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OutlineOutline

Las Vegas algorithms and Monte Carlo 
algorithms
RAMs and Turing machines
Complexity classes
– P, NP, RP, ZPP, BPP and their 

complementary classes
– Open problems
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Las Vegas vs. Monte CarloLas Vegas vs. Monte Carlo

Las Vegas algorithms
– Always produces a 

(correct/optimal) 
solution.

– Like RandQS.

Monte Carlo algorithms
– Allow a small 

probability for 
outputting an 
incorrect/non-optimal 
solution.

– Like RandMC.
– The name is by von 

Neumann.
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Las Vegas AlgorithmsLas Vegas Algorithms

For example, RandQS is a Las Vegas algorithm.

A Las Vegas always gives the correct solution

The only variation from one run to another is its 
running time, whose distribution we study.
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Randomized Randomized quicksortquicksort

randomization

algorithm RandQS(X) {
if X is empty then
return;

select x uniformly at random from X;
let Y = {y ∈ X | y < x};
let Z = {z ∈ X | z > x};
call RandQS(Y );
print x;
call RandQS(Z);

}
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An illustrationAn illustration
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2 Questions for 2 Questions for RandQSRandQS

Is RandQS correct?
– That is, does RandQS “always” output a 

sorted list of X?
What is the time complexity of RandQS?

– Due to the randomization for selecting x, the 
running time for RandQS becomes a 
random variable.

– We are interested in the expected time 
complexity for RandQS.
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Monte Carlo algorithmsMonte Carlo algorithms

For example, RandEC (the randomized 
minimum-cut algorithm we have discussed) is a 
Monte Carlo algorithm.
A Monte Carlo algorithm may sometimes
produce a solution that is incorrect.
For decision problems, there are two kinds of 
Monte Carlo algorithms:
– those with one-sided error
– those with two-sided error
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Which is better?Which is better?

The answer depends on the application.
A Las Vegas algorithm is by definition a 
Monte Carlo algorithm with error 
probability 0.
Actually, we can derive a Las Vegas 
algorithm A from a Monte Carlo algorithm 
B by repeated running B until we get a 
correct answer.
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Computation modelComputation model

Throughout this talk, we use the Turing machine
model to discuss complexity theory issues.

As is common, we switch to the RAM (random 
access machine) as the model of computation 
when describing and analyzing algorithms. 
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Computation model (contComputation model (cont’’d)d)

For simplicity, we will work with the general 
unit-cost RAM model.

In unit-cost RAM model, each instruction can be 
performed in one time step.
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Deterministic TMDeterministic TM

A deterministic Turing machine is a quadruple M = (S, 
∑, δ, s). 
– Here S is a finite set of states, of which s ∈ S is the machine’s 

initial state. 
– ∑ : a finite set of symbols (this set includes special symbols 

BLANK and FIRST). 
– δ :  the transition function of the Turing machine, mapping S
× ∑ to (S∪{HALT, YES, NO}) × ∑ × {←, →, STAY}. 

The machine has three states: HALT (the halting state), 
YES (the accepting state), and NO (the rejecting state) 
(these are states, but formally not in S.)

You can refer to any 
computation theory textbook 

to for more details here.
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A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0 0B

Q: What does 
this Turing 

machine do?
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A probabilistic TMA probabilistic TM

A probabilistic Turing machine is a 
(nondeterministic) Turing machine 
augmented with the ability to generate an 
unbiased coin flip in one step.

It corresponds to a randomized algorithm.
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A probabilistic TM (contA probabilistic TM (cont’’d)d)

On any input x, a probabilistic Turing 
machine accepts x with some probability, 
and we study this probability.
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Language recognition Language recognition 
problemproblem

Any decision problem can be treated as a 
language recognition problem.

Let ∑* be the set of all possible strings over ∑.

A language L ⊆ ∑* is a collection of strings 
over ∑.



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2424

Language recognition Language recognition 
problem (contproblem (cont’’d)d)

The corresponding language recognition 
problem is to decide whether a given string x ∈
∑* belongs to L.
An algorithm solves a language recognition 
problem for a specific language L by accepting
(output YES) any input string contained in L,
and rejecting (output NO) any input string not 
contained in L.
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Complexity ClassesComplexity Classes

A complexity class is a collection of 
languages all of whose recognition 
problem can be solved under prescribed 
bounds on the computational resources.
We are primarily interested the classes in 
which algorithms is polynomial-time
bounded.
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The Class: The Class: PP

The class P consists of all languages L that 
have a polynomial time algorithm A such 
that for any input x ∈ ∑*, 

– x ∈ L ⇒ A(x) accepts
– x ∉ L ⇒ A(x) rejects
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The Class: The Class: NPNP

The class NP consists of all languages L
that have a polynomial time algorithm A
such that for any input x ∈ ∑*, 

– x ∈ L ⇒ ∃ y ∈ ∑*,  A(x, y) accepts, where | y |  
is bounded by a polynomial in | x |.

– x ∉ L ⇒∀ y ∈ ∑*,  A(x, y) rejects

Here y can be regarded as a 
“certificate”



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2828

A useful view of A useful view of PP and and NPNP

The class P consists of all languages L such that 
for any x in L, a proof (certificate) of the 
membership x in L (represented by the string y) 
can be found and verified efficiently.
The class NP consists of all languages L such 
that for any x in L, a proof (certificate) of the 
membership of x in L can be verified efficiently.
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A useful view of A useful view of PP and and NP NP 
(cont(cont’’d)d)

Obviously P ⊆ NP, but it is not known whether 
P = NP.

If P = NP , the existence of an efficiently 
verifiable proof (certificate) implies that it is 
possible to actually find such a proof (certificate) 
efficiently.
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When randomized algorithms are 
allowed, we have some basic classes 
as follows.
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The Class: The Class: RPRP

The class RP (for Randomized Polynomial time) 
consists of all languages L that have a randomized
algorithm A running in worst-case polynomial 
time such that for any input x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≥ ½ .
– x ∉ L ⇒ Pr[A(x) accepts] = 0.

One-sided error

Actually, the choice of the 
bound on the error probability ½

can be arbitrary.
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OneOne--sided error vs. twosided error vs. two--
sided errorsided error

A randomized algorithm A for recognizing a 
language L is of one-sided error if for any input 
x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≠ 1
– x ∉ L ⇒ Pr[A(x) accepts] = 0.

or
– x ∈ L ⇒ Pr[A(x) accepts] = 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≠ 0.
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OneOne--sided error vs. twosided error vs. two--
sided error (contsided error (cont’’d)d)

A randomized algorithm A for recognizing a 
language L is of two-sided error if for any input 
x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≠ 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≠ 0.
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The Class: The Class: ZPPZPP

The class ZPP (for zero-error Probabilistic 
Polynomial time) is the class of languages 
that has Las Vegas algorithms running in 
expected polynomial time.
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The Class: The Class: ZPPZPP (cont(cont’’d)d)

For example, 
RandQS is a ZPP algorithm.
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The Class: The Class: PPPP

The class PP (for Probabilistic Polynomial time) 
consists of all languages L that have a 
randomized algorithm A running in worst-case 
polynomial time that for any input x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] > ½ .
– x ∉ L ⇒ Pr[A(x) accepts] < ½.
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Exercise 1.10Exercise 1.10

Consider a randomized algorithm with two-sided 
error probabilities as in the definition of PP. 
Show that a polynomial number of independent 
repetitions of this algorithm need not suffice to 
reduce the error probability to ¼ . 
– Consider the case where the error probability is 

1
2 +

1
2n .
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The Class: The Class: PP PP (cont(cont’’d)d)

The definition of PP is weak.
– It can be proved that it may not be possible to use 

a small number of repetitions of an algorithm A
with such two-sided error probability to obtain an 
algorithm with “significantly smaller” error 
probability. (proved by using the Chernoff bound)

Compared to the class BPP!
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The Class: The Class: PP PP (cont(cont’’d)d)

Note:
– To reduce the error probability of a two-sided 

error algorithm, we can perform several 
independent iterations on the same input and 
produce the output that occurs in the majority 
of these iterations.

– This can be done by using the Chernoff bound.
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The Class: The Class: BPPBPP

The class BPP (for Bounded-error Probabilistic 
Polynomial time) consists of all languages L
that have a randomized algorithm A running in 
worst-case polynomial time that for any input x 
∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≥ ¾ .
– x ∉ L ⇒ Pr[A(x) accepts] ≤ ¼ .

Actually, we only have to make sure 
that the difference between the 

“green one” and the “red one” is only 
polynomially small.
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NoteNote

Exponentially small
– 1/2n , 1/3n , …

Polynomially small
– 1/n2, 1 / log n, ….
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The Class: The Class: BPP BPP (cont(cont’’d)d)

One can show that for this class of algorithms, 
the error probability can be reduced to 1/2n with 
only a polynomial number of iterations.

Problem 4.8: Consider a BPP algorithm that has an er-
ror probability of 12 − 1

p(n) , for some polynomially bounded

function p(n) of the input size n. Using the Chernoff bound
on the tail of the binomial distribution, show that a poly-
nomial number of independent repetitions of this algorithm
su± ce to reduce the error probability to 1

2n .
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The Class: The Class: BPP BPP (cont(cont’’d)d)

Consider the decision version of the min-cut 
problem:
– Given a graph G and an integer K, verify that the min-

cut size in G equals K.

Assume that we have modified the Monte Carlo 
algorithm RandEC to reduce its error probability 
to be less than ¼ (by sufficiently many repetitions).
– We then get a BPP algorithm.
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The Class: The Class: BPP BPP (cont(cont’’d)d)

In the case where K is indeed the min-cut value, 
the algorithm may not come up with the right 
value and, hence, may reject the input .
If the min-cut value is smaller than K, the 
algorithm may only find cuts of size K, and 
hence, accept the input.
If the min-cut value is larger than K, the 
algorithm will never find any cut of size K, and 
hence, reject the input.
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NoteNote

Consider another decision version of the min-cut 
problem:
– Given a graph G and an integer K, verify that the min-

cut size in G is at most K.

Assume again that we have modified the Monte 
Carlo algorithm RandEC to reduce its error 
probability to be less than ¼ (by sufficiently many 

repetitions).
– We then get a RP algorithm for this problem.



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4646

Note (contNote (cont’’d)d)

In the case where the actual min-cut size C is 
larger than K, the algorithm will never accept the 
input. 
If the min-cut value is at most K, the algorithm 
may find cuts of size at most K, and hence, 
accept the input.

One-sided error!
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Complement ClassesComplement Classes

For any complexity class C, we define the 
complementary class co-C as the set of 
languages whose complement is in the 
class C. 
– That is,

co-C = {L | L̄ ∈ C}
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Complement Classes (contComplement Classes (cont’’d)d)

Then we have co-P, co-NP, co-RP, co-PP, 
co-ZPP, co-BPP, …

For example,



Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4949

The Class: The Class: coco--RPRP

The class co-RP consists of all languages L that 
have a randomized algorithm A running in worst-
case polynomial time such that for any input x ∈
∑*,

– x ∈ L ⇒ Pr[A(x) accepts] = 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≤ ½.
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Exercise Exercise 

Show that ZPP = RP ∩ co-RP.
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Open problemsOpen problems

Is NP = P?
Is RP = co- RP?
Is RP ⊆ NP ∩ co-NP?
Is BPP ⊆ NP?
Is BPP = P?
……



Thank you.


