
2006/9/202006/9/20

Randomized AlgorithmsRandomized Algorithms

Two Types of Randomized Algorithms Two Types of Randomized Algorithms

and and

Some Complexity ClassesSome Complexity Classes

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang

National Chung Cheng University

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 22

ReferencesReferences

Professor Hsueh-I Lu’s slides.

Randomized Algorithms, Rajeev Motwani and
Prabhakar Raghavan.

Probability and Computing - Randomized
Algorithms and Probabilistic Analysis, Michael
Mitzenmacher and Eli Upfal.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 33

OutlineOutline

Las Vegas algorithms and Monte Carlo
algorithms
RAMs and Turing machines
Complexity classes
– P, NP, RP, ZPP, BPP and their

complementary classes
– Open problems

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 44

Las Vegas vs. Monte CarloLas Vegas vs. Monte Carlo

Las Vegas algorithms
– Always produces a

(correct/optimal)
solution.

– Like RandQS.

Monte Carlo algorithms
– Allow a small

probability for
outputting an
incorrect/non-optimal
solution.

– Like RandMC.
– The name is by von

Neumann.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 55

Las Vegas AlgorithmsLas Vegas Algorithms

For example, RandQS is a Las Vegas algorithm.

A Las Vegas always gives the correct solution

The only variation from one run to another is its
running time, whose distribution we study.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 66

Randomized Randomized quicksortquicksort

randomization

algorithm RandQS(X) {
if X is empty then
return;

select x uniformly at random from X;
let Y = {y ∈ X | y < x};
let Z = {z ∈ X | z > x};
call RandQS(Y);
print x;
call RandQS(Z);

}

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 77

An illustrationAn illustration

4 2 7 8 1 9 3 6 5

4 2 1 53 7 8 9 6

1 2 4 3 6 7 8 9

9

1 4 6 8 93

3

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 88

2 Questions for 2 Questions for RandQSRandQS

Is RandQS correct?
– That is, does RandQS “always” output a

sorted list of X?
What is the time complexity of RandQS?

– Due to the randomization for selecting x, the
running time for RandQS becomes a
random variable.

– We are interested in the expected time
complexity for RandQS.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 99

Monte Carlo algorithmsMonte Carlo algorithms

For example, RandEC (the randomized
minimum-cut algorithm we have discussed) is a
Monte Carlo algorithm.
A Monte Carlo algorithm may sometimes
produce a solution that is incorrect.
For decision problems, there are two kinds of
Monte Carlo algorithms:
– those with one-sided error
– those with two-sided error

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1010

Which is better?Which is better?

The answer depends on the application.
A Las Vegas algorithm is by definition a
Monte Carlo algorithm with error
probability 0.
Actually, we can derive a Las Vegas
algorithm A from a Monte Carlo algorithm
B by repeated running B until we get a
correct answer.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1111

Computation modelComputation model

Throughout this talk, we use the Turing machine
model to discuss complexity theory issues.

As is common, we switch to the RAM (random
access machine) as the model of computation
when describing and analyzing algorithms.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1212

Computation model (contComputation model (cont’’d)d)

For simplicity, we will work with the general
unit-cost RAM model.

In unit-cost RAM model, each instruction can be
performed in one time step.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1313

Deterministic TMDeterministic TM

A deterministic Turing machine is a quadruple M = (S,
∑, δ, s).
– Here S is a finite set of states, of which s ∈ S is the machine’s

initial state.
– ∑ : a finite set of symbols (this set includes special symbols

BLANK and FIRST).
– δ : the transition function of the Turing machine, mapping S
× ∑ to (S∪{HALT, YES, NO}) × ∑ × {←, →, STAY}.

The machine has three states: HALT (the halting state),
YES (the accepting state), and NO (the rejecting state)
(these are states, but formally not in S.)

You can refer to any
computation theory textbook

to for more details here.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1414

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1515

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1616

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1717

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1818

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 1919

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2020

A Turing machine with one tapeA Turing machine with one tape

h × ×××

state \ symbol 0 1 t B
s (s, 0,→) (s, 1,→) (q,t,←) (s,B,→)
q (q0,t,→) (q1,t,→) (q, t,−) (h,B,→)
q0 (s, 0,←) (s, 0,←) (s, 0,←) (h,B,→)
q1 (s, 1,←) (s, 1,←) (s, 1,←) (h,B,→)

0 1 0B

Q: What does
this Turing

machine do?

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2121

A probabilistic TMA probabilistic TM

A probabilistic Turing machine is a
(nondeterministic) Turing machine
augmented with the ability to generate an
unbiased coin flip in one step.

It corresponds to a randomized algorithm.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2222

A probabilistic TM (contA probabilistic TM (cont’’d)d)

On any input x, a probabilistic Turing
machine accepts x with some probability,
and we study this probability.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2323

Language recognition Language recognition
problemproblem

Any decision problem can be treated as a
language recognition problem.

Let ∑* be the set of all possible strings over ∑.

A language L ⊆ ∑* is a collection of strings
over ∑.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2424

Language recognition Language recognition
problem (contproblem (cont’’d)d)

The corresponding language recognition
problem is to decide whether a given string x ∈
∑* belongs to L.
An algorithm solves a language recognition
problem for a specific language L by accepting
(output YES) any input string contained in L,
and rejecting (output NO) any input string not
contained in L.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2525

Complexity ClassesComplexity Classes

A complexity class is a collection of
languages all of whose recognition
problem can be solved under prescribed
bounds on the computational resources.
We are primarily interested the classes in
which algorithms is polynomial-time
bounded.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2626

The Class: The Class: PP

The class P consists of all languages L that
have a polynomial time algorithm A such
that for any input x ∈ ∑*,

– x ∈ L ⇒ A(x) accepts
– x ∉ L ⇒ A(x) rejects

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2727

The Class: The Class: NPNP

The class NP consists of all languages L
that have a polynomial time algorithm A
such that for any input x ∈ ∑*,

– x ∈ L ⇒ ∃ y ∈ ∑*, A(x, y) accepts, where | y |
is bounded by a polynomial in | x |.

– x ∉ L ⇒∀ y ∈ ∑*, A(x, y) rejects

Here y can be regarded as a
“certificate”

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2828

A useful view of A useful view of PP and and NPNP

The class P consists of all languages L such that
for any x in L, a proof (certificate) of the
membership x in L (represented by the string y)
can be found and verified efficiently.
The class NP consists of all languages L such
that for any x in L, a proof (certificate) of the
membership of x in L can be verified efficiently.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 2929

A useful view of A useful view of PP and and NP NP
(cont(cont’’d)d)

Obviously P ⊆ NP, but it is not known whether
P = NP.

If P = NP , the existence of an efficiently
verifiable proof (certificate) implies that it is
possible to actually find such a proof (certificate)
efficiently.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3030

When randomized algorithms are
allowed, we have some basic classes
as follows.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3131

The Class: The Class: RPRP

The class RP (for Randomized Polynomial time)
consists of all languages L that have a randomized
algorithm A running in worst-case polynomial
time such that for any input x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≥ ½ .
– x ∉ L ⇒ Pr[A(x) accepts] = 0.

One-sided error

Actually, the choice of the
bound on the error probability ½

can be arbitrary.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3232

OneOne--sided error vs. twosided error vs. two--
sided errorsided error

A randomized algorithm A for recognizing a
language L is of one-sided error if for any input
x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≠ 1
– x ∉ L ⇒ Pr[A(x) accepts] = 0.

or
– x ∈ L ⇒ Pr[A(x) accepts] = 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≠ 0.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3333

OneOne--sided error vs. twosided error vs. two--
sided error (contsided error (cont’’d)d)

A randomized algorithm A for recognizing a
language L is of two-sided error if for any input
x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≠ 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≠ 0.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3434

The Class: The Class: ZPPZPP

The class ZPP (for zero-error Probabilistic
Polynomial time) is the class of languages
that has Las Vegas algorithms running in
expected polynomial time.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3535

The Class: The Class: ZPPZPP (cont(cont’’d)d)

For example,
RandQS is a ZPP algorithm.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3636

The Class: The Class: PPPP

The class PP (for Probabilistic Polynomial time)
consists of all languages L that have a
randomized algorithm A running in worst-case
polynomial time that for any input x ∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] > ½ .
– x ∉ L ⇒ Pr[A(x) accepts] < ½.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3737

Exercise 1.10Exercise 1.10

Consider a randomized algorithm with two-sided
error probabilities as in the definition of PP.
Show that a polynomial number of independent
repetitions of this algorithm need not suffice to
reduce the error probability to ¼ .
– Consider the case where the error probability is

1
2 +

1
2n .

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3838

The Class: The Class: PP PP (cont(cont’’d)d)

The definition of PP is weak.
– It can be proved that it may not be possible to use

a small number of repetitions of an algorithm A
with such two-sided error probability to obtain an
algorithm with “significantly smaller” error
probability. (proved by using the Chernoff bound)

Compared to the class BPP!

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 3939

The Class: The Class: PP PP (cont(cont’’d)d)

Note:
– To reduce the error probability of a two-sided

error algorithm, we can perform several
independent iterations on the same input and
produce the output that occurs in the majority
of these iterations.

– This can be done by using the Chernoff bound.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4040

The Class: The Class: BPPBPP

The class BPP (for Bounded-error Probabilistic
Polynomial time) consists of all languages L
that have a randomized algorithm A running in
worst-case polynomial time that for any input x
∈ ∑*,

– x ∈ L ⇒ Pr[A(x) accepts] ≥ ¾ .
– x ∉ L ⇒ Pr[A(x) accepts] ≤ ¼ .

Actually, we only have to make sure
that the difference between the

“green one” and the “red one” is only
polynomially small.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4141

NoteNote

Exponentially small
– 1/2n , 1/3n , …

Polynomially small
– 1/n2, 1 / log n, ….

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4242

The Class: The Class: BPP BPP (cont(cont’’d)d)

One can show that for this class of algorithms,
the error probability can be reduced to 1/2n with
only a polynomial number of iterations.

Problem 4.8: Consider a BPP algorithm that has an er-
ror probability of 12 − 1

p(n) , for some polynomially bounded

function p(n) of the input size n. Using the Chernoff bound
on the tail of the binomial distribution, show that a poly-
nomial number of independent repetitions of this algorithm
su± ce to reduce the error probability to 1

2n .

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4343

The Class: The Class: BPP BPP (cont(cont’’d)d)

Consider the decision version of the min-cut
problem:
– Given a graph G and an integer K, verify that the min-

cut size in G equals K.

Assume that we have modified the Monte Carlo
algorithm RandEC to reduce its error probability
to be less than ¼ (by sufficiently many repetitions).
– We then get a BPP algorithm.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4444

The Class: The Class: BPP BPP (cont(cont’’d)d)

In the case where K is indeed the min-cut value,
the algorithm may not come up with the right
value and, hence, may reject the input .
If the min-cut value is smaller than K, the
algorithm may only find cuts of size K, and
hence, accept the input.
If the min-cut value is larger than K, the
algorithm will never find any cut of size K, and
hence, reject the input.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4545

NoteNote

Consider another decision version of the min-cut
problem:
– Given a graph G and an integer K, verify that the min-

cut size in G is at most K.

Assume again that we have modified the Monte
Carlo algorithm RandEC to reduce its error
probability to be less than ¼ (by sufficiently many

repetitions).
– We then get a RP algorithm for this problem.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4646

Note (contNote (cont’’d)d)

In the case where the actual min-cut size C is
larger than K, the algorithm will never accept the
input.
If the min-cut value is at most K, the algorithm
may find cuts of size at most K, and hence,
accept the input.

One-sided error!

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4747

Complement ClassesComplement Classes

For any complexity class C, we define the
complementary class co-C as the set of
languages whose complement is in the
class C.
– That is,

co-C = {L | L̄ ∈ C}

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4848

Complement Classes (contComplement Classes (cont’’d)d)

Then we have co-P, co-NP, co-RP, co-PP,
co-ZPP, co-BPP, …

For example,

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 4949

The Class: The Class: coco--RPRP

The class co-RP consists of all languages L that
have a randomized algorithm A running in worst-
case polynomial time such that for any input x ∈
∑*,

– x ∈ L ⇒ Pr[A(x) accepts] = 1.
– x ∉ L ⇒ Pr[A(x) accepts] ≤ ½.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 5050

Exercise Exercise

Show that ZPP = RP ∩ co-RP.

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/9/202006/9/20 5151

Open problemsOpen problems

Is NP = P?
Is RP = co- RP?
Is RP ⊆ NP ∩ co-NP?
Is BPP ⊆ NP?
Is BPP = P?
……

Thank you.

