
2006/11/30

Randomized Algorithms

Introduction to Property Testing

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang

National Chung Cheng University

2006/11/30 2Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

NOTICENOTICE

Note that you need to install Note that you need to install TeX4PPTTeX4PPT to view or to view or
edit this powerpoint file. edit this powerpoint file.

$e^{\pi i} + 1 = 0$

eπi + 1 = 0

2006/11/30 3Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

OutlineOutline

IntroductionIntroduction
SublinearSublinear--time algorithmstime algorithms
Notions of approximationNotions of approximation
Definition of a property testerDefinition of a property tester

A simple example A simple example
Testing monotonicity of a listTesting monotonicity of a list
Testing connectivity of a graphTesting connectivity of a graph

Further readingsFurther readings

2006/11/30 4Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

IntroductionIntroduction

With the recent advances in technology, we are With the recent advances in technology, we are
faced with the need to process increasingly larger faced with the need to process increasingly larger
amounts of data in faster times.amounts of data in faster times.
There are practical situations in which the input is There are practical situations in which the input is
so large, that even taking a linear time in its size to so large, that even taking a linear time in its size to
provide an answer is too much.provide an answer is too much.
Making a decision after reading only a small Making a decision after reading only a small
portion of the input, that is, in portion of the input, that is, in sublinear timesublinear time, is , is
thus considered to be an very important issue.thus considered to be an very important issue.

2006/11/30 5Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Introduction (contIntroduction (cont’’d)d)

Sublinear time algorithms have received a lot of Sublinear time algorithms have received a lot of
attention recently.attention recently.

Recent results have shown that there are Recent results have shown that there are optimioptimi--
zationzation problems whose value can be approximated problems whose value can be approximated
in sublinear time.in sublinear time.

2006/11/30 6Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Introduction (contIntroduction (cont’’d)d)

However, However, mostmost algorithms which run in sublinear algorithms which run in sublinear
time must necessarily use randomization and must time must necessarily use randomization and must
give an approximate answer.give an approximate answer.

Surprisingly though, there are nontrivial problems Surprisingly though, there are nontrivial problems
for which deterministic exact algorithms exist!for which deterministic exact algorithms exist!

Let us see the following two examples.Let us see the following two examples.

2006/11/30 7Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Example 1: TournamentExample 1: Tournament

A tournament is a digraph such that for each pair A tournament is a digraph such that for each pair
of vertices of vertices uu and and vv, , exactly oneexactly one of (of (uu, , vv) and () and (vv, , uu))
is an edge.is an edge.

We can interpret the vertices as players such that We can interpret the vertices as players such that
each pair of players play a match, and an edge each pair of players play a match, and an edge
from one to another indicates that one player beats from one to another indicates that one player beats
another, hence the name tournament.another, hence the name tournament.

2006/11/30 8Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Tournament (contTournament (cont’’d)d)

Assume that we have a tournament Assume that we have a tournament GG on on nn vertices vertices
represented in adjacency matrix form represented in adjacency matrix form MMGG..

Thus the size of Thus the size of GG is is

a tournament G

¡
n
2

¢
.

v1 v2

v3v4

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0101
0010
1000
0110v1

v2

v3

v4

v1 v2 v3 v4

MG =

2006/11/30 9Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Tournament (contTournament (cont’’d)d)

Input:Input:
a tournament a tournament GG on on nn vertices represented in vertices represented in
adjacency matrix form adjacency matrix form MMG G ..

Output:Output:
the source of the source of GG if it exists, otherwise output if it exists, otherwise output ““No source No source
existsexists””. (source: the vertex of out. (source: the vertex of out--degree degree nn−−11))

There exists a deterministic algorithm that finds There exists a deterministic algorithm that finds
the source of the source of GG (a player who beats all others) if it (a player who beats all others) if it
exists in exists in OO((nn)) time.time.

2006/11/30 10Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Tournament (contTournament (cont’’d)d)
Algorithm-Source-Finding:

1. S ← {v1, . . . , vn};
2. while |S| > 1 do

(a) Arbitrary pick vi, vj ∈ S;
(b) if MG[i, j] = 1 then remove vj from S;

else remove vi from S;
3. Denote the remaining vertex in S by vr;
4. For i = 1 to n do

if MG[r, i] = 0 then output “No source
exists.” and return;

5. Return vr;

End of the Algorithm

2006/11/30 11Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Example 2: DiameterExample 2: Diameter

Assume that we have Assume that we have nn points in a points in a metric spacemetric space..

The input is an The input is an n n ×× nn distance matrix distance matrix DD such that such that
DD((ii, , jj) is the distance between) is the distance between ii and and jj..

We seek a sublinear time algorithm that outputs We seek a sublinear time algorithm that outputs
, i.e., the diameter., i.e., the diameter.maxi,j D(i, j)

2006/11/30 12Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Diameter (contDiameter (cont’’d)d)

Input:Input:
an an n n ×× nn distance matrix distance matrix DD such that such that DD((ii, , jj) is the) is the
distance between distance between ii and and jj..

Output:Output:
diameter of these diameter of these nn points (i.e.,)points (i.e.,)

Consider the following simple algorithm.Consider the following simple algorithm.

maxi,jD(i, j)

2006/11/30 13Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Diameter (contDiameter (cont’’d)d)
Algorithm-Diameter:

F Pick a point u arbitrary and output z := maxvD(u, v).

End of the Algorithm

Clearly this algorithm runs in Clearly this algorithm runs in OO((nn) time. Moreover,) time. Moreover,
we argue that we argue that zz, the value returned by this na, the value returned by this naïïve ve
looking algorithm, is a looking algorithm, is a good approximationgood approximation for the for the
diameter diameter dd of the input.of the input.

2006/11/30 14Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Diameter (contDiameter (cont’’d)d)

Claim:Claim: dd/2 /2 ≤≤ zz ≤≤ dd..

Proof:Proof:
Let Let aa and and bb be two points such that be two points such that DD((aa,,bb) =) = dd and and
assume that assume that zz = = DD((uu,,vv))
Since Since DD is a metric space, we have is a metric space, we have

d = D(a, b) ≤ D(a, u) +D(u, b) ≤ D(u, v) +D(u, v) = 2z.
¥

2006/11/30 15Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

To study approximation algorithms, we To study approximation algorithms, we
need to define notions of how good an need to define notions of how good an
approximation is.approximation is.

2006/11/30 16Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

DefinitionsDefinitions

Let π(x) be the optimal solution of an input x. For β > 1,
we say that A is a β-multiplicative approximation algorithm
if for all x,

π(x)

β
≤ A(x) ≤ βπ(x).

We say that A is an α-additive approximation algorithm if
for all x,

π(x)− α ≤ A(x) ≤ π(x) + α.

2006/11/30 17Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

How to approximate a decision How to approximate a decision
problem?problem?

In addition, In addition, property testingproperty testing, an alternative notion , an alternative notion
of approximation for decision problems, has been of approximation for decision problems, has been
applied to give sublinear time algorithms for a applied to give sublinear time algorithms for a
wide variety of problems.wide variety of problems.

““Still, the study of sublinear time algorithms is Still, the study of sublinear time algorithms is
very new, and much remains to be understood very new, and much remains to be understood
about their scope.about their scope.”” -- RonittRonitt RubinfeldRubinfeld

ACM SIGACT News, Vol. 34, No. 4, 2003.ACM SIGACT News, Vol. 34, No. 4, 2003.

18

2006/11/30 19Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testingProperty testing

The notion of property testing was first formulated The notion of property testing was first formulated
by by Rubinfeld and SudanRubinfeld and Sudan..

RonittRonitt Rubinfeld and Rubinfeld and MadhuMadhu SudanSudan: Robust charaterization of
polynomials with applications to program testing, SIAM Journal
on Computing, 1996, Vol. 25, pp. 252-271.

2006/11/30 20Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

Due to these two pioneers, plenty results have Due to these two pioneers, plenty results have
come out recently.come out recently.

See the See the ““Further readingsFurther readings”” for reference. for reference.

Many outstanding scholars have devoted to this Many outstanding scholars have devoted to this
topic of research, such as:topic of research, such as:

21

Manuel Blum Madhu Sudan Ronitt Rubinfeld Luca Trevisan Bernard Chazelle

Noga Alon Dana Ron Rajeev Motwani Oded Goldreich Sanjeev Arora

Ravi Kumar

Carsten Lund Tugkan Batu Shafi Goldwasser Michael Luby

Mario Szegedy

Eldar Fischer

Lance Fortnow Sampath Kannan Funda Ergűn

2006/11/30 22Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Especially, Especially,

Property testing emerges naturally in the context of Property testing emerges naturally in the context of
program checking and probabilistic checkable program checking and probabilistic checkable
proofs (PCP).proofs (PCP).

Mario SzegedySanjeev Arora Carsten Lund Rajeev Motwani Madhu Sudan

PCP theorem: NP = PCP(O(log n), O(1))
- JACM, Vol. 45, 1998.

2006/11/30 23Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Roughly speaking, Roughly speaking, ……

A property tester is an A property tester is an algorithmalgorithm which which
acceptsaccepts with high probability if the input has a certain with high probability if the input has a certain
property, and property, and
rejectsrejects with high probability if the input is with high probability if the input is ““farfar”” from from
the property.the property.

That is, the input That is, the input cannot becannot be modified slightlymodified slightly to make it to make it
possess the property.possess the property.

2006/11/30 24Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

In order to define a property tester, it is important In order to define a property tester, it is important
to define a notion of to define a notion of distancedistance from having a from having a
property.property.

Define a language Define a language PP to be a class of inputs that to be a class of inputs that
have a certain property.have a certain property.

For example, For example, connectedconnected graphs, graphs, monotone increasingmonotone increasing
integers, integers, ……

2006/11/30 25Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

Let Let ΔΔ((xx, , yy) be the distance function between input) be the distance function between input
xx and and yy, with , with ΔΔ((xx, , yy))∈∈ [0, 1] and define[0, 1] and define

d(x, P) = miny∈P ∆(x, y)

2006/11/30 26Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

For example, the Hamming distance/ #digits of two For example, the Hamming distance/ #digits of two
00--1 strings with equal length can be a 1 strings with equal length can be a ΔΔ..

Let Let PP be a set of 0be a set of 0--1 strings which has fewer 01 strings which has fewer 0’’s s
than 1than 1’’s, we can easily have s, we can easily have

Δ(010012,011102) = 3/5.

d(010012,P) = 1/5.

2006/11/30 27Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

So let us consider the formal definition of So let us consider the formal definition of
a property tester.a property tester.

2006/11/30 28Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Property testing (contProperty testing (cont’’d)d)

Remark:
If d(x, P) ≥ ², we say x is ²-far from P .
If d(x, P) ≤ ², we say x is ²-close from P .

A property tester for (P, d) is defined as

F Given input x, 0 < ² < 1.

if x ∈ P , then Pr[return “Pass”] ≥ 2/3.
if d(x, P) ≥ ², then Pr[return “Fail”] ≥ 2/3.

2006/11/30 29Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

A simple exampleA simple example

Consider the following example to figure out Consider the following example to figure out
the concept of property testing.the concept of property testing.

Suppose we have a sequence of Suppose we have a sequence of nn numbers, numbers,
xx11, , ……, , xxnn, we would like to , we would like to determine if the determine if the
sequence is monotonically increasingsequence is monotonically increasing. .

Input:Input: xx11, , ……, , xxnn

Output:Output: Accepts or Rejects.Accepts or Rejects.

2006/11/30 30Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a listTesting monotonicity of a list

Any deterministic decision algorithm runs in Any deterministic decision algorithm runs in ΩΩ((nn))
time to read the input and make a decision.time to read the input and make a decision.

On the other hand, a property testing algorithm On the other hand, a property testing algorithm
exists such that itexists such that it

acceptsaccepts, if the sequence is monotonically increasing , if the sequence is monotonically increasing
rejects with probability greater than 2/3rejects with probability greater than 2/3, if more than , if more than εεnn
of the of the xxii need to be removed so that the resulting need to be removed so that the resulting
sequence becomes monotonically increasing.sequence becomes monotonically increasing.

2006/11/30 31Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

WLOG, we can assume that all WLOG, we can assume that all xxii’’ss are distinct.are distinct.
Since we can interpret Since we can interpret xxii as (as (xxii, , ii), which breaks ties), which breaks ties
without changing order.without changing order.

Consider the following simple approach which can Consider the following simple approach which can
not be ensured to run in sublinear time.not be ensured to run in sublinear time.

2006/11/30 32Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider the following sequence which is very far Consider the following sequence which is very far
from monotonically increasing:from monotonically increasing:

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

PASSPASS

Algorithm 1

F Select i randomly and test whether xi < xi+1.
Then return “Pass” if xi < xi+1, and return “Fail”
otherwise.

2006/11/30 33Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Generally, such sequence x1, x2,…, xn can be
written as the following form:

For example, when For example, when mm = 4, = 4, kk = 3:= 3:

m, 2m, … , kmkm,
m−1, 2m−1, … , kmkm−−11, … ,
1, m+1, 2m+1, … , (k−1)m+1. (thus n = mk)

where m, k are two integers greater than 1.

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

2006/11/30 34Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

The distance of such sequence from monotonically The distance of such sequence from monotonically
increasing is at least increasing is at least ½½..

WHY?WHY?
For example,For example,

2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3

for monotonically increasing

2006/11/30 35Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

See the following illustration: (See the following illustration: (m m = 4, = 4, kk = 3)= 3)

4

8

12

3

7

11

2

6

10

: increasing

1

5

9

2006/11/30 36Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

4

8

12

3

7

11

2

6

10

1

5

9

See the following illustration: (See the following illustration: (m m = 4, = 4, kk = 3)= 3)
Let it be an integer in the longest
increasing subsequence

x

: > x

: < x

2006/11/30 37Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

We can easily prove that the length of a longest We can easily prove that the length of a longest
monotonically increasing subsequence in such a monotonically increasing subsequence in such a
sequence must be at most sequence must be at most kk,,

Exercise. (Hint: Consult the previous illustration.)Exercise. (Hint: Consult the previous illustration.)

So the distance of such sequence from So the distance of such sequence from
monotonically increasing is at least monotonically increasing is at least n n −− k = k = ((mm−−1)1)kk, ,
which is at least which is at least ½½ of the length of the sequence.of the length of the sequence.

For example, 2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3

2006/11/30 38Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Algorithm 1 does not detect that the sequence is Algorithm 1 does not detect that the sequence is
not monotonically increasing as long as it does not monotonically increasing as long as it does
not query a pair of locations of a not query a pair of locations of a yellowyellow integer integer
and its next integer respectively. and its next integer respectively.
Thus Algorithm 1 will need Thus Algorithm 1 will need ΩΩ((kk) queries, that is,) queries, that is,
repeatedly runs repeatedly runs ΩΩ((kk) times.) times.

WHY?WHY?

m, 2m,…, kmkm, m−1, 2m−1,…, kmkm−−11, … , 1, m+1, 2m+1,…, (k−1)m+1

2006/11/30 39Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

m, 2m,…, kmkm, m−1, 2m−1,…, kmkm−−11, … , 1, m+1, 2m+1,…, (k−1)m+1

The probability that Algorithm 1 doesnThe probability that Algorithm 1 doesn’’t query any t query any
yellow integer is larger than 1 yellow integer is larger than 1 −− 1/1/k k for each run. for each run.

The probability that Algorithm 1 queries a yellow The probability that Algorithm 1 queries a yellow
integer at least once during integer at least once during cc⋅⋅kk runs is runs is less thanless than
1 1 −− (1(1−−1/1/kk))ckck..

2006/11/30 40Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

1 1 −− (1(1−−1/1/kk))ckck 1 1 –– 1/1/eec c > > 2/3 2/3 when when kk is large and is large and
cc > 1. > 1.

That is, if we donThat is, if we don’’t run Algorithm 1 for more than t run Algorithm 1 for more than ΩΩ((kk))
times, times, Algorithm 1 will not query any Algorithm 1 will not query any yellowyellow integer integer
with high probability (with high probability (when when kk is large and is large and cc > 1.)> 1.)

However, we However, we cannot ensurecannot ensure the probability that the probability that
Algorithm 1 query a yellow integer at least once Algorithm 1 query a yellow integer at least once
during during cc⋅⋅kk runs is runs is at least 2/3at least 2/3..

2006/11/30 41Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Thus the time complexity of this algorithm Thus the time complexity of this algorithm
cannot be ensured to be sublinear.cannot be ensured to be sublinear.

Try another one!Try another one!

2006/11/30 42Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider another algorithm, which is a little Consider another algorithm, which is a little
sophisticated.sophisticated.

Algorithm 2

F Samples the sequence at random points
and checks if these random points form a
monotonically increasing sequence.

F Return “Pass” if they do, and return “Fail”
otherwise.

2006/11/30 43Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

However, consider the following sequence, which However, consider the following sequence, which
is again very far from monotonically increasing.is again very far from monotonically increasing.

Again, the distance of this sequence from
monotonically increasing is at least ½.
The algorithm detects that this sequence is not The algorithm detects that this sequence is not
monotonically increasing only if two of its query monotonically increasing only if two of its query
points fall within [points fall within [kmkm, (, (kk−− 1)1)mm ++ 1] for some 1] for some kk..

m, m−1,…,1, 2m, 2m−1,…, m + 1, 3m, …, 2m + 1, …

2006/11/30 44Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

However, by the However, by the Birthday ParadoxBirthday Paradox, this is , this is unlikelyunlikely
if if mm is a constant and the number of samples is is a constant and the number of samples is
oo((((n/mn/m))½½) =) = oo((nn½½).).
With high probability, the values of the query With high probability, the values of the query
points will form a monotonically increasing subpoints will form a monotonically increasing sub--
sequence.sequence.
Thus Algorithm 2 does not work well.Thus Algorithm 2 does not work well.

m, m−1,…,1, 2m, 2m−1,…, m + 1, 3m, …, 2m + 1, …

2006/11/30 45Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Can we do better?Can we do better?
YES!YES!

F. Ergüünn, S. , S. KannanKannan, R. Kumar, R. Rubinfeld and M. , R. Kumar, R. Rubinfeld and M.
ViswanathanViswanathan proposed a proposed a OO((1/((1/εε) log) log nn) property tester.) property tester.

-- JCSS, Vol. 60, 2000JCSS, Vol. 60, 2000

2006/11/30 46Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider the following algorithm. Consider the following algorithm. [EKKRV00][EKKRV00]

Algorithm 3((x1, . . . , xn), ²)

F Repeat Step 1 to 3 for O(1/²) times:

1. Pick i uniformly at random from 1 through n.
2. Query xi.
3. Perform binary search for xi. If the search does
not found xi, return “Fail” (i.e., Reject).

F Return “Pass” (i.e., Accept) if all searches are
successful.

2006/11/30 47Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

171788553311992121
77665544332211index

value

For example,

Search for value 1.

Output: Fail!

Begin binary search

2006/11/30 48Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

171788553311992121
77665544332211index

value

Another example,

Search for value 8.

Output: Pass!

Begin binary search

2006/11/30 49Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Algorithm 3 runs in time Algorithm 3 runs in time OO((1/((1/ εε)) log log nn) since each) since each
binary search takes binary search takes OO(log(log nn) time.) time.
If the sequence {If the sequence {xxii} is monotonically increasing, } is monotonically increasing,
then clearly the algorithm accepts.then clearly the algorithm accepts.
We need to show that if We need to show that if at least at least εε nn of the sequence of the sequence
need to be removedneed to be removed for it to be monotonically for it to be monotonically
increasing, then the algorithm increasing, then the algorithm rejectsrejects ((respresp. accepts. accepts))
with probability with probability at least 2/3 at least 2/3 ((respresp., less than 1/3., less than 1/3).).

Suppose not, that Algorithm 3 Suppose not, that Algorithm 3 acceptsaccepts with probability with probability
at least 1/3at least 1/3. .

2006/11/30 50Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Proof by contradiction:Proof by contradiction:
εε--far far ⇒⇒ accept with probability < 1/3accept with probability < 1/3
accept with probability accept with probability ≥≥ 1/3 1/3 ⇒⇒ εε--closeclose

We call index We call index ii is is ““goodgood ”” if the binary search if the binary search
for for xxii is successful, otherwise we call index is successful, otherwise we call index ii is is
““badbad ””..

2006/11/30 51Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

For example,For example,

1414
88

1212
77

1010008855224466
99665544332211index

value

4 12

8
: good ones

: bad ones
14

5 10

6 2 0

2006/11/30 52Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

We claim that less than We claim that less than εε nn of the indices are of the indices are badbad..
Otherwise, each time through the loop, the algorithm Otherwise, each time through the loop, the algorithm
finds a bad index with probability finds a bad index with probability at least at least εε. .
Then Algorithm 3 accepts with probability at most Then Algorithm 3 accepts with probability at most
(1(1 −− εε))cc//εε < < ee−−cc < 1/3 for some constant < 1/3 for some constant cc..
A contradiction then occurs.A contradiction then occurs.

Now, the remaining part is to prove that the Now, the remaining part is to prove that the goodgood
pointspoints indeed form a monotonically increasing indeed form a monotonically increasing
subsequence.subsequence.

2006/11/30 53Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing monotonicity of a list (contTesting monotonicity of a list (cont’’d)d)

Consider any two good indices Consider any two good indices ii, , jj , where , where ii < < jj..

Consider the first point in the binary search path Consider the first point in the binary search path
where where xxii and and xxjj diverge and assume that point has diverge and assume that point has
value value uu..

Since Since ii and and jj are good and are good and ii < < jj, we can conclude , we can conclude
that that xxii ≤≤ u u ≤≤ xxjj. This concludes the proof.. This concludes the proof.

¥

2006/11/30 54Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Now, let us consider another problem: Now, let us consider another problem:
Testing connectivity of a graphTesting connectivity of a graph..

2006/11/30 55Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Connected and DisconnectedConnected and Disconnected

connected

disconnected

2006/11/30 56Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Degree boundDegree bound

We say a graph We say a graph GG((VV, , EE) has a degree bound) has a degree bound dd if for if for
each vertex each vertex v v ∈∈ VV, ,

where where deg(deg(vv) is the number of vertices adjacent to) is the number of vertices adjacent to
vv in in GG..

deg(v) ≤ d

2006/11/30 57Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Graph representationsGraph representations

Adjacency matrixAdjacency matrix
For dense graphsFor dense graphs

Adjacency listAdjacency list
For sparse graphsFor sparse graphs

A B

CD

DD

CC

BB

AA A B

CD

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0111
1011
1101
1110

A B C D
A
B
C
D

C D

D

A

A B

2006/11/30 58Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graphTesting connectivity of a graph

We will adopt the adjacency list model with a We will adopt the adjacency list model with a
given degree bound given degree bound d d to proceed with our to proceed with our
discussion.discussion.

The graph possesses The graph possesses OO((dndn) edges.) edges.

2006/11/30 59Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

F Input: a graph G(V, E) with bounded degree d ,
given as adjacency list

F Desired property: P = a class of connected graphs
with bounded degree d

Let Gdn denote the set of graphs of n nodes with a
bounded degree d.

2006/11/30 60Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Let Let ,, we define the we define the distance of distance of GG from from
connectedconnected to beto be

where is the minimum number of where is the minimum number of
modifications of edges needed for modifications of edges needed for GG to be to be
connected such that the degree bound connected such that the degree bound d d is still is still
maintained.maintained.

ρd(G)

G ∈ Gdn

dist(G,P) = 2ρd(G)
dn

2006/11/30 61Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

For example, (For example, (d d = 2)= 2)

v1 v2

v4v3

G

dist(G,P) = 2ρ2(G)
dn = 1

4 .

2006/11/30 62Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Another example, (Another example, (d d = 2)= 2)

v5
G

v1 v2

v3

v4

v6

WHY?WHY?

dist(G,P) = 2ρ2(G)
dn = 1

2 .

2006/11/30 63Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

IdeaIdea

If a graph is far from connected, there must be If a graph is far from connected, there must be
many components, many components,

That in turn implies that there are many small That in turn implies that there are many small
components.components.

Consider the following algorithm proposed by O. Consider the following algorithm proposed by O.
Goldreich and D. Ron.Goldreich and D. Ron.

- Algorithmica, Vol. 32, 2002.

2006/11/30 64Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

[GR02]Algorithm GR(G, ²)

1. Pick m = O(1²d) nodes of G uniformly at
random.
Let S denote the set of these picked nodes.

2. For each node s ∈ S, do BFS and stop if:
(a) 8

²d nodes have been reached
(b) exhaust the component

3. If (b) ever happens, return “Fail”;
otherwise, return “Pass”.

(Here we assume that |V | ≥ 8/²d.)

2006/11/30 65Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

An illustrationAn illustration

Pick 2 nodes of the graph, and see Pick 2 nodes of the graph, and see
at most 4 nodes during each BFS.at most 4 nodes during each BFS.

STOPSTOP

EXAUST the EXAUST the
component!component!

Halt and output: “Fail”

2006/11/30 66Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

The running time of Algorithm GR isThe running time of Algorithm GR is

which is sublinear.which is sublinear.

Why does this algorithm work? Why does this algorithm work?

O(1²d · 8²d · d) = O(1
²2d),

2006/11/30 67Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

For , if For , if GG∈∈PP, , it is obvious that the it is obvious that the
algorithm must output algorithm must output ““PassPass””..

Maybe you donMaybe you don’’t think that this is trivial. You can prove t think that this is trivial. You can prove
this claim for an easy exercise.this claim for an easy exercise.

So, what if So, what if GG∉∉PP? ?
We have to prove that if We have to prove that if GG is far from is far from PP, (i.e., , (i.e., GG isis far far
from connected with degree bound from connected with degree bound dd) Algorithm GR) Algorithm GR
will output will output ““FailFail”” with probability at least 2/3.with probability at least 2/3.

G ∈ Gdn

2006/11/30 68Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Consider the following observation first.Consider the following observation first.

ObservationObservation::

Proof:Proof:
If If GG has less than has less than εεdndn /2 connected components, we can /2 connected components, we can
add add less thanless than εεdndn /2 edges to make /2 edges to make GG connected.connected.
GG is not is not εε--far fromfar from connected.connected. (Because (Because εεdndn//dndn = = εε))

¥

If G ∈ Gdn is ²-far from connected, then G has at least
²dn/2 connected components.

2006/11/30 69Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Lemma 1:Lemma 1:

Proof:Proof: Exercise!Exercise!
Hint: Consider the previous observation and the second Hint: Consider the previous observation and the second
example for illustrating .example for illustrating .dist(G,P)

A class of connected graphs with
bounded degree d

If G ∈ Gdn is ²-far from P , then G has at least ²dn/4
connected components.

2006/11/30 70Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Corollary 1:Corollary 1:

Proof:Proof:
Let Let nn<< be the number of components of size less than be the number of components of size less than

Let Let nn>> be the number of components of size at leastbe the number of components of size at least
→ We call them small components for simplicity.

If G ∈ Gdn is ²-far from P , then G has at least ²dn/8
connected components each containing less than 8

²d
nodes.

8
²d .

8
²d .

2006/11/30 71Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Assume that Assume that GG is is εε--far from far from PP. Then from . Then from
Lemma 1 we have that Lemma 1 we have that GG has at least has at least εεdndn/4 /4
connected components.connected components.

Since Since nn<< ++ nn>> is the total number of connected is the total number of connected
components in components in GG, we have , we have nn<< ++ nn>> ≥≥ εεdndn/4./4.

Since Since nn>>⋅⋅ 8/8/εεd d ≤≤ nn, we have , we have nn>> ≤≤ εεdndn/8./8.
Therefore, Therefore, nn<< ≥≥ εεdndn/4 /4 −− εεdndn/8 = /8 = εεdndn/8/8, the , the
corollary immediately follows.corollary immediately follows. ¥

2006/11/30 72Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Theorem 1:Theorem 1:

Proof of Theorem 1 is as follows.Proof of Theorem 1 is as follows.

Let G ∈ Gdn
F if G is connected, then Algorithm GR
return “Pass”

F if G is ²-far from P , then
Pr[Algorithm GR return “Fail”] ≥ 2

3 .

2006/11/30 73Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

If If GG is connected, Algorithm GR must output is connected, Algorithm GR must output
““PassPass””..

Trivial.Trivial.

Consider the case that Consider the case that GG is is εε--far from far from PP..

2006/11/30 74Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

By Corollary 1, By Corollary 1,

Each component is of size at
least one and they are dis-
joint.

From Corollary 1.

Pr[s is in a small component]

=
number of nodes in small components

n

≥ number of small components

n

≥ ²d

8
.

2006/11/30 75Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Testing connectivity of a graph (contTesting connectivity of a graph (cont’’d)d)

Since Since mm is chosen to be is chosen to be cc//εεdd for some constant for some constant cc, ,
we havewe have

Therefore, the proof is done. ¥

Pr[no s is in a small component]

≤ (1− ²d
8
)
c
²d

≤ e−c
0

<
1

3
.

These inequalities holds as long
as we pick c large enough (c0 is a
constant that depends on c).

2006/11/30 76Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

I think I should finish this talk now.I think I should finish this talk now.

Related works on Property testing are listed Related works on Property testing are listed
at at ““Further readingsFurther readings”” as follows.as follows.

2006/11/30 77Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readingsFurther readings
1.1. [A02][A02] Testing subgraphs in large graphs, N. Testing subgraphs in large graphs, N. AlonAlon, , Random Structures and Random Structures and

AlgorithmsAlgorithms, Vol. 21, 2002, pp. 359, Vol. 21, 2002, pp. 359--370.370.
2.2. [AFKS00][AFKS00] Efficient testing of large graphs, N. Efficient testing of large graphs, N. AlonAlon, E. Fischer, M. , E. Fischer, M.

KrivelevichKrivelevich and M. and M. SzegedySzegedy, , CombinatoricaCombinatorica, Vol. 20, 2000, pp. 451, Vol. 20, 2000, pp. 451--476. 476.
3.3. [AK02][AK02] Testing Testing kk--colorabilitycolorability, N. , N. AlonAlon and M. and M. KrivelevichKrivelevich, , SIAM Journal on SIAM Journal on

Discrete MathematicsDiscrete Mathematics, Vol. 15, 2002, pp. 211, Vol. 15, 2002, pp. 211--227.227.
4.4. [AKKLR03][AKKLR03] Testing lowTesting low--degree polynomials over GF(2), N. degree polynomials over GF(2), N. AlonAlon, T. , T.

Kaufman, M. Kaufman, M. KrivelevichKrivelevich, S. , S. LitsynLitsyn and D. Ron, and D. Ron, RANDOMRANDOM--APPROXAPPROX’’0303, ,
pp. 188pp. 188--199.199.

5.5. [AKKR06][AKKR06] Testing triangleTesting triangle--freeness in general graphs, N. freeness in general graphs, N. AlonAlon, T. Kaufman, , T. Kaufman,
M. M. KrivelevichKrivelevich and D. Ron, and D. Ron, SODASODA’’0606, pp. 279, pp. 279--288.288.

6.6. [AKNS01][AKNS01] Regular languages are testable with a constant number of querieRegular languages are testable with a constant number of queries, s,
N. N. AlonAlon, M. , M. KrivelevichKrivelevich, I. Newman and M. , I. Newman and M. SzegedySzegedy, , SIAM Journal on SIAM Journal on
ComputingComputing, Vol. 30, 2001, pp. 1842, Vol. 30, 2001, pp. 1842--1862.1862.

7.7. [AS05][AS05] Every monotone graph property is testable, N. Every monotone graph property is testable, N. AlonAlon and A. and A. ShapiraShapira, ,
STOCSTOC’’0505, pp. 128, pp. 128--137.137.

8.8. [AS03a][AS03a] Testing Testing satisfiabilitysatisfiability, N. , N. AlonAlon and A. and A. ShapiraShapira, , Journal of AlgorithmsJournal of Algorithms, ,
Vol. 47, 2003, pp. 87Vol. 47, 2003, pp. 87--103.103.

2006/11/30 78Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
9.9. [AS03b][AS03b] Testing subgraphs in directed graphs, N. Testing subgraphs in directed graphs, N. AlonAlon and A. and A. ShapiraShapira, ,

STOCSTOC’’0303, pp. 700, pp. 700--709.709.
10.10. [AS04][AS04] A characterization of easily testable induced subgraphs, N. A characterization of easily testable induced subgraphs, N. AlonAlon

and A. and A. ShapiraShapira,, SODASODA’’0404, pp. 935, pp. 935--944.944.
11.11. [BEKMRRS03][BEKMRRS03] A sublinear algorithm for weakly approximating edit A sublinear algorithm for weakly approximating edit

distance, T. distance, T. BatuBatu, F. , F. ErgErgüünn, J. , J. KilianKilian, A. , A. MagenMagen, S. , S. RaskhodnikovaRaskhodnikova, R. , R.
Rubinfeld and R. Rubinfeld and R. SamiSami, , STOCSTOC’’0303, pp. 316, pp. 316--324.324.

12.12. [BFFKRW01][BFFKRW01] Testing random variables for independence and identity, T. Testing random variables for independence and identity, T.
BatuBatu, E. Fischer, L. , E. Fischer, L. FortnowFortnow, R. Kumar, R. Rubinfeld and P. White, , R. Kumar, R. Rubinfeld and P. White,
FOCSFOCS’’0101, pp. 442, pp. 442--451.451.

13.13. [BFRSW00][BFRSW00] Testing that distributions are close, T. Testing that distributions are close, T. BatuBatu, E. Fischer, R. , E. Fischer, R.
Rubinfeld, W. D. Smith and P. White, Rubinfeld, W. D. Smith and P. White, FOCSFOCS’’0000, pp. 259, pp. 259--269.269.

14.14. [BKR04][BKR04] Sublinear time algorithms for testing monotone and Sublinear time algorithms for testing monotone and unimodalunimodal
distributions, T. distributions, T. BatuBatu, R. Kumar and R. Rubinfeld, , R. Kumar and R. Rubinfeld, STOCSTOC’’0404, pp. 381, pp. 381--390.390.

15.15. [BLR93][BLR93] SelfSelf--testingtesting--oror--correcting with applications to numerical problems, correcting with applications to numerical problems,
M. Blum, M. M. Blum, M. LubyLuby and R. Rubinfeld, and R. Rubinfeld, Journal of Computer and System Journal of Computer and System
SciencesSciences, Vol. 47, 1993, pp. 549, Vol. 47, 1993, pp. 549--595.595.

2006/11/30 79Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
16.16. [BOT02][BOT02] A linear lower bound on the query complexity of property testinA linear lower bound on the query complexity of property testing g

algorithms for 3algorithms for 3--coloring in boundedcoloring in bounded--degree graphs, A. degree graphs, A. BogdanovBogdanov, K. Obata , K. Obata
and L. Trevisan, and L. Trevisan, FOCSFOCS’’0202, pp. 93, pp. 93--102.102.

17.17. [BR02][BR02] Testing properties of directed graphs: Testing properties of directed graphs: acyclicityacyclicity and connectivity, M. and connectivity, M.
Bender and D. Ron, Bender and D. Ron, Random Structures and AlgorithmsRandom Structures and Algorithms, Vol. 20, 2002, pp. , Vol. 20, 2002, pp.
184184--205.205.

18.18. [BRW05][BRW05] Fast approximate PCPs for multidimensional binFast approximate PCPs for multidimensional bin--packing packing
problems, T. problems, T. BatuBatu, R. Rubinfeld and P. White, , R. Rubinfeld and P. White, Information and ComputationInformation and Computation,,
Vol. 196, 2005, pp. 42Vol. 196, 2005, pp. 42--56.56.

19.19. [BT02] [BT02] Lower bounds for testing bipartiteness in dense graphs, A. Lower bounds for testing bipartiteness in dense graphs, A.
BogdanovBogdanov and L. Trevisan, and L. Trevisan, Electronic Colloquium on Computational Electronic Colloquium on Computational
ComplexityComplexity, Vol. 64, 2002., Vol. 64, 2002.

20.20. [CG04][CG04] A lower bound for testing juntas, H. A lower bound for testing juntas, H. ChocklerChockler and D. and D. GutfreundGutfreund, ,
Information Processing LettersInformation Processing Letters, Vol. 90, 2004, pp. 301, Vol. 90, 2004, pp. 301--305.305.

21.21. [CS01a][CS01a] Property testing with geometric queries, A. Property testing with geometric queries, A. CzumajCzumaj and C. and C. SohlerSohler, ,
Proceedings of the 9th Annual European Symposium on Algorithms (Proceedings of the 9th Annual European Symposium on Algorithms (ESA)ESA), ,
2001, pp. 2662001, pp. 266--277.277.

2006/11/30 80Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
22.22. [CS01b][CS01b] Testing Testing hypergraphhypergraph coloring, A. coloring, A. CzumajCzumaj and C. and C. SohlerSohler, ,

Theoretical Computer ScienceTheoretical Computer Science, Vol. 331, 2001, pp. 37, Vol. 331, 2001, pp. 37--52.52.
23.23. [CS02][CS02] Abstract combinatorial programs and efficient property testers,Abstract combinatorial programs and efficient property testers, A. A.

CzumajCzumaj and C. and C. SohlerSohler, , FOCSFOCS’’0202, pp. 83, pp. 83--92.92.
24.24. [CSZ00][CSZ00] Property testing in computational geometry, A. Property testing in computational geometry, A. CzumajCzumaj, C. , C. SohlerSohler

and M. Ziegler, and M. Ziegler, Proceedings of the 8th Annual European Symposium on Proceedings of the 8th Annual European Symposium on
Algorithms (ESA)Algorithms (ESA), 2000, pp. 155, 2000, pp. 155--166.166.

25.25. [DGLRRS99][DGLRRS99] Improved testing algorithms for monotonicity, Y. Improved testing algorithms for monotonicity, Y. DodisDodis, O. , O.
Goldreich, E. Lehman, S. Goldreich, E. Lehman, S. RaskhodnikovaRaskhodnikova, D. Ron and A. , D. Ron and A. SamorodnitskySamorodnitsky, ,
RANDOMRANDOM--APPROXAPPROX’’9999, pp. 97, pp. 97--108.108.

26.26. [EKKRV00][EKKRV00] SpotSpot--Checkers, F. Checkers, F. ErgErgüünn, S. , S. KannanKannan, R. Kumar, R. Rubinfeld , R. Kumar, R. Rubinfeld
and M. and M. VishwanathanVishwanathan, , Journal of Computer and System SciencesJournal of Computer and System Sciences, Vol. 60, , Vol. 60,
2000, pp. 7172000, pp. 717--751.751.

27.27. [EKR03][EKR03] Fast approximate probabilistic checkable proofs, F. Fast approximate probabilistic checkable proofs, F. ErgErgüünn, R. , R.
Kumar and R. Rubinfeld, Kumar and R. Rubinfeld, Information and ComputationInformation and Computation, Vol. 189, 2004, pp. , Vol. 189, 2004, pp.
135135--159.159.

28.28. [F01][F01] On the strength of comparisons in property testing, E. Fischer,On the strength of comparisons in property testing, E. Fischer,
Electronic Colloquium on Computational ComplexityElectronic Colloquium on Computational Complexity, Vol. 8, 2001., Vol. 8, 2001.

2006/11/30 81Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
29.29. [F04][F04] On the strength of comparisons in property testing, E. Fischer,On the strength of comparisons in property testing, E. Fischer,

Information and ComputationInformation and Computation, Vol. 189, 2004, pp. 107, Vol. 189, 2004, pp. 107--116.116.
30.30. [F05][F05] Testing graphs for Testing graphs for colorabilitycolorability properties, E. Fischer, properties, E. Fischer, Random Random

Structures and AlgorithmsStructures and Algorithms, Vol. 25, 2005, pp. 289, Vol. 25, 2005, pp. 289--309.309.
31.31. [FKRSS04][FKRSS04] Testing juntas, E. Fischer, G. Kindler, D. Ron, S. Testing juntas, E. Fischer, G. Kindler, D. Ron, S. SafraSafra and A. and A.

SamorodnitskySamorodnitsky, , Journal of Computer and System SciencesJournal of Computer and System Sciences, Vol. 68, 2004, , Vol. 68, 2004,
pp. 103pp. 103--112.112.

32.32. [FLNRRS02][FLNRRS02] Monotonicity testing over general Monotonicity testing over general posetposet domains, E. Fischer, domains, E. Fischer,
E. Lehman, I. Newman, S. E. Lehman, I. Newman, S. RaskhodnikovaRaskhodnikova, R. Rubinfeld and A. , R. Rubinfeld and A.
SamorodnitskySamorodnitsky, , STOCSTOC’’0202, pp. 474, pp. 474--483.483.

33.33. [FM06][FM06] Testing graph isomorphism, E. Fischer and A. Testing graph isomorphism, E. Fischer and A. MatsliahMatsliah, , SODASODA’’0606, ,
pp. 299pp. 299--308.308.

34.34. [FN01][FN01] Testing of matrix properties, E. Fischer and I. Newman, Testing of matrix properties, E. Fischer and I. Newman, STOCSTOC’’0101, ,
pp. 286pp. 286--295.295.

35.35. [GGLRS00][GGLRS00] Testing monotonicity, O. Goldreich, S. Testing monotonicity, O. Goldreich, S. GoldwasserGoldwasser, E. , E.
Lehman, D. Ron and A. Lehman, D. Ron and A. SamorodnitskySamorodnitsky, , CombinatoricaCombinatorica, Vol. 20, 2000, pp. , Vol. 20, 2000, pp.
301301--337.337.

36.36. [GGR98][GGR98] Property testing and its connection to learning and approximatiProperty testing and its connection to learning and approximation, on,
O. Goldreich, S. O. Goldreich, S. GoldwasserGoldwasser and D. Ron, and D. Ron, Journal of the ACMJournal of the ACM, Vol. 45, , Vol. 45,
1998, pp. 6531998, pp. 653--750.750.

2006/11/30 82Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
37.37. [GR02][GR02] Property Testing in Bounded Degree Graphs, O. Goldreich and D. Property Testing in Bounded Degree Graphs, O. Goldreich and D.

Ron, Ron, AlgorithmicaAlgorithmica, Vol. 32, 2002, pp. 302, Vol. 32, 2002, pp. 302--343.343.
38.38. [GR99][GR99] A Sublinear Bipartiteness Tester for Bounded Degree Graphs, O. A Sublinear Bipartiteness Tester for Bounded Degree Graphs, O.

Goldreich and D. Ron, Goldreich and D. Ron, CombinatoricaCombinatorica, Vol. 19, 1999, pp. 335, Vol. 19, 1999, pp. 335--373.373.
39.39. [GR04][GR04] On estimating the average degree of a graph, On estimating the average degree of a graph, Electronic Colloquium Electronic Colloquium

on Computational Complexityon Computational Complexity, Vol. 11, 13, 2004., Vol. 11, 13, 2004.
40.40. [GT03][GT03] Three theorems regarding testing graph properties, O. GoldreichThree theorems regarding testing graph properties, O. Goldreich and and

L. Trevisan, L. Trevisan, Random Structures and AlgorithmsRandom Structures and Algorithms, Vol. 23, 2003, pp. 23, Vol. 23, 2003, pp. 23--57. 57.
41.41. [HK03][HK03] DistributionDistribution--free property testing, S. free property testing, S. HalevyHalevy and E. and E. KushilevitzKushilevitz, ,

RANDOMRANDOM--APPROXAPPROX’’0303, pp. 302, pp. 302--317.317.
42.42. [KKR04][KKR04] Tight Bounds for Testing Bipartiteness in General Graphs, T. Tight Bounds for Testing Bipartiteness in General Graphs, T.

Kaufman, M. Kaufman, M. KrivelevichKrivelevich and D. Ron, and D. Ron, SIAM Journal on ComputingSIAM Journal on Computing, Vol. 33, , Vol. 33,
2004, pp. 14412004, pp. 1441--1483.1483.

43.43. [KMS03][KMS03] Approximate testing with error relative to input size, M. Kiwi,Approximate testing with error relative to input size, M. Kiwi, F. F.
MagniezMagniez and M. and M. SanthaSantha, , Journal of Computer and System SciencesJournal of Computer and System Sciences, Vol. 66, , Vol. 66,
2003, pp. 3712003, pp. 371--392.392.

44.44. [KR00][KR00] Testing problems with subTesting problems with sub--learning sample complexity, M. Kearns learning sample complexity, M. Kearns
and D. Ron, and D. Ron, Journal of Computer and System SciencesJournal of Computer and System Sciences, Vol. 61, 2000, pp. , Vol. 61, 2000, pp.
428428--456.456.

2006/11/30 83Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)
45.45. [KR00][KR00] Testing problems with subTesting problems with sub--learning sample complexity, M. Kearns learning sample complexity, M. Kearns

and D. Ron, and D. Ron, Journal of Computer and System SciencesJournal of Computer and System Sciences, Vol. 61, 2000, pp. , Vol. 61, 2000, pp.
428428--456.456.

46.46. [N02] [N02] Testing Membership in Languages that Have Small Width Branching Testing Membership in Languages that Have Small Width Branching
Programs, I. Newman, Programs, I. Newman, SIAM Journal on ComputingSIAM Journal on Computing, Vol.31, 2002, pp. 251, Vol.31, 2002, pp. 251--
258.258.

47.47. [PR02][PR02] Testing the diameter of graphs, M. Testing the diameter of graphs, M. ParnasParnas, D. Ron, , D. Ron, Random Random
Structures and AlgorithmsStructures and Algorithms, Vol. 20, 2002, pp. 165, Vol. 20, 2002, pp. 165--183.183.

48.48. [PR03][PR03] Testing metric properties, M. Testing metric properties, M. ParnasParnas and D. Ron, and D. Ron, Information and Information and
ComputationComputation, Vol. 187, 2003, pp. 155, Vol. 187, 2003, pp. 155--195.195.

49.49. [PRR03] [PRR03] Testing parenthesis languages, Testing parenthesis languages, M. Parnas, D. Ron, R. Rubinfeld, M. Parnas, D. Ron, R. Rubinfeld,
Random Structures and AlgorithmsRandom Structures and Algorithms, Vol. 22, 2003, pp. 98, Vol. 22, 2003, pp. 98--138.138.

50.50. [PRR03][PRR03] On Testing Convexity and On Testing Convexity and SubmodularitySubmodularity, M. , M. ParnasParnas, D. Ron and , D. Ron and
R. Rubinfeld, R. Rubinfeld, SIAM Journal on ComputingSIAM Journal on Computing, Vol. 32, 2003, pp. 1158, Vol. 32, 2003, pp. 1158--1184.1184.

51.51. [PRS02][PRS02] Testing basic Boolean formulas, M. Testing basic Boolean formulas, M. ParnasParnas, D. Ron and A. , D. Ron and A.
SamorodnitskySamorodnitsky, , SIAM Journal on Discrete MathematicsSIAM Journal on Discrete Mathematics, Vol. 16, 2002, pp. , Vol. 16, 2002, pp.
2020--46.46.

2006/11/30 84Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan

Further readings (contFurther readings (cont’’d)d)

Some good surveys are available on the following Some good surveys are available on the following
website:website:

http://theory.lcs.mit.edu/%7Eronitt/sublinear.htmlhttp://theory.lcs.mit.edu/%7Eronitt/sublinear.html

This powerpoint file can be downloaded from the This powerpoint file can be downloaded from the
following hyperlink:following hyperlink:

http://www.cs.ccu.edu.tw/~lincc/research/randalg/slides/Intrhttp://www.cs.ccu.edu.tw/~lincc/research/randalg/slides/Intr
oductionToPropertyTesting.pptoductionToPropertyTesting.ppt

Thank you.

