D(u,v) = 2z.




= [0 study approximation algorithms, we
need to define notions of how good an
approximation Is.




Definitions

Let w(x) be the optimal solution of an input x. For g > 1,
we say that A is a G-multiplicative approrimation algorithm

if for all z,

% < A(z) < Br(x).
We say that A is an a-additive approximation algorithm if
for all x,

m(x) —a < Az) < 7(x) + a.




How to approximate a decision
problem?

= In addition, property testing, an alternative notion
of approximation for decision problems, has been
applied to give sublinear time algorithms for a

wide variety of problems.

m “Still, the study of sublinear time algorithms is
very new, and much remains to be understood
about their scope.” - Ronitt Rubinfeld

= ACM SIGACT News, Vol. 34, No. 4, 2003.
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Property testing

= The notion of property testing was first formulated
by Rubinfeld and Sudan.

¥

Ronitt Rubinfeld and Madhu Sudan: Robust charaterization of
polynomials with applications to program testing, SIAM Journal
on Computing, 1996, Vol. 25, pp. 252-271.
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Property testing (cont d)

= Due to these two pioneers, plenty results have
come out recently.
m See the “Further readings” for reference.

= Many outstanding scholars have devoted to this
topic of research, such as:
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Especially,

m Property testing emerges naturally in the context of
orogram checking and probabilistic checkable
oroofs (PCP).
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m W

PCP theorem: NP = PCP(O(log n), O(1))
- JACM, Vol. 45, 1998.




Roughly speaking, ...

m A property tester is an algorithm which
m accepts with high probability if the input has a certain
property, and
m with high probability if the input Is “far” from
the property.
v That Is, the input cannot be modified slightly to make it
possess the property.




Property testing (cont d)

= |n order to define a property tester, It Is Important
to define a notion of distance from having a

property.

m Define a language P to be a class of inputs that
have a certain property.

= For example, connected graphs, monotone Increasing
Integers, ...




Property testing (cont d)

m Let A(X, Y) be the distance function between input
x and y, with A (x, y) € [0, 1] and define

d(xz, P) = mingep Az, y)




Property testing (cont d)

m For example, the Hamming distance/ #digits of two
0-1 strings with equal length can be a A.

A (01001,,01110,) = 3/5.

m Let P be a set of 0-1 strings which has fewer 0’s
than 1’s, we can easily have

d(01001,,P) = 1/5.




Property testing (cont d)

m SO let us consider the formal definition of
a property tester.




Property testing (cont d)

B A property tester for (P, d) is defined as

% Given input z, 0 < € < 1.

if x € P, then Pr|return “Pass”| > 2/3.

if d(x, P) > €, then Pr{return “ 7] > 2/3.

Remark:
If d(x, P) > €, we say z is e-far from P.
If d(z, P) < ¢, we say x is e-close from P.

-




A simple example

m Consider the following example to figure out
the concept of property testing.

m Suppose we have a seguence of n numbers,
X1, .-+, X, We would like to determine It the
seguence Is monotonically Iincreasing.

= Input: X;, ..., X,
= Output; Accepts or Rejects.

-



Testing monotonicity of a list

m Any deterministic decision algorithm runs in Q(n)
time to read the input and make a decision.

= On the other hand, a property testing algorithm
exIsts such that It

m accepts, If the sequence is monotonically increasing

m , IT more than &n
of the x; need to be removed so that the resulting
sequence becomes monotonically increasing.




Testing monotonicity of a list (cont d)

m WLOG, we can assume that all x;’s are distinct.

= Since we can interpret x; as (x;, I), which breaks ties
without changing order.

m Consider the following simple approach which can
not be ensured to run in sublinear time.
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Testing monotonicity of a list (cont d)

Algorithm 1

(Zh & Select i randomly and test whether x; < ;1.
Then return “Pass” if ; < x;11, and return “Fail”
otherwise.

m Consider the following seqguence which is very far
from monotonically increasing:

4,8,12,3,7,11, 2,6, 10,1,5,9
PASS




Testing monotonicity of a list (cont d)

m Generally, such sequence x4, X,,..., X, can be
written as the following form:

m, 2m, ..., km,
m-1, 2m-1, ... , km-1, ...,
1, m+1, 2m+1, ..., (k=1)m+1. (thus n = mk)

where m, k are two integers greater than 1.
m For example, when m =4, k = 3:

4,8,12,3,7,11,2,6,10,1,5,9

-




Testing monotonicity of a list (cont d)

m [he distance of such sequence from monotonically
Increasing Is at least Y.

= For example,

2,41 3—2 40r2, 30rl, 3

for monotonically increasing




Testing monotonicity of a list (cont d)

m See the following illustration: (m =4, k = 3)




Testing monotonicity of a list (cont d)

m See the following illustration: (m =4, k = 3)

Let it be an integer in the longest
Increasing subsequence

®
©,
@




Testing monotonicity of a list (cont d)

m \We can easily prove that the length of a longest
monotonically increasing subseguence In such a
seguence must be at most k,

= Exercise. (Hint: Consult the previous illustration.)

m S0 the distance of such seguence from
monotonically increasing is at least n — k = (m-1)k,
which Is at least ¥z of the length of the seguence.

= Forexample, 2,4,1,3—2,40r2,30r1,3

-



Testing monotonicity of a list (cont d)

m, 2m,..., km, m-1, 2m-1,..., km-1,...,1 m+1, 2m+],..., (k—1)m+1

= Algorithm 1 does not detect that the sequence IS
not monotonically increasing as long as it does
not query a pair of locations of a yellow integer
and Its next integer respectively.

m Thus Algorithm 1 will need Q(k) queries, that s,
repeatedly runs Q(k) times.




Testing monotonicity of a list (cont d)

m, 2m,..., km, m-1, 2m-1,..., km-1, ..., 1 m+1, 2m+1,..., (k—1)m+1

= The probability that Algorithm 1 doesn’t guery any
yellow integer is larger than 1 — 1/k for each run.

= The probability that Algorithm 1 queries a yellow
Integer at least once during c-k runs Is
1 — (1-1/K)ex,

-




Testing monotonicity of a list (cont d)

m 1 - (1-1/k)* \, 1 - 1/e¢ > 2/3 when k is large and
c> 1.

m That is, if we don’t run Algorithm 1 for more than €3(k)
times, Algorithm 1 will not query any yellow integer
with high probability (when k is large and ¢ > 1.)

= However, we the probability that
Algorithm 1 query a yellow integer at least once
during c-k runs Is

-




Testing monotonicity of a list (cont d)

m Thus the time complexity of this algorithm
cannot be ensured to be sublinear.

= Try another one!

-




-

Testing monotonicity of a list (cont d)

m Consider another algorithm, which is a little
sophisticated.

Algorithm 2

) X Samples the sequence at random points
and checks if these random points form a
monotonically increasing sequence.

% Return “Pass” if they do, and return “Fail”
otherwise.




Testing monotonicity of a list (cont d)

= However, consider the following sequence, which
IS again very far from monotonically increasing.

mm-1,....1,2m,2m-1,... m+1 3m, ..., 2m+1, ...

m Agalin, the distance of this sequence from
monotonically increasing Is at least .

= The algorithm detects that this sequence Is not
monotonically increasing only if two of its query
points fall within [km, (k—1)m+ 1] for some k.




Testing monotonicity of a list (cont d)

m m-1,..., 1,2m,2m-1,..., m+1 3m,....2m+1, ...

= However, by the , this Is unlikely
ITf m IS a constant and the number of samples Is
o((n/m)”) = o(n?).

= With high probability, the values of the query
points will form a monotonically increasing sub-
sequence.

m Thus Algorithm 2 does not work well.




m Can we do better?

E. Ergiin, S. Kannan, R. Kumar, R. Rubinfeld and M.
Viswanathan proposed a O((1/¢) log n) property tester.

- JCSS, Vol. 60, 2000




Testing monotonicity of a list (cont d)

m Consider the following algorithm. [EKKRV00]

Algorithm 3((z1,...,Z,),€)
% Repeat Step 1 to 3 for O(1/¢) times:

(GA 1. Pick 7 uniformly at random from 1 through n.
2. Query x;.
3. Perform binary search for x;. If the search does
not found x;, return “Fail” (i.e., Reject).

% Return “Pass” (i.e., Accept) if all searches are
successtul.




For example,

Begin binary search

s
v
index 1 2 3 4 5 6 !/

value | 21 | 9 1 3 5 3 | 17

Search for value 1.

Output:




Another example,

Begin binary search

(g
\%
index | 1| 2 3] 4|5 | 6] 7

value | 21 | 9 1 3 5 3 | 1/

Search for value 8.

Output: Pass!




Testing monotonicity of a list (cont d)

m Algorithm 3 runs in time O((1/¢) log n) since each
binary search takes O(log n) time.

m If the sequence {x;} Is monotonically increasing,
then clearly the algorithm accepts.

= \We need to show that If at least gn of the sequence
need to be removed for It to be monotonically
Increasing, then the algorithm rejects (resp. accepts)
with probability at least 2/3 (resp., less than 1/3).

= Suppose not, that Algorithm 3 with probability




Testing monotonicity of a list (cont d)

= Proof by contradiction:

m ¢-far = accept with probability < 1/3
accept with probability > 1/3 = e-close

m We call index 1 Is “good ” If the binary search
for x; 1s successful, otherwise we call Iindex 1 IS
‘(bad 17.

-




Testing monotonicity of a list (cont d)

m For example,

index 1

value | 6

14

10




Testing monotonicity of a list (cont d)

m We claim that less than £n of the indices are bad.

= Otherwise, each time through the loop, the algorithm
finds a bad index with probability at least «.

= Then Algorithm 3 accepts with probability at most
(1—¢g)% < e < 1/3 for some constant c.

= A contradiction then occurs.

= Now, the remaining part Is to prove that the good
points indeed form a monotonically increasing
subsequence.

-




Testing monotonicity of a list (cont d)

m Consider any two good indices I, J , where | <.

m Consider the first point in the binary search path
where x; and x; diverge and assume that point has
value u.

m Since | and j are good and I < J, we can conclude
that x; < u <X;. This concludes the proof.




= Now, let us consider another problem:
Testing connectivity of a graph.




Connected and Disconnected

connected \

disconnected O

-




Degree bound

= We say a graph G(V, E) has a degree bound d If for
each vertex v e V,

deg(v) < d

where deg(V) Is the number of vertices adjacent to
vin G.

-




Graph representations

= Adjacency matrix

= Fordensegraphs 4 B € D 4 B
Al0O 1 1 1
Bl1 o 1 1
CcCl|1 1 0 1
D1 1 1 0] - a
= Adjacency list A ol 0Dl 4 -
= For sparse graphs [z| [}
Cl— A
D » A B D C

-




Testing connectivity of a graph

= \We will adopt the adjacency list model with a
given degree bound d to proceed with our
discussion.

= The graph possesses O(dn) edges.




Testing connectivity of a graph (cont d)

% Input: a graph G(V,E) with bounded degree d ,
given as adjacency list

% Desired property: P = a class of connected graphs
with bounded degree d

Let G¢ denote the set of graphs of n nodes with a
bounded degree d.




Testing connectivity of a graph (cont d)

m Let G € G¢, we define the distance of G from
connected to be

dist(G, P) = 2’)27ng)

where pq(G) is the minimum number of
modifications of edges needed for G to be

connected such that the degree bound d is still
maintained.




For example, (d = 2)

dist(G, P) = 2229 — 1

dn 4




Another example, (d = 2)

dist(G, P) = 2229 — 1

dn 2




Idea

m |f a graph is far from connected, there must be
many components,

= That in turn implies that there are many small
components.

m Consider the following algorithm proposed by O.
Goldreich and D. Ron.

o
5 % e

- Algorithmica, Vol. 32, 2002.

-
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Testing connectivity of a graph (cont d)

Algorithm GR(G,€) [GRO2]

(Zh 1. Pick m = O(<;) nodes of G uniformly at
random.
Let S denote the set of these picked nodes.
2. For each node s € S, do BFS and stop if:
(a) £ nodes have been reached
(b) exhaust the component
3. If (b) ever happens, return “Fail”;

otherwise, return “Pass”.

(Here we assume that |V| > 8/ed.)



An 1llustration

@ Pick 2 nodes of the graph, and see
at most 4 nodes during each BFS.

™ .

Halt and output: “Fail”

-




Testing connectivity of a graph (cont’d)
m= The running time of Algorithm GR Is

O 21 d) = O(z3),

which 1s sublinear.

= \Why does this algorithm work?




Testing connectivity of a graph (cont d)

m For G € G2, if GeP, it is obvious that the
algorithm must output “Pass”.

= Maybe you don’t think that this is trivial. You can prove
this claim for an easy exercise.

m So, what If GgP?

= We have to prove that if G is far from P, (i.e., G Is far
from connected with degree bound d) Algorithm GR
will output “Fail” with probability at least 2/3.




-

Testing connectivity of a graph (cont d)
m Consider the following observation first.

m Observation:

If G € G2 is e-far from connected, then G has at least
edn/2 connected components.

m Proof:

= If G has less than edn/2 connected components, we can
add less than edn/2 edges to make G connected.

m G Is not e-far from connected. (Because edn/dn = ¢ )
H

68




Testing connectivity of a graph (cont d)

A class of connected graphs with

= Lemma 1: bounded degree d

f
If G € GY is e-far fromhen G has at least edn /4

connected components.

m Proof: Exercise!

= Hint: Consider the previous observation and the second
example for illustrating dist(G, P) .




Testing connectivity of a graph (cont d)

m Corollary 1:

If G € GY is e-far from P, then G has at least edn/8
connected components each containing less than %

nodes.

m Proof;

= Let n_ be the number of components of size less than

% . — We call them small components for simplicity.

= Let n. be the number of components of size at least

8
ed’

-
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Testing connectivity of a graph (cont d)

m Assume that G Is e-far from P. Then from
Lemma 1 we have that G has at least edn/4
connected components.

m Since n_ + n. Is the total number of connected
components in G, we have n_+n. > edn/4.

m Since n.- 8/ed < n, we have n. < edn/8.

m [herefore, n_ > edn/4 — edn/8 = edn/8, the
corollary immediately follows.



Testing connectivity of a graph (cont d)

m [heorem 1:

Let G € G4
% if G is connected, then Algorithm GR

return “Pass”
* it GG is e-far from P, then
Pr|Algorithm GR return “Fail”] >

L]

wWinN

m Proof of Theorem 1 is as follows.




Testing connectivity of a graph (cont d)

m |f G Is connected, Algorithm GR must output
“Pass™.

= Trivial.

m Consider the case that G 1s e-far from P.

-




Testing connectivity of a graph (cont d)

= By Corollary 1,

Pr|s is in a small component]
number of nodes in small components

n
- number of small components
_ n
ed Each component is of size at
> g least one and they are dis-

joint.
From Corollary 1.

=
ﬁ_ 74




Testing connectivity of a graph (cont d)

m Since m IS chosen to be c/ed for some constant c,
we have

Pr[no s is in a small component]

< (-%)a

8
< 6—0’ These inequalities holds as long
_ 1 as we pick ¢ large enough (¢’ is a
< § constant that depends on c).

Therefore, the proof is done.

-




m | think | should finish this talk now.

m Related works on Property testing are listed
at “Further readings” as follows.

-
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Further readings (cont d)

= Some good surveys are available on the following

website:
= http://theory.lcs.mit.edu/%7Eronitt/sublinear.html

= This powerpoint file can be downloaded from the
following hyperlink:

= http://www.cs.ccu.edu.tw/~lincc/research/randalg/slides/Intr
oductionToProperty Testing.ppt
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