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IntroductionIntroduction

With the recent advances in technology, we are With the recent advances in technology, we are 
faced with the need to process increasingly larger faced with the need to process increasingly larger 
amounts of data in faster times.amounts of data in faster times.
There are practical situations in which the input is There are practical situations in which the input is 
so large, that even taking a linear time in its size to so large, that even taking a linear time in its size to 
provide an answer is too much.provide an answer is too much.
Making a decision after reading only a small Making a decision after reading only a small 
portion of the input, that is, in portion of the input, that is, in sublinear timesublinear time, is , is 
thus considered to be an very important issue.thus considered to be an very important issue.
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Introduction (contIntroduction (cont’’d)d)

Sublinear time algorithms have received a lot of Sublinear time algorithms have received a lot of 
attention recently.attention recently.

Recent results have shown that there are Recent results have shown that there are optimioptimi--
zationzation problems whose value can be approximated problems whose value can be approximated 
in sublinear time.in sublinear time.
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Introduction (contIntroduction (cont’’d)d)

However, However, mostmost algorithms which run in sublinear algorithms which run in sublinear 
time must necessarily use randomization and must time must necessarily use randomization and must 
give an approximate answer.give an approximate answer.

Surprisingly though, there are nontrivial problems Surprisingly though, there are nontrivial problems 
for which deterministic exact algorithms exist!for which deterministic exact algorithms exist!

Let us see the following two examples.Let us see the following two examples.
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Example 1: TournamentExample 1: Tournament

A tournament is a digraph such that for each pair A tournament is a digraph such that for each pair 
of vertices of vertices uu and and vv, , exactly oneexactly one of (of (uu, , vv) and () and (vv, , uu) ) 
is an edge.is an edge.

We can interpret the vertices as players such that We can interpret the vertices as players such that 
each pair of players play a match, and an edge each pair of players play a match, and an edge 
from one to another indicates that one player beats from one to another indicates that one player beats 
another, hence the name tournament.another, hence the name tournament.
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Tournament (contTournament (cont’’d)d)

Assume that we have a tournament Assume that we have a tournament GG on on nn vertices vertices 
represented in adjacency matrix form represented in adjacency matrix form MMGG..

Thus the size of Thus the size of GG is is 
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Tournament (contTournament (cont’’d)d)

Input:Input:
a tournament a tournament GG on on nn vertices represented in vertices represented in 
adjacency matrix form adjacency matrix form MMG G ..

Output:Output:
the source of the source of GG if it exists, otherwise output if it exists, otherwise output ““No source No source 
existsexists””. (source: the vertex of out. (source: the vertex of out--degree degree nn−−11))

There exists a deterministic algorithm that finds There exists a deterministic algorithm that finds 
the source of the source of GG (a player who beats all others) if it (a player who beats all others) if it 
exists in exists in OO((nn)) time.time.
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Tournament (contTournament (cont’’d)d)
Algorithm-Source-Finding:

1. S ← {v1, . . . , vn};
2. while |S| > 1 do

(a) Arbitrary pick vi, vj ∈ S;
(b) if MG[i, j] = 1 then remove vj from S;

else remove vi from S;
3. Denote the remaining vertex in S by vr;
4. For i = 1 to n do

if MG[r, i] = 0 then output “No source
exists.” and return;

5. Return vr;

End of the Algorithm
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Example 2: DiameterExample 2: Diameter

Assume that we have Assume that we have nn points in a points in a metric spacemetric space..

The input is an The input is an n n ×× nn distance matrix distance matrix DD such that such that 
DD((ii, , jj) is the distance between ) is the distance between ii and and jj..

We seek a sublinear time algorithm that outputs      We seek a sublinear time algorithm that outputs      
, i.e., the diameter., i.e., the diameter.maxi,j D(i, j)
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Diameter (contDiameter (cont’’d)d)

Input:Input:
an an n n ×× nn distance matrix distance matrix DD such that such that DD((ii, , jj) is the ) is the 
distance between distance between ii and and jj..

Output:Output:
diameter of these diameter of these nn points (i.e.,                         )points (i.e.,                         )

Consider the following simple algorithm.Consider the following simple algorithm.

maxi,jD(i, j)
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Diameter (contDiameter (cont’’d)d)
Algorithm-Diameter:

F Pick a point u arbitrary and output z := maxvD(u, v).

End of the Algorithm

Clearly this algorithm runs in Clearly this algorithm runs in OO((nn) time. Moreover, ) time. Moreover, 
we argue that we argue that zz, the value returned by this na, the value returned by this naïïve ve 
looking algorithm, is a looking algorithm, is a good approximationgood approximation for the for the 
diameter diameter dd of the input.of the input.
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Diameter (contDiameter (cont’’d)d)

Claim:Claim: dd/2 /2 ≤≤ zz ≤≤ dd..

Proof:Proof:
Let Let aa and and bb be two points such that be two points such that DD((aa,,bb) = ) = dd and and 
assume that assume that zz = = DD((uu,,vv))
Since Since DD is a metric space, we have is a metric space, we have 

d = D(a, b) ≤ D(a, u) +D(u, b) ≤ D(u, v) +D(u, v) = 2z.
¥
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To study approximation algorithms, we To study approximation algorithms, we 
need to define notions of how good an need to define notions of how good an 
approximation is.approximation is.
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DefinitionsDefinitions

Let π(x) be the optimal solution of an input x. For β > 1,
we say that A is a β-multiplicative approximation algorithm
if for all x,

π(x)

β
≤ A(x) ≤ βπ(x).

We say that A is an α-additive approximation algorithm if
for all x,

π(x)− α ≤ A(x) ≤ π(x) + α.
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How to approximate a decision How to approximate a decision 
problem?problem?

In addition, In addition, property testingproperty testing, an alternative notion , an alternative notion 
of approximation for decision problems, has been of approximation for decision problems, has been 
applied to give sublinear time algorithms for a applied to give sublinear time algorithms for a 
wide variety of problems.wide variety of problems.

““Still, the study of sublinear time algorithms is Still, the study of sublinear time algorithms is 
very new, and much remains to be understood very new, and much remains to be understood 
about their scope.about their scope.”” -- RonittRonitt RubinfeldRubinfeld

ACM SIGACT News, Vol. 34, No. 4, 2003.ACM SIGACT News, Vol. 34, No. 4, 2003.
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Property testingProperty testing

The notion of property testing was first formulated The notion of property testing was first formulated 
by by Rubinfeld and SudanRubinfeld and Sudan..

RonittRonitt Rubinfeld and Rubinfeld and MadhuMadhu SudanSudan: Robust charaterization of 
polynomials with applications to program testing, SIAM Journal 
on Computing, 1996, Vol. 25, pp. 252-271.
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Property testing (contProperty testing (cont’’d)d)

Due to these two pioneers, plenty results have Due to these two pioneers, plenty results have 
come out recently.come out recently.

See the See the ““Further readingsFurther readings”” for reference. for reference. 

Many outstanding scholars have devoted to this Many outstanding scholars have devoted to this 
topic of research, such as:topic of research, such as:
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Manuel Blum Madhu Sudan Ronitt Rubinfeld Luca Trevisan Bernard Chazelle

Noga Alon Dana Ron Rajeev Motwani Oded Goldreich Sanjeev Arora

Ravi Kumar

Carsten Lund Tugkan Batu Shafi Goldwasser Michael Luby

Mario Szegedy

Eldar Fischer

Lance Fortnow Sampath Kannan Funda Ergűn
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Especially, Especially, 

Property testing emerges naturally in the context of Property testing emerges naturally in the context of 
program checking and probabilistic checkable program checking and probabilistic checkable 
proofs (PCP).proofs (PCP).

Mario SzegedySanjeev Arora Carsten Lund Rajeev Motwani Madhu Sudan

PCP theorem: NP = PCP(O(log n), O(1))
- JACM, Vol. 45, 1998.
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Roughly speaking, Roughly speaking, ……

A property tester is an A property tester is an algorithmalgorithm which which 
acceptsaccepts with high probability if the input has a certain with high probability if the input has a certain 
property, and property, and 
rejectsrejects with high probability if the input is with high probability if the input is ““farfar”” from from 
the property.the property.

That is, the input That is, the input cannot becannot be modified slightlymodified slightly to make it to make it 
possess the property.possess the property.
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Property testing (contProperty testing (cont’’d)d)

In order to define a property tester, it is important In order to define a property tester, it is important 
to define a notion of to define a notion of distancedistance from having a from having a 
property.property.

Define a language Define a language PP to be a class of inputs that to be a class of inputs that 
have a certain property.have a certain property.

For example, For example, connectedconnected graphs, graphs, monotone increasingmonotone increasing
integers, integers, ……
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Property testing (contProperty testing (cont’’d)d)

Let Let ΔΔ((xx, , yy) be the distance function between input ) be the distance function between input 
xx and and yy, with , with ΔΔ((xx, , yy))∈∈ [0, 1] and define[0, 1] and define

d(x, P ) = miny∈P ∆(x, y)
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Property testing (contProperty testing (cont’’d)d)

For example, the Hamming distance/ #digits of two For example, the Hamming distance/ #digits of two 
00--1 strings with equal length can be a 1 strings with equal length can be a ΔΔ..

Let Let PP be a set of 0be a set of 0--1 strings which has fewer 01 strings which has fewer 0’’s s 
than 1than 1’’s, we can easily have s, we can easily have 

Δ(010012,011102) =  3/5.

d(010012,P) =  1/5.
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Property testing (contProperty testing (cont’’d)d)

So let us consider the formal definition of So let us consider the formal definition of 
a property tester.a property tester.
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Property testing (contProperty testing (cont’’d)d)

Remark:
If d(x, P ) ≥ ², we say x is ²-far from P .
If d(x, P ) ≤ ², we say x is ²-close from P .

A property tester for (P, d) is defined as

F Given input x, 0 < ² < 1.

if x ∈ P , then Pr[return “Pass”] ≥ 2/3.
if d(x, P ) ≥ ², then Pr[return “Fail”] ≥ 2/3.
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A simple exampleA simple example

Consider the following example to figure out Consider the following example to figure out 
the concept of property testing.the concept of property testing.

Suppose we have a sequence of Suppose we have a sequence of nn numbers, numbers, 
xx11, , ……, , xxnn, we would like to , we would like to determine if the determine if the 
sequence is monotonically increasingsequence is monotonically increasing. . 

Input:Input: xx11, , ……, , xxnn

Output:Output: Accepts or Rejects.Accepts or Rejects.
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Testing monotonicity of a listTesting monotonicity of a list

Any deterministic decision algorithm runs in Any deterministic decision algorithm runs in ΩΩ((nn) ) 
time to read the input and make a decision.time to read the input and make a decision.

On the other hand, a property testing algorithm On the other hand, a property testing algorithm 
exists such that itexists such that it

acceptsaccepts, if the sequence is monotonically increasing , if the sequence is monotonically increasing 
rejects with probability greater than 2/3rejects with probability greater than 2/3, if more than , if more than εεnn
of the of the xxii need to be removed so that the resulting need to be removed so that the resulting 
sequence becomes monotonically increasing.sequence becomes monotonically increasing.
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

WLOG, we can assume that all WLOG, we can assume that all xxii’’ss are distinct.are distinct.
Since we can interpret Since we can interpret xxii as (as (xxii, , ii), which breaks ties ), which breaks ties 
without changing order.without changing order.

Consider the following simple approach which can Consider the following simple approach which can 
not be ensured to run in sublinear time.not be ensured to run in sublinear time.
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider the following sequence which is very far Consider the following sequence which is very far 
from monotonically increasing:from monotonically increasing:

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

PASSPASS

Algorithm 1

F Select i randomly and test whether xi < xi+1.
Then return “Pass” if xi < xi+1, and return “Fail”
otherwise.
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Generally, such sequence x1, x2,…, xn can be 
written as the following form:

For example, when For example, when mm = 4, = 4, kk = 3:= 3:

m, 2m, … , kmkm,
m−1, 2m−1, … , kmkm−−11, … , 
1, m+1, 2m+1, … , (k−1)m+1.         (thus n = mk)

where m, k are two integers greater than 1. 

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

The distance of such sequence from monotonically The distance of such sequence from monotonically 
increasing is at least increasing is at least ½½..

WHY?WHY?
For example,For example,

2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3 

for monotonically increasing
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

See the following illustration: (See the following illustration: (m m = 4, = 4, kk = 3)= 3)
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

4

8

12

3

7

11

2

6

10

1

5

9

See the following illustration: (See the following illustration: (m m = 4, = 4, kk = 3)= 3)
Let it be an integer in the longest 
increasing subsequence

x

:   > x

:   < x
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

We can easily prove that the length of a longest We can easily prove that the length of a longest 
monotonically increasing subsequence in such a monotonically increasing subsequence in such a 
sequence must be at most sequence must be at most kk,,

Exercise. (Hint: Consult the previous illustration.)Exercise. (Hint: Consult the previous illustration.)

So the distance of such sequence from So the distance of such sequence from 
monotonically increasing is at least monotonically increasing is at least n n −− k = k = ((mm−−1)1)kk, , 
which is at least which is at least ½½ of the length of the sequence.of the length of the sequence.

For example, 2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Algorithm 1 does not detect that the sequence is Algorithm 1 does not detect that the sequence is 
not monotonically increasing as long as it does not monotonically increasing as long as it does 
not query a pair of locations of a not query a pair of locations of a yellowyellow integer integer 
and its next integer respectively. and its next integer respectively. 
Thus Algorithm 1 will need Thus Algorithm 1 will need ΩΩ((kk) queries, that is, ) queries, that is, 
repeatedly runs repeatedly runs ΩΩ((kk) times.) times.

WHY?WHY?

m, 2m,…, kmkm, m−1, 2m−1,…, kmkm−−11, … , 1, m+1, 2m+1,…, (k−1)m+1
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

m, 2m,…, kmkm, m−1, 2m−1,…, kmkm−−11, … , 1, m+1, 2m+1,…, (k−1)m+1

The probability that Algorithm 1 doesnThe probability that Algorithm 1 doesn’’t query any t query any 
yellow integer is larger than 1 yellow integer is larger than 1 −− 1/1/k k for each run. for each run. 

The probability that Algorithm 1 queries a yellow The probability that Algorithm 1 queries a yellow 
integer at least once during integer at least once during cc⋅⋅kk runs is runs is less thanless than
1 1 −− (1(1−−1/1/kk))ckck..
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

1 1 −− (1(1−−1/1/kk))ckck 1 1 –– 1/1/eec  c  > > 2/3 2/3 when when kk is large and is large and 
cc > 1. > 1. 

That is, if we donThat is, if we don’’t run Algorithm 1 for more than t run Algorithm 1 for more than ΩΩ((kk) ) 
times, times, Algorithm 1 will not query any Algorithm 1 will not query any yellowyellow integer integer 
with high probability (with high probability (when when kk is large and is large and cc > 1.)> 1.)

However, we However, we cannot ensurecannot ensure the probability that the probability that 
Algorithm 1 query a yellow integer at least once Algorithm 1 query a yellow integer at least once 
during during cc⋅⋅kk runs is runs is at least 2/3at least 2/3..
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Thus the time complexity of this algorithm Thus the time complexity of this algorithm 
cannot be ensured to be sublinear.cannot be ensured to be sublinear.

Try another one!Try another one!
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider another algorithm, which is a little Consider another algorithm, which is a little 
sophisticated.sophisticated.

Algorithm 2

F Samples the sequence at random points
and checks if these random points form a
monotonically increasing sequence.

F Return “Pass” if they do, and return “Fail”
otherwise.
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

However, consider the following sequence, which However, consider the following sequence, which 
is again very far from monotonically increasing.is again very far from monotonically increasing.

Again, the distance of this sequence from 
monotonically increasing is at least ½.
The algorithm detects that this sequence is not The algorithm detects that this sequence is not 
monotonically increasing only if two of its query monotonically increasing only if two of its query 
points fall within [points fall within [kmkm, (, (kk−− 1)1)mm ++ 1] for some 1] for some kk..

m, m−1,…,1, 2m, 2m−1,…, m + 1, 3m, …, 2m + 1, …
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

However, by the However, by the Birthday ParadoxBirthday Paradox, this is , this is unlikelyunlikely
if if mm is a constant and the number of samples is is a constant and the number of samples is 
oo((((n/mn/m))½½) = ) = oo((nn½½).).
With high probability, the values of the query With high probability, the values of the query 
points will form a monotonically increasing subpoints will form a monotonically increasing sub--
sequence.sequence.
Thus Algorithm 2 does not work well.Thus Algorithm 2 does not work well.

m, m−1,…,1, 2m, 2m−1,…, m + 1, 3m, …, 2m + 1, …
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Can we do better?Can we do better?
YES!YES!

F. Ergüünn, S. , S. KannanKannan, R. Kumar, R. Rubinfeld and M. , R. Kumar, R. Rubinfeld and M. 
ViswanathanViswanathan proposed a proposed a OO((1/((1/εε) log ) log nn) property tester.) property tester.

-- JCSS, Vol. 60, 2000JCSS, Vol. 60, 2000
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider the following algorithm. Consider the following algorithm. [EKKRV00][EKKRV00]

Algorithm 3((x1, . . . , xn), ²)

F Repeat Step 1 to 3 for O(1/²) times:

1. Pick i uniformly at random from 1 through n.
2. Query xi.
3. Perform binary search for xi. If the search does
not found xi, return “Fail” (i.e., Reject).

F Return “Pass” (i.e., Accept) if all searches are
successful.
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171788553311992121
77665544332211index

value

For example,

Search for value 1.

Output: Fail!

Begin binary search
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171788553311992121
77665544332211index

value

Another example,

Search for value 8.

Output: Pass!

Begin binary search
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Algorithm 3 runs in time Algorithm 3 runs in time OO((1/((1/ εε)) log log nn) since each ) since each 
binary search takes binary search takes OO(log(log nn) time.) time.
If the sequence {If the sequence {xxii} is monotonically increasing, } is monotonically increasing, 
then clearly the algorithm accepts.then clearly the algorithm accepts.
We need to show that if We need to show that if at least at least εε nn of the sequence of the sequence 
need to be removedneed to be removed for it to be monotonically for it to be monotonically 
increasing, then the algorithm increasing, then the algorithm rejectsrejects ((respresp. accepts. accepts) ) 
with probability with probability at least 2/3 at least 2/3 ((respresp., less than 1/3., less than 1/3).).

Suppose not, that Algorithm 3 Suppose not, that Algorithm 3 acceptsaccepts with probability with probability 
at least 1/3at least 1/3. . 
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Proof by contradiction:Proof by contradiction:
εε--far far ⇒⇒ accept with probability < 1/3accept with probability < 1/3
accept with probability accept with probability ≥≥ 1/3  1/3  ⇒⇒ εε--closeclose

We call index We call index ii is is ““goodgood ”” if the binary search if the binary search 
for for xxii is successful, otherwise we call index is successful, otherwise we call index ii is is 
““badbad ””..
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

For example,For example,

1414
88

1212
77

1010008855224466
99665544332211index

value

4 12

8
: good ones

: bad ones
14

5 10

6 2 0
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

We claim that less than We claim that less than εε nn of the indices are of the indices are badbad..
Otherwise, each time through the loop, the algorithm Otherwise, each time through the loop, the algorithm 
finds a bad index with probability finds a bad index with probability at least at least εε. . 
Then Algorithm 3 accepts with probability at most       Then Algorithm 3 accepts with probability at most       
(1(1 −− εε))cc//εε < < ee−−cc < 1/3 for some constant < 1/3 for some constant cc..
A contradiction then occurs.A contradiction then occurs.

Now, the remaining part is to prove that the Now, the remaining part is to prove that the goodgood
pointspoints indeed form a monotonically increasing indeed form a monotonically increasing 
subsequence.subsequence.
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Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider any two good indices Consider any two good indices ii, , jj , where , where ii < < jj..

Consider the first point in the binary search path Consider the first point in the binary search path 
where where xxii and and xxjj diverge and assume that point has diverge and assume that point has 
value value uu..

Since Since ii and and jj are good and are good and ii < < jj, we can conclude , we can conclude 
that that xxii ≤≤ u u ≤≤ xxjj. This concludes the proof.. This concludes the proof.

¥
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Now, let us consider another problem: Now, let us consider another problem: 
Testing connectivity of a graphTesting connectivity of a graph..
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Connected and DisconnectedConnected and Disconnected

connected

disconnected
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Degree boundDegree bound

We say a graph We say a graph GG((VV, , EE) has a degree bound ) has a degree bound dd if for if for 
each vertex each vertex v v ∈∈ VV, , 

where where deg(deg(vv) is the number of vertices adjacent to ) is the number of vertices adjacent to 
vv in in GG..

deg(v) ≤ d
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Graph representationsGraph representations

Adjacency matrixAdjacency matrix
For dense graphsFor dense graphs

Adjacency listAdjacency list
For sparse graphsFor sparse graphs

A B

CD

DD

CC

BB

AA A B

CD

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0111
1011
1101
1110

A B C D
A
B
C
D

C D

D

A

A B
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Testing connectivity of a graphTesting connectivity of a graph

We will adopt the adjacency list model with a We will adopt the adjacency list model with a 
given degree bound given degree bound d d to proceed with our to proceed with our 
discussion.discussion.

The graph possesses The graph possesses OO((dndn) edges.) edges.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

F Input: a graph G(V, E) with bounded degree d ,
given as adjacency list

F Desired property: P = a class of connected graphs
with bounded degree d

Let Gdn denote the set of graphs of n nodes with a
bounded degree d.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Let Let ,, we define the we define the distance of distance of GG from from 
connectedconnected to beto be

where            is the minimum number of where            is the minimum number of 
modifications of edges needed for modifications of edges needed for GG to be to be 
connected such that the degree bound connected such that the degree bound d d is still is still 
maintained.maintained.

ρd(G)

G ∈ Gdn

dist(G,P ) = 2ρd(G)
dn
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For example, (For example, (d d = 2)= 2)

v1 v2

v4v3

G

dist(G,P ) = 2ρ2(G)
dn = 1

4 .
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Another example, (Another example, (d d = 2)= 2)

v5
G

v1 v2

v3

v4

v6

WHY?WHY?

dist(G,P ) = 2ρ2(G)
dn = 1

2 .
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IdeaIdea

If a graph is far from connected, there must be If a graph is far from connected, there must be 
many components, many components, 

That in turn implies that there are many small That in turn implies that there are many small 
components.components.

Consider the following algorithm proposed by O. Consider the following algorithm proposed by O. 
Goldreich and D. Ron.Goldreich and D. Ron.

- Algorithmica, Vol. 32, 2002.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

[GR02]Algorithm GR(G, ²)

1. Pick m = O( 1²d) nodes of G uniformly at
random.
Let S denote the set of these picked nodes.

2. For each node s ∈ S, do BFS and stop if:
(a) 8

²d nodes have been reached
(b) exhaust the component

3. If (b) ever happens, return “Fail”;
otherwise, return “Pass”.

(Here we assume that |V | ≥ 8/²d.)



2006/11/30 65Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

An illustrationAn illustration

Pick 2 nodes of the graph, and see Pick 2 nodes of the graph, and see 
at most 4 nodes during each BFS.at most 4 nodes during each BFS.

STOPSTOP

EXAUST the EXAUST the 
component!component!

Halt and output:  “Fail”
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

The running time of Algorithm GR isThe running time of Algorithm GR is

which is sublinear.which is sublinear.

Why does this algorithm work? Why does this algorithm work? 

O( 1²d · 8²d · d) = O( 1
²2d ),
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

For             , if For             , if GG∈∈PP, , it is obvious that the it is obvious that the 
algorithm must  output algorithm must  output ““PassPass””..

Maybe you donMaybe you don’’t think that this is trivial. You can prove t think that this is trivial. You can prove 
this claim for an easy exercise.this claim for an easy exercise.

So, what if So, what if GG∉∉PP? ? 
We have to prove that if We have to prove that if GG is far from is far from PP, (i.e., , (i.e., GG isis far far 
from connected with degree bound from connected with degree bound dd ) Algorithm GR ) Algorithm GR 
will output will output ““FailFail”” with probability at least 2/3.with probability at least 2/3.

G ∈ Gdn
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Consider the following observation first.Consider the following observation first.

ObservationObservation::

Proof:Proof:
If If GG has less than has less than εεdndn /2 connected components, we can /2 connected components, we can 
add add less thanless than εεdndn /2 edges to make /2 edges to make GG connected.connected.
GG is not is not εε--far fromfar from connected.connected. (Because  (Because  εεdndn//dndn = = εε ))

¥

If G ∈ Gdn is ²-far from connected, then G has at least
²dn/2 connected components.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Lemma 1:Lemma 1:

Proof:Proof: Exercise!Exercise!
Hint:  Consider the previous observation and the second Hint:  Consider the previous observation and the second 
example for illustrating                    .example for illustrating                    .dist(G,P )

A class of connected graphs with 
bounded degree d

If G ∈ Gdn is ²-far from P , then G has at least ²dn/4
connected components.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Corollary 1:Corollary 1:

Proof:Proof:
Let Let nn<< be the number of components of size less than be the number of components of size less than 

Let Let nn>> be the number of components of size at leastbe the number of components of size at least
→ We call them small components for simplicity.

If G ∈ Gdn is ²-far from P , then G has at least ²dn/8
connected components each containing less than 8

²d
nodes.

8
²d .

8
²d .
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Assume that Assume that GG is is εε--far from far from PP. Then from . Then from 
Lemma 1 we have that Lemma 1 we have that GG has at least has at least εεdndn/4 /4 
connected components.connected components.

Since Since nn<< ++ nn>> is the total number of connected is the total number of connected 
components in components in GG, we have , we have nn<< ++ nn>> ≥≥ εεdndn/4./4.

Since Since nn>>⋅⋅ 8/8/εεd d ≤≤ nn, we have , we have nn>> ≤≤ εεdndn/8./8.
Therefore, Therefore, nn<< ≥≥ εεdndn/4 /4 −− εεdndn/8 = /8 = εεdndn/8/8, the , the 
corollary immediately follows.corollary immediately follows. ¥
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Theorem 1:Theorem 1:

Proof of Theorem 1 is as follows.Proof of Theorem 1 is as follows.

Let G ∈ Gdn
F if G is connected, then Algorithm GR
return “Pass”

F if G is ²-far from P , then
Pr[Algorithm GR return “Fail”] ≥ 2

3 .
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

If If GG is connected, Algorithm GR must output is connected, Algorithm GR must output 
““PassPass””..

Trivial.Trivial.

Consider the case that Consider the case that GG is is εε--far from far from PP..
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

By Corollary 1, By Corollary 1, 

Each component is of size at
least one and they are dis-
joint.

From Corollary 1.

Pr[s is in a small component]

=
number of nodes in small components

n

≥ number of small components

n

≥ ²d

8
.
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Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Since Since mm is chosen to be is chosen to be cc//εεdd for some constant for some constant cc, , 
we havewe have

Therefore, the proof is done. ¥

Pr[no s is in a small component]

≤ (1− ²d
8
)
c
²d

≤ e−c
0

<
1

3
.

These inequalities holds as long
as we pick c large enough (c0 is a
constant that depends on c).
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I think I should finish this talk now.I think I should finish this talk now.

Related works on Property testing are listed Related works on Property testing are listed 
at at ““Further readingsFurther readings”” as follows.as follows.
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Further readingsFurther readings
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Further readings (contFurther readings (cont’’d)d)
9.9. [AS03b][AS03b] Testing subgraphs in directed graphs, N. Testing subgraphs in directed graphs, N. AlonAlon and A. and A. ShapiraShapira, , 

STOCSTOC’’0303, pp. 700, pp. 700--709.709.
10.10. [AS04][AS04] A characterization of easily testable induced subgraphs, N. A characterization of easily testable induced subgraphs, N. AlonAlon

and A. and A. ShapiraShapira,, SODASODA’’0404, pp. 935, pp. 935--944.944.
11.11. [BEKMRRS03][BEKMRRS03] A sublinear algorithm for weakly approximating edit A sublinear algorithm for weakly approximating edit 

distance, T. distance, T. BatuBatu, F. , F. ErgErgüünn, J. , J. KilianKilian, A. , A. MagenMagen, S. , S. RaskhodnikovaRaskhodnikova, R. , R. 
Rubinfeld and R. Rubinfeld and R. SamiSami, , STOCSTOC’’0303, pp. 316, pp. 316--324.324.

12.12. [BFFKRW01][BFFKRW01] Testing random variables for independence and identity, T. Testing random variables for independence and identity, T. 
BatuBatu, E. Fischer, L. , E. Fischer, L. FortnowFortnow, R. Kumar, R. Rubinfeld and P. White, , R. Kumar, R. Rubinfeld and P. White, 
FOCSFOCS’’0101, pp. 442, pp. 442--451.451.

13.13. [BFRSW00][BFRSW00] Testing that distributions are close, T. Testing that distributions are close, T. BatuBatu, E. Fischer, R. , E. Fischer, R. 
Rubinfeld, W. D. Smith and P. White, Rubinfeld, W. D. Smith and P. White, FOCSFOCS’’0000, pp. 259, pp. 259--269.269.

14.14. [BKR04][BKR04] Sublinear time algorithms for testing monotone and Sublinear time algorithms for testing monotone and unimodalunimodal
distributions, T. distributions, T. BatuBatu, R. Kumar and R. Rubinfeld, , R. Kumar and R. Rubinfeld, STOCSTOC’’0404, pp. 381, pp. 381--390.390.

15.15. [BLR93][BLR93] SelfSelf--testingtesting--oror--correcting with applications to numerical problems, correcting with applications to numerical problems, 
M. Blum, M. M. Blum, M. LubyLuby and R. Rubinfeld, and R. Rubinfeld, Journal of Computer and System Journal of Computer and System 
SciencesSciences, Vol. 47, 1993, pp. 549, Vol. 47, 1993, pp. 549--595.595.



2006/11/30 79Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
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Further readings (contFurther readings (cont’’d)d)
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Some good surveys are available on the following Some good surveys are available on the following 
website:website:

http://theory.lcs.mit.edu/%7Eronitt/sublinear.htmlhttp://theory.lcs.mit.edu/%7Eronitt/sublinear.html

This powerpoint file can be downloaded from the This powerpoint file can be downloaded from the 
following hyperlink:following hyperlink:

http://www.cs.ccu.edu.tw/~lincc/research/randalg/slides/Intrhttp://www.cs.ccu.edu.tw/~lincc/research/randalg/slides/Intr
oductionToPropertyTesting.pptoductionToPropertyTesting.ppt
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