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= Consider a society with n men (denoted by capital
letters) and n women (denoted by lower case
letters).

= A marriage M Is a 1-1 correspondence between the
men and women.

= Each person has a preference list of the members
of the opposite sex organized in a decreasing order
of desirability.



+

= A marriage Is said to be unstable If there exist 2
marriage couples X-x and Y-y such that X desires
y more than x and y desires X more than Y.

= The pair X-y is said to be “dissatisfied.” (# /% )

= A marriage M is called “stable marriage” If there
IS no dissatisfied couple.



Assume a monogamous, hetersexual society.
For example, N = 4.

A:abcd B:bacd C:adcb D:dcab

a: ABCD b: DCBA c: ABCD d: CDAB

Consider a marriage M: A-a, B-b, C-c, D-d,
C-d is dissatisfied. Why?
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Proposal algorithm:

Assume that the men are numbered In some
arbitrary order.

= The lowest numbered unmarried man X proposes
to the most desirable woman on his list who has
not already rejected him; call her x.
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= The woman x will accept the proposal if she is
currently unmarried, or if her current mate Y Is
less desirable to her than X (Y is jilted and
reverts to the unmarried state).

= The algorithm repeats this process, terminating
when every person has married.
= (This algorithm is used by hospitals in North America

In the match program that assigns medical graduates to
residency positions.)
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Does It always terminate with a stable marriage?

= An unmatched man always has at least one
woman available that he can proposition.

= At each step the proposer will eliminate one
woman on his list and the total size of the lists Is
n2. Thus the algorithm uses at most n? proposals.
l.e., It always terminates.
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= Proof by contradiction:

Claim that the final marriage M Is stable.

= Let X-y be a dissatisfied pair, where in M they are
paired as X-x, Y-y.

= Since X prefersy to x, he must have proposed to y
before getting married to x.
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= Since y either rejected X or accepted him only to
jilt (#£3 ) him later, her mates thereafter
(including Y) must be more desirable to her than
X.

= Therefore y must prefer Y to X, —«
contradicting the assumption that y Is dissatisfied.
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= Goal: Perform an average-case analysis of this
(deterministic) algorithm.

= For this average-case analysis, we assume that the
men’s lists are chosen independently and
uniformly at random; the women’s lists can be
arbitrary but must be fixed in advance.
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= T, denotes the number of proposal made during the
execution of the Proposal Algorithm. The running
time is proportional to Tr.

= But it seems difficult to analyze Tp.
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m Principle of Deferred Decisions:

= The idea Is to assume that the entire set of random
choices 1s not made in advance.

= At each step of the process, we fix only the random
choices that must be revealed to the algorithm.

= We use It to simplify the average-case analysis of
the Proposal Algorithm.
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= Suppose that men do not know their lists to start
with. Each time a man has to make a proposal, he
picks a random woman from the set of women not
already propositioned by him, and proceeds to
propose to her.

= The only dependency that remains is that the
random choice of a woman at any step depends on
the set of proposals made so far by the current
proposer.
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= However, we can eliminate the dependency by
modifying the algorithm, 1.e., a man chooses a
woman uniformly at random from the set of all n
women, including those to whom he has already
proposed.

= He forgets the fact that these women have already
rejected him.

= Call this new version the Amnesiac Algorithm.
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= Note that a man making a proposal to a woman

who has already rejected him will be rejected again.

= Thus the output by the Amnesiac Algorithm is
exactly the same as that of the original Proposal
Algorithm.

= The only difference Is that there are some wasted
proposals in the Amnesiac Algorithm.
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= Let T, denote the number of proposals made by the
Amnesiac Algorithm.

To>m=T,>m, L.e.,, T, stochastically dominates Tp.

That is, Pr|Tp > m| < Pr|T4 > m]| for all m.

18
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= [t suffices to find an upper bound to analyze the
distribution T,.

= A benefit of analyzing T, Is that we need only
count that total number of proposals made, without
regard to the name of the proposer at each stage.

= This Is because each proposal is made uniformly
and independently to one of n women.
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= The algorithm terminates with a stable marriage
once all women have received at least one proposal
each.

= Moreover, bounding the value of T, Is a special
case of the coupon collector’s problem.
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= Theorem: ([MR95, page 57])

For any constant c € R, and m = nlnn + cn,

lim Pr[Ty >m]=1—¢e°" —0.

n—0o0

= The Amnesiac Algorithm terminates with a stable
marriage once all women have received at least one
proposal each.
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= Bounding the value of T, Is a special case of the
coupon collector’s problem.
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i The Coupon Collector’s Problem

= Input: Given n types of coupons. At each trial a
coupon is chosen at random. Each random choice

of the coupons are mutually independent.

= QOutput: The minimum number of trials required to
collect at least one of each type of coupon.

23
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= You may regard this problem as “Hello Kitty
Collector’s Problem”.

= Let X be a random variable defined to be the
number of trials required to collect at least one of
each type of coupon.

= LetCy, C,, ..., Cy denote the sequence of trials,
where C;e{1, ..., n} denotes the type of the
coupon drawn in the ith trial.

24
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= Call the ith trial C; a success if the type C; was not
drawn in any of the first i — 1 selections.

= Clearly, C; and Cy are always successes.

= We consider dividing the sequence into epochs (F= ),
where epoch 1 begins with the trial following the ith
success and ends with the trial on which we obtain the
(I+1)st success.
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iVVhat kind of probability distribution does X; possess?

= Define the random variable X;, for 0 <1 <n-1,
to be the number of trials in the ith stage

(epoch), so that »
X =Y X,
1=0
= Let p; denote the probability of success on any
trial of the i-th stage.

= This Is the probability of drawing one of the n—I
remaining coupon types and so,

. n—1
p; = =2
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Note that binomial distribution and geometric
distribution are very, very important.

+

E[X] = nln(n) + O(n)

Recall that X Is geometrically distributed with p;.

n—1 n—1 n—1
Thus E(X|=E|) X;|= > E|X;| =) l
i=0 i=0 i=0 i
Y l — nH,,.
i=1 " \
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= X;’s are independent, thus

||
]
=
L
e
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i Exercise

= Use the Chebyshev’s inequality to find an upper
bound on the probability that X > #n In n, for a
constant 5> 1.

= Try to prove that

Pr[XZﬁnlnn]gO( L )

521n*n

(You might need the result: nlnn <nH, < nlnn+ n.)
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i Remark: Chebyshev’s Inequality

Let X be a random variable with expectation
tx and standard deviation ox. Then for any

teRT,
Pr(|X — ux| > tox] < 7.

or equivalently,

2

O
Prl|X — x| > ] < %
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= Our next goal Is to derive sharper estimates of the
typical value of X.

= We will show that the value of X is unlikely to
deviate far from Its expectations, or, Is sharply
concentrated around its expected value.
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= Let & denote the event that coupon type i is not
collected in the first r trials.

= Thus Pr¢f] = (1 - 1)y <e/m.
« For r = pgnln(n), e/" =n"", 3> 1.

Pr|X > r] = Pr| Ugr It is still

polynomially small.

<ZPI‘ <Zn5
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So that’s It?
Is the analysis good enough?
Not yet!

Let consider the following heuristic argument
which will help to establish some intuition.
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i Poisson Heuristic The crucial idea!

m Le@enote the number of times the coupon of
type 1 1s chosen during the first r trials.

| & isthe same as the event { N/ = 0}.

= V] has the binomial distribution with parameter r
and p = 1/n.

= Pr[N/ =z] = (")p*(1 —p)" .

[/ X
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i Recall of the Poisson distribution

= Let A be a positive real number.
= Y:anon-negative integer r.v.

= Y has the Poisson distribution with parameter A if
for any non-negative integery,

Ne— A
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= For proper small A and as r —0, the Poisson
distribution with A = rp Is a good approximation to

the binomial distribution with parameter r and p.

= Approximate /N,” by the Poisson distribution with
parameter A = r/n since p = 1/n.

0,—X
" Thus, Pr|¢]| =Pr|N =0| = A 8! —e"/".

36



Claim: &7, for 1<1 < n, are almost independent.

l.e., for any index set {j,,..., J,} not containing I,

k

Pri&| (1 &) = Prlé].
Proof: - .
PN )] ks

k ) _ (1_%)7“
:Prgglgn]

—r/n.

k
Prigf| (16 =

o~ T(k+1)/n

e—rk/n

~
~



Remark: Pr[¢/] = e /"

L ThUS,
Pr(~ U ] = Pr{( (-] ~ (1= /)"
_ne—min o
~ e

= Let m =n(In(n) +¢) , for any constant c.

PrX > m] = Prjfjl &7 =1 — Pr[- .(]1 e

—m/n —e ¢ > O for large positive c.

~1—e " =1—-—e° .
\ 1 for large negative c.
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More Explanations for the Previous
i Equation:
= Since m = n(Iln(n) + ¢), we have

[ —e™™¢
T —ne

—m/n

—Inn—c

It is exponentially close
] —e ¢ to 0 as the value of
positive ¢ Increases.
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i The Power of Poisson Heuristic

= |t gives a quick back-of-the-envelope type
estimation of probabilistic guantities, which
hopefully provides some insight into the true
behavior of those quantities.

= Poisson heuristic can help us do the analysis better.
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i PBut...

= However, it Is not rigorous enough since it only
approximates V..

= We can convert the previous argument into a
rigorous proof using the Boole-Bonferroni
Inequalities. (Yet the analysis will be more
complex.)

41
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= Are you ready to be rigorous?

= Tighten your seat belt!

42
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i A Rigorous Analysis

= Theorem 1: Let X be a random variable defined to
be the number of trials for collecting each of the n
types of coupons. Then, for any constant ¢ and

m = nlnn + cn,

lim Pr[X >m]=1—¢"°".

n—oo

k
" Proof: Let P = > Pr(( &".
j=1

1< <19<... <1, <n
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not collected in the first r trials.

| Remark: & denotes the event that coupon type i is

n

= Note that the event {X > m} = |J "

1=1
n
m] _ __1)kt+1pn ___ | By the principle of
Pr[L@J gz ] ]{;( 1) Pk ' Inclusion-Exclusion

" Let SP =P~ P+ Py — ...+ (=1)FP?
denotes the partial sum formed by the first &
terms of this series.
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= We have S3, < Pr[U & <S5, by the

Boole-Bonferroni mequahtles

s Y7,...,Y,: arbitrary events.
1. For odd k: X
| j
PriJL, Vi < > (=1 X Pr[ﬂ Y.l
j:]_ 11<19<.. <th7
2. For even k: X
PriJ_, Y] > > (1)) Pr[ﬂ Y ]

7=1 11<19<.. <ZJ
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[llustration for the Boole-Bonferroni

i inequalities

Pr[Uf:l Yi]

\ /\/ Pr(J._, Y]]
VAR -
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By symmetry, all the k-wise intersections of the
events & are all equally likely, i.e.

Pr = ()Pl &

More precisely,

According to Lemma 1

Pr= ()1 —Eym ek /Kl

For all positive integer k, define P, = e~ /k!.



Define the partial sum of Pk’s as
k

Sk= 3 (1P = z< e,

g=1

the first k terms of the power series expansion

of flc)=1—-e*". ~_

Hint: Consider g(z) =1 — e~ first.

Thus lim S, = f(c).

k— o0

i.e., for all € > 0, there exists k* such that for & > k*,
1Sk — fd)] <e
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Remark: S? = P — P} + P} — ...+ (=11 Pn,

k k —cj
Sk= Y (—1YHLP = Yo (— 1y e
j=1 j=1 J:
= Since lim P! = Py, we have lim S = Sy.
n—oo n—~o0

= Thus for all e > 0 and £ > k*, when n is sux -
ciently large, |S}' — Sk| < e.

®" Thusforalle > 0and £ > k*, and large enough
n, we have |S} — Si| < € and |S; — f(c)| < €
which implies that

5 — f(e)] < 2eand Sy — Sgppq| < 4de.
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Remark: (1) 53, < Pr[J&"] < 534,
| (2) |5 — fe)| < 2eand | S5, — S5 14| < 4e,

Lo

fle)  f(o)
= Using the bracketing property of partial sum,
we have that for any € > 0 and n suZ ciently

large,

PriJ&"] — flo)] < 4e.
= lim Pr[J&"| = f(c) =1— e .

n—oo
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Thank you.
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= Lemma 1: Let c be a real constant, and m = nlnn + cn
for positive integer n. Then, for any fixed positive
Integer K,

lim (7)(1 — E)ym = <=

n—o0 k
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= Proof:
= Homework:
2
Prove €'(1 —£) < (14 1)" <, forallt,n
such thatn>1 and [t| <n.

= By the above, we have

e—km/n(l o %2)771/71 < (1 . %)m < e—km/n'

55
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Remark: m=nlnn -+ cn

7

= Observe that e/ = n=Fe~*.
= Further, lim (1 — %2)7”/” = 1 and for large n,

n—oo .
(k) = %
- lim (M)(1 -k nt (1 _ Eym
 Jim (;Z)(l ok = Jm (=5 |
= lim 7 n_e=km/n — lim o T ntp—ke—ck — k,c .
nN—o0 n—oo )



i Principle of Inclusion-Exclusion

m Let Y7,Y5, ... Y, be arbitrary events. Then

PrU, Yi] = ZPI‘[ i) = 2 PrlYinYj] +

1<J

S Pr[Y;nY;NY;] —...+ (—1)H1 i Pr[Y; ]

1<g<k

57



i Taylor Series and Maclaurin Series

A Taylor series is a series expansion of a function
about a point. A one-dimensional Taylor series is
an expansion of a real function f(x) about a point
xr = a is given by

f(z) = fla) + fila)(z — a) + 52 (@ — a)? +
%(x—a)3—|—...—l——f(?:!(a)(x—a)"—I—....

A Maclaurin series is a Taylor series expansion of
a function about 0, i.e.,

f(z) = £0)+ £ (0)(z) + L2 ()2 + L5 2 ()3 +. ..+
20 (g 4

n!



Taylor Series and Maclaurin Series -

i About f(z)=1—e¢

¥ Using Maclaurin series, we can write e* as

x—ll |CC2|CU3| _ix_z
=17 Ty Ty T T 2T




