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Consider a society with n men (denoted by capital 
letters) and n women (denoted by lower case 
letters).

A marriage M is a 1-1 correspondence between the 
men and women.

Each person has a preference list of the members 
of the opposite sex organized in a decreasing order 
of desirability.
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A marriage is said to be unstable if there exist 2 
marriage couples X-x and Y-y such that X desires 
y more than x and y desires X more than Y.

The pair X-y is said to be “dissatisfied.” (不滿的)

A marriage M is called “stable marriage” if there 
is no dissatisfied couple.
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Assume a monogamous, hetersexual society.
For example, N = 4.

A: abcd B: bacd C: adcb D: dcab
a: ABCD b: DCBA c: ABCD d: CDAB

Consider a marriage M: A-a, B-b, C-c, D-d,
C-d is dissatisfied. Why?
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Proposal algorithm:
Assume that the men are numbered in some 
arbitrary order.

The lowest numbered unmarried man X proposes 
to the most desirable woman on his list who has 
not already rejected him; call her x.
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The woman x will accept the proposal if she is 
currently unmarried, or if her current mate Y is 
less desirable to her than X (Y is jilted and 
reverts to the unmarried state).
The algorithm repeats this process, terminating 
when every person has married.
(This algorithm is used by hospitals in North America 
in the match program that assigns medical graduates to 
residency positions.)
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Does it always terminate with a stable marriage?
An unmatched man always has at least one 
woman available that he can proposition.

At each step the proposer will eliminate one 
woman on his list and the total size of the lists is 
n2. Thus the algorithm uses at most n2 proposals. 
i.e., it always terminates.
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Claim that the final marriage M is stable.

Proof by contradiction:

Let X-y be a dissatisfied pair, where in M they are 
paired as X-x, Y-y.

Since X prefers y to x, he must have proposed to y
before getting married to x.
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Since y either rejected X or accepted him only to 
jilt (拋棄) him later, her mates thereafter 
(including Y) must be more desirable to her than 
X.

Therefore y must prefer Y to X,  →←
contradicting the assumption that y is dissatisfied.
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Goal: Perform an average-case analysis of this 
(deterministic) algorithm.

For this average-case analysis, we assume that the 
men’s lists are chosen independently and 
uniformly at random; the women’s lists can be 
arbitrary but must be fixed in advance.
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TP denotes the number of proposal made during the 
execution of the Proposal Algorithm. The running 
time is proportional to TP.

But it seems difficult to analyze TP.
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Principle of Deferred Decisions:

The idea is to assume that the entire set of random 
choices is not made in advance.

At each step of the process, we fix only the random 
choices that must be revealed to the algorithm.

We use it to simplify the average-case analysis of 
the Proposal Algorithm.
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Suppose that men do not know their lists to start 
with. Each time a man has to make a proposal, he 
picks a random woman from the set of women not 
already propositioned by him, and proceeds to 
propose to her.
The only dependency that remains is that the 
random choice of a woman at any step depends on 
the set of proposals made so far by the current 
proposer.
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However, we can eliminate the dependency by 
modifying the algorithm, i.e., a man chooses a 
woman uniformly at random from the set of all n
women, including those to whom he has already 
proposed.

He forgets the fact that these women have already 
rejected him.

Call this new version the Amnesiac Algorithm.
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Note that a man making a proposal to a woman 
who has already rejected him will be rejected again.

Thus the output by the Amnesiac Algorithm is 
exactly the same as that of the original Proposal 
Algorithm.

The only difference is that there are some wasted 
proposals in the Amnesiac Algorithm.
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Let TA denote the number of proposals made by the 
Amnesiac Algorithm.

TP > m ⇒ TA > m, i.e., TA stochastically dominates TP.

That is, Pr[TP > m] ≤ Pr[TA > m] for all m.
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It suffices to find an upper bound to analyze the 
distribution TA.

A benefit of analyzing TA is that we need only 
count that total number of proposals made, without 
regard to the name of the proposer at each stage.

This is because each proposal is made uniformly 
and independently to one of n women.
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The algorithm terminates with a stable marriage 
once all women have received at least one proposal 
each.

Moreover, bounding the value of TA is a special 
case of the coupon collector’s problem.
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Theorem: ([MR95, page 57])

The Amnesiac Algorithm terminates with a stable 
marriage once all women have received at least one 
proposal each.

For any constant c ∈ R, and m = n lnn+ cn,

lim
n→∞Pr[TA > m] = 1− e

−e−c → 0.



2222

Bounding the value of TA is a special case of the 
coupon collector’s problem.
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The Coupon Collector’s Problem
Input: Given n types of coupons. At each trial a 
coupon is chosen at random. Each random choice 
of the coupons are mutually independent.

Output: The minimum number of trials required to 
collect at least one of each type of coupon.
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You may regard this problem as “Hello Kitty 
Collector’s Problem”.

Let X be a random variable defined to be the 
number of trials required to collect at least one of 
each type of coupon.

Let C1, C2, …, CX denote the sequence of trials, 
where Ci∈{1, …, n} denotes the type of the 
coupon drawn in the ith trial.
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Call the ith trial Ci a success if the type Ci was not 
drawn in any of the first i – 1 selections.

Clearly, C1 and CX are always successes.

We consider dividing the sequence into epochs (時期), 
where epoch i begins with the trial following the ith
success and ends with the trial on which we obtain the 
(i+1)st success.
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Define the random variable Xi , for 0 ≤ i ≤ n −1, 
to be the number of trials in the ith stage 
(epoch), so that

Let pi denote the probability of success on any 
trial of the i-th stage. 

This is the probability of drawing one of the n– i
remaining coupon types and so, 

pi =
n−i
n .

X =
n−1P
i=0

Xi.

What kind of probability distribution does What kind of probability distribution does XXii possess?possess?
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Recall that Xi is geometrically distributed with pi.

Hn = ln(n) +Θ(1)i.e.,
E[X] = n ln(n) +O(n)

Note that binomial distribution and geometric
distribution are very, very important.

So E[Xi] = 1/pi, σ2Xi = (1− pi).

Thus E[X] = E[
n−1P
i=0

Xi] =
n−1P
i=0

E[Xi] =
n−1P
i=0

1
pi

=
n−1P
i=0

n
n−i = n

nP
i=1

1
i = nHn.
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Xi’s are independent, thus

π2/6

σ2X =
n−1P
i=0

σ2Xi

=
n−1P
i=0

ni
(n−i)2

=
nP
i0=1

n(n−i0)
i02

= n2
nP
i0=1

1
i02 − nHn.
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Exercise
Use the Chebyshev’s inequality to find an upper 
bound on the probability that X > β n ln n, for a 
constant β > 1.

Try to prove that

(You might need the result: n lnn ≤ nHn ≤ n lnn+ n.)

Pr[X ≥ βn lnn] ≤ O( 1
β2 ln2 n

).
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Remark: Chebyshev’s Inequality

Let X be a random variable with expectation
μX and standard deviation σX . Then for any
t ∈ R+,

Pr[|X − μX | ≥ tσX ] ≤ 1
t2
.

or equivalently,

Pr[|X − μX | ≥ t] ≤ σ2X
t2
.



3131

Our next goal is to derive sharper estimates of the 
typical value of X.

We will show that the value of X is unlikely to 
deviate far from its expectations, or, is sharply 
concentrated around its expected value.
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Let  denote the event that coupon type i is not 
collected in the first r trials.

ξri

Thus Pr[ξri ] = (1− 1
n)
r ≤ e−r/n.

For r = βn ln(n), e−r/n = n−β, β > 1.

Pr[X > r] = Pr[
n[
i=1

ξri ]

≤
nX
i=1

Pr[ξri ] ≤
nX
i=1

n−β = n−(β−1).

It is still 
polynomially small.
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So that’s it?

Is the analysis good enough?

Not yet!

Let consider the following heuristic argument 
which will help to establish some intuition.
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Poisson Heuristic
Let  denote the number of times the coupon of 
type i is chosen during the first r trials.

is the same as the event

has the binomial distribution with parameter r
and p = 1/n.

⇒

N r
i

ξri {N r
i = 0}.

N r
i

Pr[N r
i = x] =

¡
r
x

¢
px(1− p)r−x.

The crucial idea!The crucial idea!
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Recall of the Poisson distribution
Let λ be a positive real number.
Y: a non-negative integer r.v.

Y has the Poisson distribution with parameter λ if 
for any non-negative integer y,

Pr[Y = y] =
λye−λ
y! .
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For proper small λ and as r →∞, the Poisson 
distribution with λ = rp is a good approximation to 
the binomial distribution with parameter r and p.

Approximate       by the Poisson distribution with 
parameter since p = 1/n.

N r
i

λ = r/n

Thus, Pr[ξri ] = Pr[N
r
i = 0] ≈

λ0e−λ
0! = e−r/n.
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Claim:     , for 1≤ i ≤ n, are almost independent. 
i.e., for any index set {j1,..., jk} not containing i,

Proof:

ξri

Pr[ξri |
kT
l=1

ξrjl] = Pr[ξ
r
i ].

Pr[ξri |
kT
l=1

ξrjl] =

Pr[ξri ∩(
kT
l=1

ξrjl
)]

Pr[
kT
l=1

ξrjl
]

=
(1−k+1n )r

(1−kn)r

≈ e−r(k+1)/n
e−rk/n = e−r/n.
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Thus, 

Let , for any constant c.

0 for large positive c.

1 for large negative c.

m = n(ln(n) + c)

Pr[¬
nS
i=1

ξmi ] = Pr[
nT
i=1
(¬ξmi )] ≈ (1 − e−m/n)n

≈ e−ne−m/n.

Pr[X > m] = Pr[
nS
i=1

ξmi ] = 1−Pr[¬
nS
i=1

ξmi ]

≈ 1− e−ne−m/n = 1− e−e−c.

Remark: Pr[ξri ] ≈ e−r/n.
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More Explanations for the Previous 
Equation:

Since m = n(ln(n) + c), we have

1− e−ne−m/n
= 1− e−ne− lnn−c
= 1− e−ne− lnn·e−c
= 1− e−nelnn−1·e−c
= 1− e−n· 1n ·e−c
= 1− e−e−c.

It is exponentially close 
to 0 as the value of 
positive c increases.
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The Power of Poisson Heuristic

It gives a quick back-of-the-envelope type 
estimation of probabilistic quantities, which 
hopefully provides some insightinsight into the true true 
behaviorbehavior of those quantities.

Poisson heuristic can help us do the analysis better.
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But…
However, it is not rigorous enough since it only 
approximates .

We can convert the previous argument into a 
rigorous proof using the Boole-Bonferroni
Inequalities. (Yet the analysis will be more 
complex.)

N r
i
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Are you ready to be rigorous?

Tighten your seat belt!
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Take a break! (感謝物理系黃教授提供)

「天母」地名的由來：

話說以前美軍曾在台北駐軍。某一日當他們行經
一地時，詢問當地居民說：

“Where is it?＂

當地居民看到阿豆仔，聽不懂他們講什麼，紛紛回答說：

「聽無啦！」

美軍這時恍然大悟，從此以後就給這地方取了一個名字，
叫做“Tien-Mu＂.
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A Rigorous Analysis
Theorem 1: Let X be a random variable defined to 
be the number of trials for collecting each of the n
types of coupons. Then, for any constant c and

lim
n→∞Pr[X > m] = 1− e−e−c.

Proof: Let P nk =
P

1≤i1<i2<...<ik≤n
Pr[

kT
j=1

ξmij ].

m = n lnn+ cn,
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Note that the event

By the principle of 
Inclusion-Exclusion

{X > m} =
nS
i=1

ξmi .

Pr[
S
i

ξmi ] =
nP
k=1

(−1)k+1P nk .

Let Snk = P
n
1 − P n2 + P n3 − . . .+ (−1)k+1P nk

denotes the partial sum formed by the first k
terms of this series.

Remark: denotes the event that coupon type i is 
not collected in the first r trials.

ξri
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1.

2.

Y1, . . . , Yn: arbitrary events.

For odd k:

Pr[
Sn
i=1 Yi] ≤

kP
j=1

(−1)j+1 P
i1<i2<...<ij

Pr[
jT
r=1
Yir ].

For even k:

Pr[
Sn
i=1 Yi] ≥

kP
j=1

(−1)j+1 P
i1<i2<...<ij

Pr[
jT
r=1
Yir ].

We have Sn2k ≤ Pr[
S
i

ξmi ] ≤ Sn2k+1 by the
Boole-Bonferroni inequalities:
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Illustration for the Boole-Bonferroni
inequalities

Pr[
Sk
i=1 Yi]

k

…
Pr[
Sn
i=1 Yi]
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By symmetry, all the k-wise intersections of the 
events       are all equally likely, i.e.

More precisely,

For all positive integer k, define  

ξmi

P nk =
¡
n
k

¢
Pr[
Tk
i=1 ξ

m
i ].

Pk = e
−ck/k!.

e−ck/k!.P nk =
¡
n
k

¢
(1− k

n)
m

According to Lemma 1
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Define the partial sum of Pk’s as 

the first k terms of the power series expansion          
of                                                        

Sk =
kP
j=1

(−1)j+1Pj =
kP
j=1

(−1)j+1 e−cjj! ,

f(c) = 1− e−e−c.

Thus lim
k→∞

Sk = f(c).

i.e., for all ² > 0, there exists k∗ such that for k > k∗,
|Sk − f(c)| < ².

Hint: Consider g(x) = 1− e−x first.
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Remark: Snk = P
n
1 − P n2 + P n3 − . . .+ (−1)k+1P nk .

Sk =
kP
j=1

(−1)j+1Pj =
kP
j=1

(−1)j+1 e−cjj! ,

Since lim
n→∞P

n
k = Pk, we have limn→∞S

n
k = Sk.

Thus for all ² > 0 and k > k∗, when n is su± -
ciently large, |Snk − Sk| < ².

Thus for all ² > 0 and k > k∗, and large enough
n, we have |Snk − Sk| < ² and |Sk − f(c)| < ²
which implies that

|Snk − f(c)| < 2² and |Sn2k − Sn2k+1| < 4².
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Remark: (1) Sn2k ≤ Pr[
S
i

ξmi ] ≤ Sn2k+1
(2) |Snk − f(c)| < 2² and |Sn2k − Sn2k+1| < 4²,

f(c) f(c)

Using the bracketing property of partial sum,
we have that for any ² > 0 and n su± ciently
large,

|Pr[S
i

ξmi ]− f(c)| < 4².
⇒ lim
n→∞Pr[

S
i

ξmi ] = f(c) = 1− e−e−c.
¥



Thank you.



5353

References
[MR95]  Rajeev Motwani and Prabhakar Raghavan, 
Randomized algorithms, Cambridge University Press, 1995.
[MU05] Michael Mitzenmacher and Eli Upfal, Probability 
and Computing - Randomized Algorithms and Probabilistic 
Analysis, Cambridge University Press, 2005.



5454

Lemma 1: Let c be a real constant, and                        
for positive integer n. Then, for any fixed positive 
integer k,

m = n lnn+ cn

lim
n→∞

¡
n
k

¢
(1− k

n)
m = e−ck

k! .
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Proof:
Homework: 

Prove                                                      , for all t, n
such that n ≥ 1 and |t| ≤ n.

By the above, we have

et(1− t2

n ) ≤ (1 + t
n)
n ≤ et

e−km/n(1− k2

n )
m/n ≤ (1− k

n)
m ≤ e−km/n.
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Observe that 
Further,

∴ lim
n→∞

¡
n
k

¢
(1− k

n)
m = lim

n→∞
nk

k! (1 − k
n)
m

= lim
n→∞

nk

k! e
−km/n = lim

n→∞
nk

k!n
−ke−ck = e−ck

k! .

lim
n→∞(1−

k2

n )
m/n = 1 and for large n,¡

n
k

¢
≈ nk

k! .

e−km/n = n−ke−ck.

Remark: m = n lnn+ cn
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Principle of Inclusion-Exclusion

Let Y1, Y2, . . . Yn be arbitrary events. Then

Pr[
Sn
i=1 Yi] =

P
i

Pr[Yi]−
P
i<j

Pr[Yi ∩ Yj] +P
i<j<k

Pr[Yi ∩Yj ∩Yk]− . . .+(−1)l+1
lP
r=1
Pr[Yir ]

+ . . .
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Taylor Series and Maclaurin Series
F A Taylor series is a series expansion of a function
about a point. A one-dimensional Taylor series is
an expansion of a real function f(x) about a point
x = a is given by

f(x) = f(a) + f 0(a)(x − a) + f 00(a)
2!
(x − a)2 +

f 000(a)
3!
(x− a)3 + . . .+ f(n)(a)

n!
(x− a)n + . . ..

F A Maclaurin series is a Taylor series expansion of
a function about 0, i.e.,

f(x) = f(0)+f 0(0)(x)+ f 00(0)
2!
(x)2+ f 000(0)

3!
(x)3+. . .+

f(n)(0)
n!

(x)n + . . ..



5959

Taylor Series and Maclaurin Series  -

F Using Maclaurin series, we can write ex as

ex = 1 + x+ x2

2!
+ x3

3!
+ . . . =

∞P
i=0

xi

i!
.

F So 1− e−x = x− x2

2! +
x3

3! − . . . =
∞P
i=1

(−1)i+1xii! .

F Let g(x) = 1− e−x, so g(e−x) =
∞P
i=1

(−1)i+1 e−xii! .
F Let f(x) = g(e−x), then

f(x) = 1− e−e−x =
∞P
i=1

(−1)i+1 e−xii! .

About f (x) = 1− e−e−x


