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Introduction to Markov Introduction to Markov 
ChainsChains

Markov chains provide a simple but powerful 
framework for modeling random processes.

Markov chains can be used to analyze simple 
randomized algorithms applying random walks.
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Introduction to Markov Introduction to Markov 
Chains (contChains (cont’’d)d)
Definition:

F A stochastic process X = {X(t), t ∈ T} is a
collection of random variables.

F If T is a countable set, say T = {0, 1, 2, . . .},
we say that X is a discrete time stochastic
process.

F Otherwise it is called continuous time sto-
chastic process.

F Here we consider a discrete time stochastic
process Xn, for n = 0, 1, 2, . . ..



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2007/4/252007/4/25 66

Introduction to Markov Introduction to Markov 
Chains (contChains (cont’’d)d)

F If Xn = i, then the process is said to be in state i at
time n.

F Denote Pr[Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 =
i0] = Pi,j for all states i0, i1, . . . , in−1, i, j and all n ≥
0.

F Xn+1 depends only on Xn.
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Introduction to Markov Introduction to Markov 
Chains (contChains (cont’’d)d)

That is,
Pi,j = Pr[Xn+1 = j | Xn = i ],

for all states i, j and all n ≥ 0

Such a stochastic process is known as aMarkov chain.
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Formal definitions.
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Markov propertyMarkov property

In probability theory, a stochastic process has the Markov 
property if the conditional probability distribution of 
future states of the process, given the present state and all 
past states, depends only upon the current state and not on 
any past states.
Mathematically, if X(t), t > 0, is a stochastic process, the 
Markov property states that

Pr[X(t+ h) = y | X(s) = x(s), ∀s ≤ t]
= Pr[X(t+ h) = y | X(s) = x(t)], ∀h > 0
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Markov chainMarkov chain

In mathematics, a 
Markov chain, named 
after Andrey Markov, 
is a discrete-time 
stochastic process with 
the Markov property.

June 14, 1856 – July 20, 1922



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2007/4/252007/4/25 1111

HomogeneousHomogeneous

Markov processes are typically termed 
(time-) homogeneous if 

Pr[X(t + h) = y | X(t) = x(t)]
= Pr[X(h) = y | X(0) = x(t)], ∀t, h > 0
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Transition matrixTransition matrix
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Transition probabilityTransition probability

The m-step transition probability Pmi,j of the Markov
chain is defined as the conditional probability, given that
the chain is currently in state i, that will be in state j
after m additional transitions. That is,

Pmi,j = Pr[Xn+m = j | Xn = i], for m ≥ 0, i, j ≥ 0.
Conditioning on the first transition from i, we have the
following equation:

Pmi,j =
X
k≥0

Pi,kP
m−1
k,j .
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ChapmanChapman--KolmogorovKolmogorov
equation equation 
Generalize the previous result, we have 
Chapman-Kolmogorov equation as follows.

Pn+mi,j =
X
k≥0

Pni,kP
m
k,j .
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ChapmanChapman--KolmogorovKolmogorov
equationequation (cont(cont’’d)d)

¥

Proof: By the definition of the n-step transition probability,

Pn+mi,j =
X
k≥0

Pr[Xn+m = j, Xn = k | X0 = i]

=
X
k≥0

Pr[Xn = k | X0 = i] ·

Pr[Xn+m = j | Xn = k,X0 = i]

By the Markov property, Pr[Xn+m = j | Xn = k,X0 =
i] = Pr[Xn+m = j | Xn = k] = Pmk,j . With the additional
observation that Pr[Xn = k | X0 = i] = Pni,k, the theorem
immediately follows.
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Recall: Transition matrixRecall: Transition matrix

i

1

2

j

Pi,1

Pi,2

Pi,j
...

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OMOMM

LL

OMOMM

LL

LL

jiii

j

j

PPP

PPP
PPP

,1,0,

,11,10,1

,01,00,0

P transition matrix

F Pi,j ≥ 0.

F
P
j

Pi,j = 1.



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2007/4/252007/4/25 1717

Recall: HomogeneousRecall: Homogeneous

Markov processes are typically termed 
(time-) homogeneous if 

Pr[X(t + h) = y | X(t) = x(t)]
= Pr[X(h) = y | X(0) = x(t)], ∀t, h > 0
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F Let P(n) denote the matrix of n-step tran-
sition probabilities Pni,j , then the Chapman-

Kolmogorov equations implies that P(n) = Pn.

For example,
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Classification of statesClassification of states

A first step in analyzing the long-term 
behavior of a Markov chain is to classify 
its states.
In the case of a finite Markov chain, this is 
equivalent to analyzing the connected 
connectivity structure of the directed graph 
representing the Markov chain.
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Basic definitionsBasic definitions

F State j is said to be accessible from state i if
P ni,j > 0 for some n ≥ 0.

F We say states i and j communicate if they are
both accessible from each other. (i↔ j)

F The Markov chain is said to be irreducible if
all states communicate with each other.
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Basic definitions (contBasic definitions (cont’’d)d)

F Let rti,j denote the probability that starting at
state i, the first transition to state j occurs at
time t. That is,

rti,j = Pr[Xt = j and, for 1 ≤ s ≤ t − 1,Xs 6=
j | X0 = i].

F State i is said to be recurrent if
P

t≥1 r
t
i,i = 1,

and transient if
P

t≥1 r
t
i,i < 1.
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Basic definitions (contBasic definitions (cont’’d)d)

F A state j in a discrete time Markov chain is
periodic if there exists an integer ∆ > 1 such
that Pr[Xt+s = j | Xt = j] = 0 for some integer
t ≥ 0 unless s is divisible by ∆.

F A state i has period d if d = gcd{n | Pni,i > 0},
where gcd means the greatest common divisor.

F A discrete time Markov chain is periodic if there
exists at least one periodic state in the chain.
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Basic definitions (contBasic definitions (cont’’d)d)

F A state with period 1 is said to be aperiodic.

F We denote by hi,j the expected time from state
i to state j. So we have hi,j =

P
t≥1 t · rti,j .

F A recurrent state i is said to be positive recur-
rent, if hi,i <∞. Otherwise it is null recurrent.

F Positive recurrent, aperiodic states are called
ergodic.
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Null recurrent?Null recurrent?

For example, consider a Markov chain whose 
states are the positive integers.

From state i, the probability of going to state i+1 
is i / (i+1).

With probability 1 / (i+1), the chain returns to 
state 1.
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Null recurrent? (contNull recurrent? (cont’’d)d)

Starting at state 1, the probability of not having 
returned to state 1 within the first t steps is thus

Hence the probability of never returning to state 1 
from state 1 is 0, then we have state 1 is recurrent. 
It follows that

rt1,1 =
1
t · 1

t+1 =
1

t(t+1) .

tQ
j=1

j
j+1 =

1
t+1 .
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Null recurrent? (contNull recurrent? (cont’’d)d)

However, the expected number of steps until the 
first return to state 1 from state 1 is 

which is unbounded.

Thus this Markov chain has null recurrent states.

h1,1 =
∞P
t=1

t · rt1,1 =
∞P
t=1

1
t+1
,
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In the foregoing example, the Markov 
chain had an infinite number of states. 
This is necessary for null recurrent states 
to exist.
Yet for a finite Markov chain, we have the 
following lemma.
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Lemma 1Lemma 1

In a finite Markov chain:
– At least one state is recurrent; and
– All recurrent states are positive recurrent.

We omit the proof here, though it is not 
hard.
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Recall thatRecall that……

F State i is said to be recurrent if
P

t≥1 r
t
i,i = 1,

and transient if
P

t≥1 r
t
i,i < 1.
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Proposition 1Proposition 1

Proof of this proposition is a little bit complicated, so we 
omit it here.

F State i is recurrent if
P

n≥0 1 ·P ni,i =∞.
I That is, the expected number of visits to
state i over all time is infinite.

F State i is transient if
P

n≥0 1 · P ni,i <∞.
I That is, the expected number of visits to state
i over all time is finite.
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Proof of the second statementProof of the second statement

F Let Ni be the number of visits to state i over all time,
then E[Ni] =

P
n≥0 Pi,i = 0.

F Given an initial state distribution, let Vi denote the
event that the system eventually goes to state i.

I Obviously, Pr[Vi] ≤ 1.

F If Vi does not occur, then Ni = 0.

I This implies that E[Ni | V ci ] = 0.
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Proof of the second statement Proof of the second statement 
(cont(cont’’d)d)

F Otherwise (i.e., Vi occurs), there exists a time t
when the system first enters state i.

F In this case, given that the state is i, let Vii denote
the event that the system eventually returns to
state i.

I Thus V c
ii is the event that the system never re-

turns to state i.
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Proof of the second statement Proof of the second statement 
(cont(cont’’d)d)

F Since i is transient, there exists a state, say
j, such that for some t0, P t

0
i,j > 0 but i is not

accessible from j.

I Thus if we enter state j at time t0, the event V c
ii

will occur.

F Since this is one possible way that V cii can occur,

Pr[V cii] ≥ P t
0
i,j > 0.
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Proof of the second statement Proof of the second statement 
(cont(cont’’d)d)
F After each return to i, there is a probability
Pr[V cii] > 0 that state i will never be reentered.

F Hence, given Vi, the expected number of visits
to i is geometric with conditional expected value
E[Ni | Vi] = 1/Pr[V cii] ≤ 1/P t

0
i,j .

F Finally we have

E[Ni] = E[Ni | V ci ] · Pr[V ci ] + E[Ni | Vi] · Pr[Vi]
= E[Ni | Vi] · Pr[Vi] <∞.
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Corollary 1Corollary 1

If state i is recurrent, and state i communicates 
with state j, then state j is recurrent.

Proof:
– Exercise.
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Stationary DistributionStationary Distribution

Definition: A stationary distribution (also called
an equilibrium distribution) of a Markov chain is
a probability distribution π̄ such that

π̄ = π̄P.

Recall: P is the one-step transition probability
matrix of a Markov chain.
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Computing the stationary Computing the stationary 
distribution of a finite Markov chaindistribution of a finite Markov chain

One way to compute the stationary distribution 
of a finite Markov chain is to solve the system of 
linear equations 

This is particularly useful if one is given a 
specific chain.

π̄ = π̄P.
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For example, given the transition matrix

we have five equations for the four unknowns 
π0, π1, π2, and π3 given by               and  

,

4/14/12/10
02/14/14/1
6/13/102/1
4/304/10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=P

π̄ = π̄P
P3
i=0 πi = 1.
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Another techniqueAnother technique

Another useful technique is to study the cut-sets 
of the Markov chain. 

For any state i of the chain, 

or

nP
j=0

πjPj,i = πi = πi
nP
j=0

Pi,j

nP
j 6=i

πjPj,i =
nP
j=0

πiPi,j .
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That is, in the stationary distribution the 
probability that a chain leaves a state equals the 
probability that it enters the state.

This observation can be generalized to sets of 
states as follows.



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2007/4/252007/4/25 4242

TheoremTheorem

Let S be a set of states of a finite, irreducible, 
aperiodic Markov chain. In the stationary 
distribution, the probability that the chain leaves 
the set S equals the probability that it enters S.
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In other words, if C is a cut-set in the graph 
representation of the Markov chain, then in the 
stationary distribution the probability of crossing 
the cut-set in one direction is equal to the 
probability of crossing the cut-set in the other 
direction.
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That is, in the stationary distribution the 
probability that a chain leaves a state equals the 
probability that it enters the state.
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The transition matrix is 

.
1

1
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

qq
pp

P

0 1 1 − q1 − p

p

q

For example,For example,
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This Markov chain is often used to represent 
bursty behavior.
For example, when bits are corrupted in 
transmissions they are often corrupted in large 
blocks, since errors are often caused by an 
external phenomenon of some duration.

0 1 1 − q1 − p

p

q
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In this setting, begin in state 0 after t steps 
represents that the tth bit was sent successfully, 
while being in state 1 represents that the bit was 
corrupted.

0 1 1 − q1 − p

p

q
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Blocks of successfully sent bits and corrupted 
bits both have lengths that follow a geometric 
distribution.
When p and q are small, state changes are rare, 
and the bursty behavior is modeled.

0 1 1 − q1 − p

p

q
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Solving                corresponds to solving the 
following system of three equations:

π̄ = π̄P

π0(1− p) + π1q = π0;

π0p+ π1(1− q) = π1;

π0 + π1 = 1.

0 1 1 − q1 − p

p

q
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Using the cut-set formulation, 

we have that in the stationary distribution the 
probability of leaving state 0 must equal the 
probability of entering state 0.

π0p = π1q.
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Again, now using π0+π1 = 1 yields π0 = 
q/(p+q) and π1 = p/(p+q).

For example, with the natural parameters  p = 
0.005 and q = 0.1, in the stationary distribution 
more than 95% of the bits are received 
successfully.
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Theorem 1Theorem 1

Any finite, irreducible, and ergodic Markov 
chain has the following properties:

F The chain has a unique stationary distribution
π̄ = (π0, π1, . . . , πn);

F For all j and i, lim
t→∞P

t
j,i exists and it is indepen-

dent of j;

F πi = lim
t→∞P

t
j,i =

1
hi,i
.

positive recurrent or aperiodic 
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Proof of Theorem 1Proof of Theorem 1

Please refer to the textbook for the details. 
– page 168−170 in [MU05]

We omit the proof here.

Yet we can still eye on the following 
lemma.
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Lemma 2Lemma 2

For any irreducible, ergodic Markov chain 
and for any state i, 

We explain instead of proving the lemma as 
follows.

lim
t→∞P

t
i,i exists and limt→∞P

t
i,i =

1
hi,i
.
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Informal justificationsInformal justifications……

The expected time between visits to i is hi,i and 
therefore state i is visited 1/hi,i of the time. 
Thus the limit of       , which represents the 
probability that, a state chosen far in the future is 
at state i when the chain starts at state i, must be 
1/hi,i.  
Since the limit exists, we can show that 

P ti,i

lliimm
tt→→∞∞ P

P ttjj,,ii == lliimm
tt→→∞∞ P

P ttii,,ii ==
11
hhii,,ii
..

We omit the detail here for simplicity.
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Markov Chains and Random 
Walks on Undirected Graphs…
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Random walks on undirected Random walks on undirected 
graphsgraphs

A random walkrandom walk on G is a Markov chain defined 
by the sequence of moves of a particle between 
vertices of G. 
In this process, the place of the particle at a given 
time step is the state of the system.
If the particle is at vertex i and if i has d(i) 
outgoing edges, then the probability that the 
particle follows edge (i, j) and moves to neighbor 
j is 1/d(i).
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A random walk on an undirected graph G
is aperiodic iff G is not bipartite.

Lemma 3Lemma 3
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A graph is bipartite iff it does not have any odd 
cycle. 
In an undirected graph, there is always a path of 
length 2 from a vertex to itself.
Thus, if the graph is bipartite then the random 
walk is periodic (d = 2).
If not bipartite, then it has an odd cycle and 
gcd(2,odd-number) = 1. Thus, the Markov chain 
is aperiodic.

Proof of Lemma 3Proof of Lemma 3

⇒

⇐
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Some technical restrictionsSome technical restrictions

Due to some technical reasons, for the 
remainder of our discussion, we assume 
that the graph G that we will discuss is not 
bipartite.
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Something needs to be Something needs to be 
clarifiedclarified……
A random walk on a finite, undirected, connected, 
and non-bipartite graph G satisfies the conditions 
of Theorem 1.
– A Markov chain that is finite, irreducible, and ergodic.

Hence the random walk converges to a stationary 
distribution. (Due to Theorem 1.)
The following Theorem shows that this distribution 
depends only on the degree sequence of the graph.

aperiodic
ergodic
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Theorem 2Theorem 2

A random walk on G converges to a stationary
distribution π̄, where

πv =
d(v)

2|E| .
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Proof of Theorem 2Proof of Theorem 2

Since
P

v∈V d(v) = 2|E|, Pv∈V πv =
P

v∈V
d(v)
2|E| = 1.

That is, π̄ is indeed a distribution.

Let P be the transition probability matrix and N (v) be
the neighbors of v.

(π̄P)v =
P

u∈N (v)
d(u)
2|E| · 1

d(u)
= d(v)

2|E| .

thus the theorem follows. ¥
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Corollary 2Corollary 2

For any vertex u in G, hu,u =
2|E|
d(u)

.

Recall that hv,u is the expected number of steps
to reach u from v. So the corollary immediately
follows.
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Lemma 4Lemma 4

If (u, v) ∈ E, then hv,u ≤ 2|E|.
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Proof of Lemma 4Proof of Lemma 4

u ...

w’s

Recall that N(u) denotes the neighbors of u in the
given graph G.

Since 2|E|
d(u)

= hu,u =
1

d(u)
· P
w∈N (u)

(1 + hw,u), we have

2|E| = P
w∈N (u)

(1 + hw,u).

Therefore hv,u < 2|E|
(since (u, v) ∈ E.)

¥
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The Covering TimeThe Covering Time

Definition:
– The cover time of a graph G = (V, E) is the 

maximum over all v ∈ V of the expected 
time to visit all of the nodes in the graph by 
a random walk starting from v.
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Lemma 5Lemma 5

The cover time of G = (V, E) is bounded 
by 4|V| ⋅ |E|.
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Proof of Lemma 5Proof of Lemma 5

Choose a spanning tree of G. Then there exists a 
cyclic (Eulerian) tour on this tree, where each 
edge is traversed once in each direction, which 
can be found by doing a DFS.

Let v0,v1,…,v2|V|−2= v0 be the sequence of vertices 
in the tour, starting from v0.
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Proof of Lemma 5Proof of Lemma 5 (cont(cont’’d)d)

Clearly the expected time to go through the 
vertices in the tour is an upper bound on the 
cover time.

Hence the cover time is bounded above by

¥

2|V |−3X
i=0

hvi,vi+1 < (2|V |− 2)(2|E|) < 4|V | · |E|.

from Lemma 4
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Suppose we are given an undirected graph 
G (V, E) and two vertices ss and tt in G. 
– Let n = |V | and m = |E |.

We want to determine if there is a path 
connecting ss and tt.

Application: Application: s s --tt connectivityconnectivity
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Application: Application: s s --tt connectivity connectivity 
(cont(cont’’d)d)

This is easily done in linear time using a 
standard breadth-first search or depth-first 
search.
However, such algorithms require Ω(n)
space.
The following randomized algorithm 
works only O(log n) bits of memory.
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Application: Application: s s --tt connectivity connectivity 
(cont(cont’’d)d)
s-t Connectivity Algorithm:
Input: G and two vertices s and t
Output: Yes or No

F Start a random walk from s.
F If the walk reaches t within 4n3 steps,
return YES. Otherwise, return No.
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Application: Application: s s --tt connectivity connectivity 
(cont(cont’’d)d)

We have assumed that G has no bipartite 
connected component. 
– The results can be made to apply to bipartite 

graphs with some additional technical work.
Let us consider the following theorem.
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Theorem 3Theorem 3

The s-t Connectivity Algorithm returns the cor-
rect answer with probability 1

2 and it only errs by
returning that there is no path from s to t when
there is such a path.
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Proof of Theorem 3Proof of Theorem 3

The algorithm gives correct answer, when G has 
no s-t path.

If G has an s-t path, the algorithm errs if it does 
not find the path in 4n3 steps.

Now we consider the case that G has an s-t path.
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Proof of Theorem 3 (contProof of Theorem 3 (cont’’d)d)

The expected time to reach t from s is bounded by 
the cover time, which is at most 4|V | ⋅ |E | < 2n3.
– |E | ≤ n(n − 1)/2

Let a random variable X denote the number of 
steps needed for the s-t Connectivity Algorithm.

By Markov’s inequality, 

¥
Pr[X > 4n3] ≤ Pr[X ≥ 4n3] ≤ E[X ]

4n3
<
2n3

4n3
=
1

2
.



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2007/4/252007/4/25 7878

The algorithm must keep track of its current 
position, which takes O(log n) bits, as well as the 
number of steps taken in the random walk, which 
also takes only O(log n) bits.
– Since we count up only 4n3, which requires log(4n3) = 

O(log n)  bits

Proof of Theorem 3 (contProof of Theorem 3 (cont’’d)d)



Thank you.


