Randomized Algorithms
+

Two Types of Randomized Algorithms
and

Some Complexity Classes

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University

2006/9/20

-

References

+

m Professor Hsueh-I Lu’s slides.

m Randomized Algorithms, Rajeev Motwani and
Prabhakar Raghavan.

m Probability and Computing - Randomized
Algorithms and Probabilistic Analysis, Michael
Mitzenmacher and Eli Upfal.

-

Outline

+

é W)

m Las Vegas algorithms and Monte Carlo
algorithms

m RAMs and Turing machines

m Complexity classes

- P, NP, RP, ZPP, BPP and their
complementary classes

— Open problems

-

Las Vegas vs. Monte Carlo ‘%

+

m Las Vegas algorithms = Monte Carlo algorithms

— Always produces a — Allow a small
(correct/optimal) probability for
solution. outputting an

— Like RandQs. Incorrect/non-optimal

solution.

— Like RandMC.

— The name Is by von
Neumann.

Las Vegas Algorithms

+

m For example, RandQS Is a Las Vegas algorithm.
m A Las Vegas always gives the correct solution

m The only variation from one run to another is Its
, whose distribution we study.

-

Randomized quicksort

+ algorithm RandQS(X) {

if X is empty then
- return,;

B R LA Pl SR s L I
let Z={z€ X | z>x};
call RandQS(Y);
print x;

call RandQS(Z2);

An 1llustration

900000000

2 Questions for RandQS

+

m |s RandQS correct?

— That 1s, does RandQS " output a
sorted list of X?

m What is the time complexity of RandQS?

— Due to the randomization for selecting x, the
running time for RandQS becomes a

— We are Interested In the time
complexity for RandQS.

-

Monte Carlo algorithms

+

m For example, RandEC (the randomized
minimum-cut algorithm we have discussed) Is a
Monte Carlo algorithm.

m A Monte Carlo algorithm may
produce a solution that is

m For decision problems, there are two kinds of
Monte Carlo algorithms:

— those with one-sided error
— those with two-sided error

-

Which Is better?

+

m The answer depends on the application.

m A Las Vegas algorithm is by definition a
Monte Carlo algorithm with error
probability O.

m Actually, we can derive a Las Vegas
algorithm A from a Monte Carlo algorithm
B by repeated running B until we get a
correct answer.

10

-

Computation model

m Throughout this talk, we use the Turing machine
model to discuss complexity theory Issues.

m As IS common, we switch to the RAM (random
access machine) as the model of computation
when describing and analyzing algorithms.

Computation model (cont’d)

+

m For simplicity, we will work with the general
unit-cost RAM model.

m In unit-cost RAM model, each instruction can be
performed In one time step.

12

Determinist

4}: A deterministic Turing machine iIs a quadruple M = (S,
2., 0, 9).

— Here S is a finite set of states, of which s € S is the machine’s
Initial state.

— 2. afinite set of symbols (this set includes special symbols
BLANK and FIRST).

— o the transition function of the Turing machine, mapping S
x 2,10 (SU{HALT, YES, NO}) x 2. x {<, —, STAY}.

m The machine has three states: HALT (the halting state),
YES (the accepting state), and NO (the rejecting state)
(these are states, but formally not in S.)

13

-

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A Turing machine with one tape

+

state \ symbol 0 1 L >
s (s,0,—) (s,1,—=) | (qyu,<) | (s,>,—)
q <QO7I_17_>) (Q17I_l7_>) (q7U7_) (h7>7_>)
q0 (s,0,<) (s,0,<) | (s5,0,<) | (h,>>,—)
q1 (s,1,4) (s,1,<) | (s,1,«) | (h,>,—)
h X X X X
Q: What does

this Turing

A probabilistic TM

+

m A probabilistic Turing machine is a
(nondeterministic) Turing machine
augmented with the ability to generate an
unbiased coin flip in one step.

m It corresponds to a randomized algorithm.

21

-

A probabilistic TM (cont’d)

+

m On any input x, a probabilistic Turing
machine accepts x with some probability,
and we study this probability.

Language recognition
problem

+

m Any decision problem can be treated as a
language recognition problem.

m Let 2" be the set of all possible strings over ..

m A language L < 2" is a collection of strings
over 2.

23

-

Language recognition
problem (cont’d)

+

m The corresponding language recognition
problem is to decide whether a given string x e
>* belongs to L.

m An algorithm solves a language recognition
problem for a specific language L by accepting
(output YES) any Input string contained in L,
and rejecting (output NO) any Input string not
contained In L.

24

Complexity Classes

+

m A complexity class Is a collection of
languages all of whose recognition
problem can be solved under prescribed
bounds on the computational resources.

m \We are primarily interested the classes In
which algorithms is polynomial-time
bounded.

25

-

The Class: P

m The class P consists of all languages L that
have a polynomial time algorithm A such
that for any Input x € >,

— X € L = A(X) accepts
— X ¢ L= A(X) rejects

The Class: N

+

m [he class NP cong
that have a poly
such that for a

all languages L
al time algorithm A
nput x € 27,

-xelL=3ye X, A(X Y) accepts, where |y |
IS bounded by a polynomial in | x|.

-XgL=VyeX, AXY) rejects

27

-

A useful view of P and NP

+

m The class P consists of all languages L such that

for any x in L, a proof (certificate) of the
membership x In L (represented by the string y)
can be and efficiently.

m The class NP consists of all languages L such

that for any x in L, a proof (certificate) of the
membership of x in L can be efficiently.

28

-

A useful view of P and NP
(cont’d)

+

m Obviously P < NP, but it is not known whether
P = NP.

m [f P = NP, the existence of an efficiently
verifiable proof (certificate) implies that it Is
possible to actually find such a proof (certificate)
efficiently.

29

+

m \When randomized algorithms are
allowed, we have some basic classes
as follows.

30

The Class: RP

+

m The class RP (for Randomized Polynomial time)
consists of all languages L that have a randomized
algorithm A running in worst-case polynomial
time such that for any Input x € >~

— X € L = Pr[A(x) accepts] >
— X ¢ L = Pr[A(x) accepts] = 0.

N

31

-

One-sided error vs. two-
sided error

+

m A randomized algorithm A for recognizing a
language L 1s of one-sided error If for any input
X €2
— X € L = Pr[A(x) accepts] = 1
— X ¢ L = Pr[A(x) accepts] = 0.
or
— X € L = Pr[A(x) accepts] = 1.
— X ¢ L = Pr[A(x) accepts] # 0.

32

-

One-sided error vs. two-
sided error (cont’d)

+

m A randomized algorithm A for recognizing a
language L 1s of two-sided error If for any input
X €2
— X € L = Pr[A(x) accepts] # 1.
— X ¢ L = Pr[A(x) accepts] = 0.

33

The Class: ZPP

m The class ZPP (for zero-error Probabilistic
Polynomial time) Is the class of languages
that has Las Vegas algorithms running In
expected polynomial time.

The Class: ZPP (cont’d)

+

m For example,

RandQS is a ZPP algorithm.

The Class: PP

+

m The class PP (for Probabilistic Polynomial time)
consists of all languages L that have a
randomized algorithm A running in worst-case
polynomial time that for any input x € >,

— X € L = Pr[A(x) accepts] > 1.
— X ¢ L = Pr[A(x) accepts] < Y.

36

Exercise 1.10

+

m Consider a randomized algorithm with two-sided
error probabilities as in the definition of PP.
Show that a polynomial number of independent
repetitions of this algorithm need not suffice to
reduce the error probability to % .

— Consider the case where the error probability is

1
pe

The Class: PP (cont’d)

m [he definition of PP I1s weak.

— It can be proved that it may not be possible to use
a small number of repetitions of an algorithm A
with such two-sided error probability to obtain an
algorithm with “significantly smaller” error
probability. (proved by using the Chernoff bound)

m Compared to the class BPP!

38

-

The Class: PP (cont’d)

+

m Note:

— To reduce the error probability of a two-sided
error algorithm, we can perform several
Independent iterations on the same input and
produce the output that occurs In the majority
of these Iterations.

— This can be done by using the Chernoff bound.

39

-

+

m The class BPP (for Bounded-error Pyobabilistic
Polynomial time) consists of all languages L
that have a randomized algorithm A/ running In
worst-case polynomial time that for/any input x

e’

— X € L = Pr[A(x) accepts] _.

— X ¢ L = Pr[A(x) accepts] < % ..

Note

+

m Exponentially small
- 1/2",1/3", ...

m Polynomially small
—1/n%,1/logn,

The Class: BPP (cont’d)

+- One can show that for this class of algorithms,
the error probability can be reduced to 1/2" with
only a polynomial number of iterations.

Problem 4.8: Consider a BPP algorithm that has an er-
ror probability of % — #n), for some polynomially bounded

function p(n) of the input size n. Using the Chernoff bound
on the tail of the binomial distribution, show that a poly-

nomial number of independent repetitions of this algorithm

sur ce to reduce the error probability to 2%

The Class: BPP (cont’d)

m Consider the decision version of the min-cut
problem:

— Given a graph G and an integer K, verify that the min-
cut size in G equals K.

m Assume that we have modified the Monte Carlo
algorithm RandEC to reduce its error probability
to be less than ¥4 (by sufficiently many repetitions).

— We then get a BPP algorithm.

43

-

The Class: BPP (cont’d)

+

m In the case where K is indeed the min-cut value,
the algorithm may not come up with the right
value and, hence, may reject the input .

m |f the min-cut value Is smaller than K, the
algorithm may only find cuts of size K, and
hence, accept the Input.

m |f the min-cut value is larger than K, the
algorithm will never find any cut of size K, and
hence, reject the input.

44

-

Note

+

m Consider another decision version of the min-cut
problem:

— Given a graph G and an integer K, verify that the min-
cut size in G Is at most K.

m Assume again that we have modified the Monte
Carlo algorithm RandEC to reduce Its error
probability to be less than ¥4 (oy sufficiently many
repetitions).

— We then get a RP algorithm for this problem.

45

-

Note (cont’d)

m |n the case where the actual min-cut size C is
larger than K, the algorithm will never accept the

Input.
m |f the min-cut value Is at most K, the algorithm
may find cuts of size at most K, and hence,

accept the input.

One-sided error!

46

-

Complement Classes

+

m For any complexity class C, we define the
complementary class co-C as the set of

languages whose complement is in the
class C.

— That 1s,
co-C={L|LeC}

47

Complement Classes (cont’d)

m [hen we have co-P, co-NP, co-RP, co-PP,
co-ZPP, co-BPP, ...

m For example,

The Class: co-RP

m The class co-RP consists of all languages L that
have a randomized algorithm A running in worst-
case polynomial time such that for any Input x e
2*1

— X € L = Pr[A(x) accepts] = 1.
— X ¢ L = Pr[A(x) accepts] < .

49

-

Exercise

m Show that ZPP = RP n co-RP.

Open problems

+

m |S NP =P?
m IS RP =co- RP?

m |S RP c NP n co-NP?
m |s BPP c NP?
m |Ss BPP =P?

Thank you.

