## Randomized Algorithms

# Two Types of Randomized Algorithms and Some Complexity Classes 

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University 2006/9/20

## References

- Professor Hsueh-I Lu’s slides.
- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan.
- Probability and Computing - Randomized Algorithms and Probabilistic Analysis, Michael Mitzenmacher and Eli Upfal.


## Outline



- Las Vegas algorithms and Monte Carlo algorithms
- RAMs and Turing machines
- Complexity classes
- P, NP, RP, ZPP, BPP and their complementary classes
- Open problems


## Las Vegas vs. Monte Carlo

- Las Vegas algorithms ■ Monte Carlo algorithms
- Always produces a (correct/optimal) solution.
- Like RandQS.

- Allow a small probability for outputting an incorrect/non-optimal solution.
- Like RandMC.
- The name is by von Neumann.


## Las Vegas Algorithms

- For example, RandQS is a Las Vegas algorithm.
- A Las Vegas always gives the correct solution
- The only variation from one run to another is its running time, whose distribution we study.


## Randomized quicksort

algorithm RandQS(X) \{ if $X$ is empty then

## return;

select $x$ uniformly at random from $X$

let $Z=\{z \in X \mid z>x\}$;
call RandQS(Y);
print $x$;
call RandQS(Z);

## An illustration



## 2 Questions for RandQS

- Is RandQS correct?
- That is, does RandQS "always" output a sorted list of $X$ ?
- What is the time complexity of RandQS?
- Due to the randomization for selecting $x$, the running time for RandQS becomes a random variable.
- We are interested in the expected time complexity for RandQS.


## Monte Carlo algorithms

- For example, RandEC (the randomized minimum-cut algorithm we have discussed) is a Monte Carlo algorithm.
- A Monte Carlo algorithm may sometimes produce a solution that is incorrect.
- For decision problems, there are two kinds of Monte Carlo algorithms:
- those with one-sided error
- those with two-sided error


## Which is better?

- The answer depends on the application.
- A Las Vegas algorithm is by definition a Monte Carlo algorithm with error probability 0 .
- Actually, we can derive a Las Vegas algorithm A from a Monte Carlo algorithm $B$ by repeated running $B$ until we get a correct answer.


## Computation model

- Throughout this talk, we use the Turing machine model to discuss complexity theory issues.
- As is common, we switch to the $R A M$ (random access machine) as the model of computation when describing and analyzing algorithms.


## Computation model (cont'd)

- For simplicity, we will work with the general unit-cost RAM model.
- In unit-cost RAM model, each instruction can be performed in one time step.


## Determinist

- A deterministic Turing machine is a quadruple $M=(S$, $\left.\sum, \delta, s\right)$.
- Here $S$ is a finite set of states, of which $s \in S$ is the machine's initial state.
- $\sum$ : a finite set of symbols (this set includes special symbols BLANK and FIRST).
$-\delta$ : the transition function of the Turing machine, mapping $S$ $\times \sum$ to $(\mathrm{S} \cup\{\mathrm{HALT}, \mathrm{YES}, \mathrm{NO}\}) \times \sum \times\{\leftarrow, \rightarrow$, STAY $\}$.
- The machine has three states: HALT (the halting state), YES (the accepting state), and NO (the rejecting state) (these are states, but formally not in S.)


## A Turing machine with one tape

| state $\backslash$ symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?


## A Turing machine with one tape

| state $\backslash$ symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A Turing machine with one tape

| state \symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A Turing machine with one tape

| state $\backslash$ symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A Turing machine with one tape

| state $\backslash$ symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A Turing machine with one tape

| state \symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A Turing machine with one tape

| state $\backslash$ symbol | 0 | 1 | $\sqcup$ | $\triangleright$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, 0, \rightarrow)$ | $(s, 1, \rightarrow)$ | $(q, \sqcup, \leftarrow)$ | $(s, \triangleright, \rightarrow)$ |
| $q$ | $\left(q_{0}, \sqcup, \rightarrow\right)$ | $\left(q_{1}, \sqcup, \rightarrow\right)$ | $(q, \sqcup,-)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{0}$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(s, 0, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $q_{1}$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(s, 1, \leftarrow)$ | $(h, \triangleright, \rightarrow)$ |
| $h$ | $\times$ | $\times$ | $\times$ | $\times$ |

Q: What does this Turing machine do?

## A probabilistic TM

- A probabilistic Turing machine is a (nondeterministic) Turing machine augmented with the ability to generate an unbiased coin flip in one step.
- It corresponds to a randomized algorithm.


## A probabilistic TM (cont'd)

- On any input $x$, a probabilistic Turing machine accepts $x$ with some probability, and we study this probability.


## Language recognition problem

- Any decision problem can be treated as a language recognition problem.
- Let $\sum^{*}$ be the set of all possible strings over $\sum$.
- A language $L \subseteq \sum^{*}$ is a collection of strings over $\sum$.


## Language recognition problem (cont'd)

- The corresponding language recognition problem is to decide whether a given string $x \in$ $\sum^{*}$ belongs to $L$.
- An algorithm solves a language recognition problem for a specific language $L$ by accepting (output YES) any input string contained in $L$, and rejecting (output NO) any input string not contained in $L$.


## Complexity Classes

- A complexity class is a collection of languages all of whose recognition problem can be solved under prescribed bounds on the computational resources.
- We are primarily interested the classes in which algorithms is polynomial-time bounded.


## The Class: P

- The class $\mathbf{P}$ consists of all languages $L$ that have a polynomial time algorithm $A$ such that for any input $x \in \Sigma^{*}$,
$-x \in L \Rightarrow A(x)$ accepts
$-x \notin L \Rightarrow A(x)$ rejects


## The Class: NI

Here $y$ can be regarded as a "certificate"

- The class NP consi of all languages $L$ that have a polyn al time algorithm $A$ such that for an mput $x \in \Sigma^{*}$,
$-x \in L \Rightarrow \exists y \in \sum^{*}, A(x, y)$ accepts, where $|y|$ is bounded by a polynomial in $|x|$.
$-x \notin L \Rightarrow \forall y \in \Sigma^{*}, A(x, y)$ rejects


## A useful view of P and NP

- The class $\mathbf{P}$ consists of all languages $L$ such that for any $x$ in $L$, a proof (certificate) of the membership $x$ in $L$ (represented by the string $y$ ) can be found and verified efficiently.
- The class NP consists of all languages $L$ such that for any $x$ in $L$, a proof (certificate) of the membership of $x$ in $L$ can be verified efficiently.


## A useful view of P and NP (cont'd)

- Obviously $\mathbf{P} \subseteq \mathbf{N P}$, but it is not known whether P = NP.
- If $\mathbf{P}=\mathrm{NP}$, the existence of an efficiently verifiable proof (certificate) implies that it is possible to actually find such a proof (certificate) efficiently.
- When randomized algorithms are allowed, we have some basic classes as follows.


## The Class: RP

- The class RP (for Randomized Polynomial time) consists of all languages $L$ that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \sum^{*}$
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \geq 1 / 2$.
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]=0$.

One-sided error

## One-sided error vs. twosided error

- A randomized algorithm A for recognizing a language $L$ is of one-sided error if for any input $x \in \Sigma^{*}$,
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \neq 1$
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]=0$.
or
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]=1$.
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \neq 0$.


## One-sided error vs. twosided error (cont'd)

- A randomized algorithm A for recognizing a language $L$ is of two-sided error if for any input $x \in \Sigma^{*}$,
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \neq 1$.
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \neq 0$.


## The Class: ZPP

- The class ZPP (for zero-error Probabilistic Polynomial time) is the class of languages that has Las Vegas algorithms running in expected polynomial time.


## The Class: ZPP (cont ${ }^{\prime}$ d)

- For example, RandQS is a ZPP algorithm.


## The Class: PP

- The class PP (for Probabilistic Polynomial time) consists of all languages $L$ that have a randomized algorithm $A$ running in worst-case polynomial time that for any input $x \in \sum^{*}$,
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]>1 / 2$.
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]<1 / 2$.


## Exercise 1.10

- Consider a randomized algorithm with two-sided error probabilities as in the definition of PP. Show that a polynomial number of independent repetitions of this algorithm need not suffice to reduce the error probability to $1 / 4$.
- Consider the case where the error probability is

$$
\frac{1}{2}+\frac{1}{2^{n}}
$$

## The Class: PP (cont ${ }^{\prime}$ d)

- The definition of PP is weak.
- It can be proved that it may not be possible to use a small number of repetitions of an algorithm $A$ with such two-sided error probability to obtain an algorithm with "significantly smaller" error probability. (proved by using the Chernoff bound)
- Compared to the class BPP!


## The Class: PP (cont'd)

- Note:
- To reduce the error probability of a two-sided error algorithm, we can perform several independent iterations on the same input and produce the output that occurs in the majority of these iterations.
- This can be done by using the Chernoff bound.


## The Class: BPP

## Actually, we only have to make sure that the difference between the "green one" and the "red one" is only polynomially small.

- The class BPP (for Bounded-error Probabilistic Polynomial time) consists of all languages $L$ that have a randomized algorithm $A$ running in worst-case polynomial time that for any input $x$ $\in \sum^{*}$,
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \geq 3 / 4$
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \leq 1 / 4$.


## Note

- Exponentially small
$-1 / 2^{n}, 1 / 3^{n}, \ldots$
- Polynomially small
$-1 / n^{2}, 1 / \log n, \ldots$


## The Class: BPP (cont ${ }^{\prime}$ d)

- One can show that for this class of algorithms, the error probability can be reduced to $1 / 2^{n}$ with only a polynomial number of iterations.

Problem 4.8: Consider a BPP algorithm that has an error probability of $\frac{1}{2}-\frac{1}{p(n)}$, for some polynomially bounded function $p(n)$ of the input size $n$. Using the Chernoff bound on the tail of the binomial distribution, show that a polynomial number of independent repetitions of this algorithm su $\pm$ ce to reduce the error probability to $\frac{1}{2^{n}}$.

## The Class: BPP (cont ${ }^{\prime}$ d)

- Consider the decision version of the min-cut problem:
- Given a graph $G$ and an integer $K$, verify that the mincut size in $G$ equals $K$.
- Assume that we have modified the Monte Carlo algorithm RandEC to reduce its error probability to be less than $1 / 4$ (by sufficiently many repetitions).
- We then get a BPP algorithm.


## The Class: BPP (cont' d)

- In the case where $K$ is indeed the min-cut value, the algorithm may not come up with the right value and, hence, may reject the input .
- If the min-cut value is smaller than $K$, the algorithm may only find cuts of size $K$, and hence, accept the input.
- If the min-cut value is larger than $K$, the algorithm will never find any cut of size $K$, and hence, reject the input.


## Note

- Consider another decision version of the min-cut problem:
- Given a graph $G$ and an integer $K$, verify that the mincut size in $G$ is at most $K$.
- Assume again that we have modified the Monte Carlo algorithm RandEC to reduce its error probability to be less than $1 / 4$ (by sufficiently many repetitions).
- We then get a RP algorithm for this problem.


## Note (cont'd)

- In the case where the actual min-cut size $C$ is larger than $K$, the algorithm will never accept the input.
- If the min-cut value is at most $K$, the algorithm may find cuts of size at most $K$, and hence, accept the input.


## One-sided error!

## Complement Classes

- For any complexity class $C$, we define the complementary class co- $C$ as the set of languages whose complement is in the class $C$.
- That is,

$$
\operatorname{co}-C=\{L \mid \bar{L} \in C\}
$$

## Complement Classes (cont'd)

- Then we have co-P, co-NP, co-RP, co-PP, co-ZPP, co-BPP, ...
- For example,


## The Class: co-RP

- The class co-RP consists of all languages $L$ that have a randomized algorithm $A$ running in worstcase polynomial time such that for any input $x \in$ $\sum^{*}$,
$-x \in L \Rightarrow \operatorname{Pr}[A(x)$ accepts $]=1$.
$-x \notin L \Rightarrow \operatorname{Pr}[A(x)$ accepts $] \leq 1 / 2$.


## Exercise

- Show that $\mathbf{Z P P}=\mathbf{R P} \cap$ co-RP.


## Open problems

- Is NP = P?
- Is RP = co- RP?

■ Is $\mathbf{R P} \subseteq \mathbf{N P} \cap \operatorname{co-NP}$ ?

- Is $\mathbf{B P P} \subseteq \mathbf{N P}$ ?

■ Is BPP = P?

■ . . . . .

## Thank you.

