Randomized Algorithms

Parrondo's Paradox

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University 2006/7/12

References

- Professor S. C. Tsai's slides.
- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan.
- Probability and Computing - Randomized Algorithms and Probabilistic Analysis, Michael Mitzenmacher and Eli Upfal.

Outline

- Introduction
- Two games
- Game A
- Game B
- Combining Game A and B
- Two losing games become a winning game

Introduction

- Parrondo's paradox provides an interesting example of the analysis of Markov chains while also demonstrating a subtlety in dealing with probabilities.
- The paradox appears to contradict the old saying that two wrongs don't make a right.

Introduction (cont'd)

- Because Parrondo's paradox can be analyzed in many different ways, we will go over several approaches to this problem.
- Let us see the first game, i.e., game A, as follows.

Game A

- Repeatedly flip a biased coin (coin a) that comes up head with probability $p_{a}<1 / 2$ and tails with probability $1-p_{a}$.
- We win one dollar if it comes up "heads" and lose one dollar if it comes up "tails".
- Clearly, this is a losing game for us.

Game B

- Repeatedly flip coins, but the coin that is flipped depends on the previous outcomes.
- Let w be the number of our wins so far and l the number of our losses.
- Each round we bet one dollar, so w-l represents winnings; if it is negative, we have lost money

Game B (cont'd)

- Game B uses two biased coins, say coin b and coin c.
- If our winnings in dollars are a multiple of 3, then we flip coin b, which comes up heads with probability p_{b}. and tails with probability $1-p_{b}$.
- Otherwise flip coin c, which comes up head with probability p_{c} and tails with probability $1-p_{c}$.

Game B(cont'd)

- Again, we win one dollar, if it comes up head.
- Let us see the following illustration to make clear of these two games.

An illustration

Game A

Game B

If your winnings in dollars are a multiple of 3

An example for game B

- Suppose $p_{b}=0.09$ and $p_{c}=0.74$.
- If we use coin b for $1 / 3$ of the time that the winnings are a multiple of 3 and use coin c the other $2 / 3$ of the time.
- The probability of winning is

$$
w=\frac{1}{3} \cdot \frac{9}{100}+\frac{2}{3} \cdot \frac{74}{100}=\frac{157}{300}>\frac{1}{2}
$$

An example for game \boldsymbol{B} (cont'd)

- But coin b may not be used $1 / 3$ of the time!
- Consider the following situation:

An example for game \boldsymbol{B} (cont'd)

- Intuitively, when starting with winning 0 , use coin b and most likely lose, after which use coin c and most likely win.
- Thus, we may spend lots of time going back and forth between having lost one dollar and breaking even before either winning one dollar or losing two dollars.

An example for game \boldsymbol{B} (cont'd)

- So we may use coin b more than $1 / 3$ of the time.
- Suppose we start playing Game B when the winning is 0 , continuing until either lose three dollars or win three dollars.
- Note that if you are more likely to lose than win in this case, by symmetry you are more likely to lose 3 dollars than win 3 dollars whenever $3 \mid \mathrm{w}-l$.

An example for game B (cont'd)

- In fact, this specific example for game B is a losing game for us.
- Let consider the following two ways to analyze this phenomenon by Markov chains.
- Analyze the absorbing states.
- Use the stationary distribution

Analyzing the absorbing states

- Consider the Markov chain on the state space consisting of the integers $\{-3,-2,-1,0,1,2,3\}$.
- The states represent our winnings.
- We show that it is more likely to reach -3 than 3 .

Analyzing the absorbing states (cont'd)

- Let z_{i} be the probability that the game will reach -3 before reaching 3 when starting with winning i.
- We want to calculate z_{i}, for $i=-3, \ldots, 3$, especially z_{0}.
- $z_{0}>1 / 2$ means it is more likely to lose three dollars before winning three dollars starting from 0 .

Analyzing the absorbing states (cont'd)

- Note that $z_{-3}=1$ and $z_{3}=0$
- Boundary conditions
- We have the following equations:

$$
\begin{aligned}
z_{-2} & =\left(1-p_{c}\right) z_{-3}+p_{c} z_{-1} \\
z_{-1} & =\left(1-p_{c}\right) z_{-2}+p_{c} z_{0} \\
z_{0} & =\left(1-p_{b}\right) z_{-1}+p_{b} z_{1} \\
z_{1} & =\left(1-p_{c}\right) z_{0}+p_{c} z_{2} \\
z_{2} & =\left(1-p_{c}\right) z_{1}+p_{c} z_{3}
\end{aligned}
$$

Analyzing the absorbing states (cont'd)

- The is a system of five equations with five unknown variables, hence it can be solved easily.
- We have the general solution for z_{0} is

$$
z_{0}=\frac{\left(1-p_{b}\right)\left(1-p_{c}\right)^{2}}{\left(1-p_{b}\right)\left(1-p_{c}\right)^{2}+p_{b} p_{c}^{2}} .
$$

- So the solution yields $z_{0}=15379 / 27700 \approx 0.555$, showing that we are much more to lose than to win playing game B.

Using Stationary Distribution

- Consider the Markov chain on the states $\{0,1,2\}$.
- Each state keeps track of $(w-l)$ mod 3.
- Let π_{i} 's be the stationary probabilities of this chain.

Using Stationary Distribution (cont'd)

- The probability that we win one dollar in the stationary distribution (which is the limiting probability that we win one dollar if we play long enough) , is

$$
\begin{aligned}
& p_{b} \pi_{0}+p_{c} \pi_{1}+p_{c} \pi_{2} \\
= & p_{b} \pi_{0}+p_{c}\left(1-\pi_{0}\right) \\
= & p_{c}-\left(p_{c}-p_{b}\right) \pi_{0} .
\end{aligned}
$$

We wonder whether the value is $>1 / 2$ or $<1 / 2$.

Using Stationary Distribution (cont'd)

- The equations for the stationary distribution are as follows:

$$
\begin{aligned}
\pi_{0}+\pi_{1}+\pi_{2} & =1 \\
p_{b} \pi_{0}+\left(1-p_{c}\right) \pi_{2} & =\pi_{1}, \\
p_{c} \pi_{1}+\left(1-p_{b}\right) \pi_{0} & =\pi_{2}, \\
p_{c} \pi_{2}+\left(1-p_{c}\right) \pi_{1} & =\pi_{0} .
\end{aligned}
$$

- Since there are four equations and only three unknown variables, this system can be solved easily.

Using Stationary Distribution (cont'd)

- Thus we have

$$
\begin{aligned}
\pi_{0} & =\frac{1-p_{c}+p_{c}^{2}}{3-2 p_{c}-p_{b}+2 p_{b} p_{c}+p_{c}^{2}}, \\
\pi_{1} & =\frac{p_{b} p_{c}-p_{c}+1}{3-2 p_{c}-p_{b}+2 p_{b} p_{c}+p_{c}^{2}}, \\
\pi_{2} & =\frac{p_{b} p_{c}-p_{b}+1}{3-2 p_{c}-p_{b}+2 p_{b} p_{c}+p_{c}^{2}} .
\end{aligned}
$$

- Pluggin $p_{b}=0.09$ and $p_{c}=0.74$, we have

$$
\pi_{0}=673 / 1759 \approx 0.3826 \ldots
$$

Using Stationary Distribution (cont'd)

- Thus

$$
p_{c}-\left(p_{c}-p_{b}\right) \pi_{0}=\frac{86421}{175900}<\frac{1}{2} .
$$

Again, we find that game B in this case is a losing game in the long run.

Consider what happens when we combine these two games?

Game C: Combining game \boldsymbol{A} and \boldsymbol{B}

- Game C: Repeatedly perform the following:

Start by ${ }^{\circ}$ ipping a fair coin d.

* If d comes out head, then proceed as in game A
\star If d comes out tail, then proceed to game B.

It seems that game C is a losing game, right?

Game C (cont'd)

- Let us check it with the Markov chain approach, by analyzing the stationary distribution.
- If $3 \mid w-l$, then we win with probability $p_{b}{ }^{*}=1 / 2 p_{a}+1 / 2 p_{b}$.
- Otherwise, the probability that we win is $p_{c}{ }^{*}=1 / 2 p_{a}+1 / 2 p_{c}$.
- Thus we can use $p_{b}{ }^{*}$ and $p_{c}{ }^{*}$ in place of p_{b} and p_{c}.

Game C(cont'd)

- By the previous analysis, we can focus on the value

$$
p_{c}^{*}-\left(p_{c}^{*}-p_{b}^{*}\right) \pi_{0}
$$

- By plugging $p_{b}{ }^{*}$ and $p_{c}{ }^{*}$ which can be calculated from p_{a}, p_{b} and p_{c}, we have

$$
p_{c}^{*}-\left(p_{c}^{*}-p_{b}^{*}\right) \pi_{0}=\frac{4456523}{8859700}>\frac{1}{2} .
$$

So game C appears to be a winning game!

However,

- You may be concerned that this seems to violate the law of linearity of expectations
- As the following:

$$
\mathbf{E}\left[X_{C}\right]=\mathbf{E}\left[\frac{1}{2} X_{A}+\frac{1}{2} X_{B}\right]=\frac{1}{2} \mathbf{E}\left[X_{A}\right]+\frac{1}{2} \mathbf{E}\left[X_{B}\right]
$$

But $\mathrm{E}\left[X_{A}\right]<0, \mathrm{E}\left[X_{B}\right]<0$, how can $\mathrm{E}\left[X_{C}\right]>0$??

Explanation

- The problem is that this equation does not make sense.
- We cannot talk about the expected winnings of a round of games B and C without reference to the current winnings.
- Let s represent the current state. We have

$$
\mathfrak{E}\left[X_{C} \mid s\right]=\mathbf{E}\left[\left.\frac{1}{2}\left(X_{A}+X_{B}\right) \right\rvert\, s\right]=\frac{1}{2} \mathbf{E}\left[X_{A} \mid s\right]+\frac{1}{2} \mathbf{E}\left[X_{B} \mid s\right] .
$$

Explanation (cont'd)

- Linearity holds for any given step; but we must condition on the current state.

Conclusion

- Combining the games we've changed how often the chain spends in each state, allowing two losing games to become a winning game!
- It is quite interesting.

Thank you.

