Randomized Algorithms

The Monte Carlo Method

Speaker: Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang National Chung Cheng University 2006/7/17

References

- Professor S. C. Tsai's slides.
- [MR95] Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan.
- [MU05] Probability and Computing -Randomized Algorithms and Probabilistic Analysis, Michael Mitzenmacher and Eli Upfal.
- Wikipedia The Free Encyclopedia

7/17 Computation Theory Lab, CSIE, C

Introduction

- The Monte Carlo method refers to a collection of tools for estimating values through sampling and simulation.
- Monte Carlo techniques are used extensively in almost all areas of physical sciences and engineering.

17 Computation Theory Lab, CSIE, CCU, Taiwa

Introduction (cont'd)

Let us first consider the following approach for estimating the value of the constant π.

Computation Theory Lab, CSIE, CCU, Taiwar

Estimating π

Let (X, Y) be a point chosen uniformly at random in a 2×2 square centered at the origin (0,0).

Computation Theory Lab, CSIE, CCU, Taiwar

Estimating π (cont'd)

Assume we run this experiment *m* times, with Z_i being the value of Z at the *i*th run.

If $W = \sum_{i=1}^{m} Z_i$, then

$$\mathbf{E}[W] = \mathbf{E}[\sum_{i=1}^{m} Z_i] = \sum_{i=1}^{m} \mathbf{E}[Z_i] = \frac{m\pi}{4}.$$

Hence W' = (4/m)W is a natural estimate for π .

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Estimating π (cont'd)

Applying the Chernoff bound, we have

 $\begin{aligned} \mathbf{Pr}[|W' - \pi| \geq \varepsilon \pi] &= \mathbf{Pr}[|W - \frac{m\pi}{4}| \geq \frac{\varepsilon m\pi}{4}] \\ &= \mathbf{Pr}[|W - \mathbf{E}[W]| \geq \varepsilon \mathbf{E}[W]] \\ &\leq 2e^{-\mathfrak{M}\pi\varepsilon^2/12}. \end{aligned}$

 Therefore, by using a sufficiently large number of samples we can obtain, with high probability, as tight an approximation of π as we wish.

2006

Computation Theory Lab, CSIE, CCU, Taiwan

(ε, Δ) -approximation randomized algorithm

Definition:

A randomized algorithm gives an (ε, Δ) approximation for the value V if the output X of the algorithm satisfies

$$\mathbf{Pr}[|X - V| \le \varepsilon V] \ge 1 - \Delta.$$

10

Computation Theory Lab, CSIE, CCU, Taiwar

The above method for estimating π gives an (ε, Δ)-approximation, as long as ε < 1 and m large enough.

$$2e^{-m\piarepsilon^2/12} \leq \Delta \ \Rightarrow \ m \geq rac{12\ln(2/\Delta)}{\piarepsilon^2}.$$

Computation Theory Lab, CSIE, CCU, Taiwan

- We may generalize the idea behind our technique for estimating π to provide a relation between the number of samples and the quality of the approximation.
- We use the following simple application of the Chernoff bound throughout our discussing.

17 Computation Theory Lab, CSIE, CCU, Taiwa

Theorem 1

Let X_1, \ldots, X_m be independent and identically distributed indicator random variables, with $\mu = \mathbf{E}[X_i]$. If $m \ge (3 \ln(2/\Delta))/\varepsilon^2 \mu$, then

$$\mathbf{Pr}[|rac{1}{m}\sum_{i=1}^m X_i - \mu| \ge \varepsilon \mu] \le \Delta.$$

That is, *m* samples provide an (ε, Δ) -approximation for μ .

Proof: Exercise!

Computation Theory Lab, CSIE, CCU, Taiwan

Approximation Schemes

- There are problems for which the existence of an efficient (polynomial time) algorithm that gives an exact answer would imply that P = NP.
- Hence it is unlikely that such an algorithm will be found.
- So we eye on approximation algorithms instead.

006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

06/7/17 Computation Theory Lab, CSIE, CCU, Taiwa

Notes...

- Here we are considering *couting* problems that map inputs x to values V(x).
- For example, given an graph, we might want to know an approximation to the number of independent sets in the graph.

.006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

PRAS

A PRAS for a problem is a randomized algorithm for which, given an input x and any parameters ε and Δ with $0 < \varepsilon, \Delta < 1$, the algorithm outputs an (ε, Δ) -approximation to V(x) in time poly(|x|).

So, what is FPRAS?

2006/7/17

Conputation Theory Lab, CSIE, CCU, Taiwan

FPRAS

A FPRAS for a problem is a randomized algorithm for which, given an input x and any parameters ε and Δ with $0 < \varepsilon, \Delta < 1$, the algorithm outputs an (ε, Δ) approximation to V(x) in time $\operatorname{poly}(|x|, 1/\varepsilon, \ln(1/\Delta))$.

Computation Theory Lab, CSIE, CCU, Taiwan

The DNF Counting Problem

 Let us consider the problem of counting the number of satisfying assignments of a Boolean formula in disjunctive normal form (DNF).

Computation Theory Lab, CSIE, CCU, Taiwar

The DNF Counting Problem (cont'd)

• <u>Definition</u>: a DNF formula is a disjunction of clauses $C_1 \lor C_2 \lor \ldots \lor C_t$, where each clause is a conjunction of literals.

• For example, the following is a DNF formula:

 $(X_1 \wedge \overline{X}_2 \wedge X_3) \vee (X_2 \wedge X_4) \vee (\overline{X}_1 \wedge X_3 \wedge X_4)$

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

The DNF Counting Problem (cont'd)

Counting the number of satisfying assignments of a DNF formula is actually #P-complete (pronounced "sharp-P").

What is **#P**?

Computation Theory Lab, CSIE, CCU, Taiwa

- A problem is in the class #P if there is a polynomial time, nondeterministic Turing machine such that, for any input *I*, the number of accepting computations equals the number of different solutions associated with the input *I*.
- Clearly, a #P problem must be at least hard as the corresponding NP problem.

006/7/17 *Compu*

Computation Theory Lab, CSIE, CCU, Taiwan

#P-complete

- A problem is #P-complete if and only if it is in #P, and every problem in #P can be reduced to it in polynomial time.
- Counting the number of Hamiltonian cycles in a graph and counting the number of perfect matching in a bipartite graph are examples of #P-complete problems.

1/17 Computation Theory Lab, CSIE, CCU, Taiwa

How Hard Is the DNF Counting Problem?

★ Given any CNF formula H, we can apply de Morgans law to obtain a DNF formula for \overline{H} , the negation of the formula H, with the same number of variables and clauses.

Negation $\stackrel{(\overline{X}_1 \lor X_2 \lor \overline{X}_3) \land (\overline{X}_2 \lor \overline{X}_4) \land (X_1 \lor \overline{X}_3 \lor \overline{X}_4)}{(X_1 \land \overline{X}_2 \land X_3) \lor (X_2 \land X_4) \lor (\overline{X}_1 \land X_3 \land X_4)}$

★ The formula H has a satisfying assignment \Leftrightarrow the number of satisfying assignments of \overline{H} is less than 2^n . (assume that H has n variables)

200

Computation Theory Lab, CSIE, CCU, Taiwan

How Hard Is the DNF Counting Problem? (cont'd)

- So the DNF counting problem is at least hard as solving the NP-complete problem SAT.
- Thus the DNF counting problem is actually a #P-complete problem.

– Why?

Computation Theory Lab, CSIE, CCU, Taiwa

How Hard Is the DNF Counting Problem? (cont'd)

- It is unlikely that there is a polynomial time algorithm that computes the exact number of solutions of a #P-complete problem.
 - Such an algorithm would imply that $\mathbf{P} = \mathbf{NP}$.
- It is therefore interesting to find an approximation scheme, such as FPRAS, for the number of satisfying assignments of a DNF formula.

(17 Computation Theory Lab, CSIE, CCU, Taiwa

A Naïve Algorithm

- Let *c*(*F*) be the number of satisfying assignments of a DNF formula *F*.
 - Here we assume that c(F) > 0, since it is easy to check whether c(F) = 0 before running our sampling algorithm.

17 Computation Theory Lab, CSIE, CCU, Taiwar

DNF counting algorithm I

Input: A DNF formula F with n variables **Output:** Y = an approximation of c(F)

- $\star X \leftarrow 0.$
- **★** For k = 1 to m, do:

* Generate a random assignment for the n variables, chosen uniformly at random from all 2^n possible assignments.

* If the random assignment satisfies F, then $X \leftarrow X + 1$.

★ Return $Y \leftarrow (X/m)2^n$.

6/7/17 Computation Theory Lab, CSIE, CCU, Taiwar

Analysis (cont'd)

★ By Theorem 1, X/m gives an (ε, Δ) -approximation of $c(F)/2^n$, and hence Y gives an (ε, Δ) -approximation of c(F), when

$$n \ge rac{3 \cdot 2^n \ln(2/\Delta))}{arepsilon^2 c(F)}.$$

- ★ If $c(F) \ge 2^n/\alpha(n)$ for some polynomial α , then we will obtain that m is polynomial in $n, 1/\varepsilon$, and $\ln(1/\Delta)$.
- ★ But, if c(F) = poly(n), then $m = O(2^n/c(F))$, which is not (always) polynomial!

006/7/17 Computation Theory Lab, CSIE, CCU, Taiwan

Analysis (cont'd)

- What is the problem?
- The problem with this sampling approach is that the set of satisfying assignments might not be sufficiently dense in the set of all assignments.

7 Computation Theory Lab, CSIE, CCU, Taiwar

Revising Algorithm I

- We now revise the naïve algorithm to obtain a FPRAS.
- Let a DNF formula $F = C_1 \lor C_2 \lor \ldots \lor C_t$.
 - Assume WLOG that no clause includes a variable and its negation.
- If clause C_i has l_i literals, then there are exactly 2^{n-l_i} satisfying assignments for C_i .

2006/

Computation Theory Lab, CSIE, CCU, Taiwan

Revising Algorithm I (cont'd)

- Let SC_i denote the set of assignments that satisfy clause *i* and let $U = \{(i, a): 1 \le i \le t \text{ and } a \in SC_i\}$.
- Notice that $|U| = \sum_{i=1}^{t} |SC_i|$.
- The value that we want to estimate is c(F) =
 - $|\bigcup_{i=1}^{t} SC_i|$. Hence $c(F) \leq |U|$, since an assignment can satisfy more than one clause and thus appear

/17 *Computation Theory Lab, CSIE,*

in more than one pair in U.

|S| = c(F)

Computation Theory Lab, CSIE, CCU, Taiwa

DNF counting algorithm II:

Input: A DNF formula F with n variables **Output:** Y = an approximation of c(F)

- 1. $X \leftarrow 0$.
- 2. For k = 1 to m, do:

(a). With probability $|SC_i| / \sum_{i=1}^t |SC_i|$ choose, uniformly at random, an assignment $a \in SC_i$. (b). If a is not in any $SC_j, j < i$, then $X \leftarrow X + 1$.

Constructing S

36

3. Return $Y \leftarrow (X/m) \sum_{i=1}^{t} |SC_i|$.

7/17 Computation Theory Lab, CSIE, CCU, Taiwa

或者用|U|≤t|S|來想

Analysis (cont'd)

Thus the probability that we choose the pair (*i*, *a*) is

 $\begin{aligned} \mathbf{Pr}[(i,a) \text{ is chosen}] &= \mathbf{Pr}[i \text{ is chosen}] \cdot \mathbf{Pr}[a \text{ is chosen} \mid i \text{ is chosen}] \\ &= \frac{|SC_i|}{|U|} \cdot \frac{1}{|SC_i|} \\ &= \frac{1}{|U|}. \end{aligned}$

Computation Theory Lab, CSIE, CCU, Tai

Theorem 2

DNF counting algorithm II is a FPRAS for the DNF counting problem when $m = \lceil (3t/\varepsilon^2) \ln(2/\Delta) \rceil$.

Computation Theory Lab, CSIE, CCU, Taiwa

Approximate uniform sampling

Now, we are going to present the outline of a general reduction

 This general reduction shows that, if we can sample almost uniformly a solution to a *selfreducible* combinatorial problem, then we can construct a randomized algorithm that approximately counts the number of solutions to the problem.

7/17 Computation Theory Lab, CSIE, CCU, T

Approximate uniform sampling (cont'd)

- We will demonstrate this technique for the problem of counting the number of independent sets in a graph.
- We first need to formulate the concept of approximate uniform sampling.

7 Computation Theory Lab, CSIE, CCU, Taiwa

Approximate uniform sampling (cont'd)

- In this setting, we are given a problem instance in the form of an input *x*, and there is an underlying finite sample space Ω(*x*) associated with the input.
- Let us see the following two definitions to make clear the concept of approximate uniform sampling.

17 Computation Theory Lab, CSIE, CCU, Taiwar

ε - uniform Sample

Let w be the (random) output of a sampling algorithm for a finite sample space Ω . The sampling algorithm generates an ε -uniform sample of Ω if, for any subset S of Ω ,

$$|\mathbf{Pr}[w \in S] - rac{|S|}{|\Omega|}| \le arepsilon.$$

Computation Theory Lab, CSIE, CCU, Taiwan

FPAUS

A sampling algorithm is a fully polynomial almost uniform sampler (FPAUS) for a problem if, given an input x and a parameter $\varepsilon > 0$, it generates an ε -uniform sample of $\Omega(x)$ and runs in time poly $(\ln \frac{1}{\varepsilon}, |x|)$.

7 Computation Theory Lab, CSIE, CCU, Taiwar

FPRAS through FPAUS

- Consider an FPAUS for independent sets which would take as input a graph *G*(*V*, *E*) and a parameter *ε*.
- The sample space:the set of all independent sets in *G*.

Computation Theory Lab, CSIE, CCU, Taiwa

FPRAS through FPAUS (cont'd)

■ <u>Goal</u>:

- Given an FPAUS for independent sets, we construct an FPRAS for counting the number of independent sets.
- Assume G has m edges, and let e₁,...,e_m be an arbitrary ordering of the edges.

006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

FPRAS through FPAUS (cont'd)

- Let E_i be the set of the first i edges in E and let G_i = (V, E_i).
 - Note that $G = G_m$.
 - G_{i-1} is obtained from G_i by removing a single edge e_i .
- Let Ω(G_i) denote the set of independent sets in G_i.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Since G_0 has no edges, every subset of V is an independent set and $|Omega(G_0)| = 2^n$.

\$r_i\$ 就是前面所講的self-reducible的概念。

Lemma 1

Suppose that for all $i, 1 \leq i \leq m, \tilde{r_i}$ is an $(\varepsilon/2m, \Delta/m)$ -approximation for r_i . Then

 $\mathbf{Pr}[|R-1| \le \varepsilon] \ge 1 - \Delta.$

(By the definition of (ε, Δ) -approximation randomized algorithms.)

7 Computation Theory Lab, CSIE, CCU, Taiwa

Proof of Lemma 1

• By the assumption of Lemma 1, for each $1 \le i \le m$, we have

$$\mathbf{Pr}[|\widetilde{r_i} - r_i| \le \frac{\varepsilon}{2m}r_i] \ge 1 - \frac{\Delta}{m}$$

• Equivalently, for each $1 \le i \le m$,

$$\mathbf{Pr}[|\widetilde{r_i} - r_i| > \frac{\varepsilon}{2m}r_i] < \frac{\Delta}{m}.$$

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Proof of Lemma 1 (cont'd)

By the union bound, we have

$$\Pr[\bigcup_{i=1}^{m} \{ |\widetilde{r_i} - r_i| > \frac{\varepsilon}{2m} r_i \}] < \Delta.$$

■ Then we obtain

$$\Pr[\bigcap_{i=1}^{m} \{ |\widetilde{r_i} - r_i| \le \frac{\varepsilon}{2m} r_i \}] \ge 1 - \Delta.$$

Equivalently,

$$\mathbf{Pr}[\bigcap_{i=1}^{m} \{1 - \frac{\varepsilon}{2m} \le \frac{\widetilde{r}_i}{r_i} \le 1 + \frac{\varepsilon}{2m}\}] \ge 1 - \Delta.$$

2006

Computation Theory Lab, CSIE, CCU, Taiwan

Proof of Lemma 1 (cont'd)

■ Thus we have

$$\mathbf{Pr}[(1-\frac{\varepsilon}{2m})^m \le \prod_{i=1}^m \frac{\widetilde{r_i}}{r_i} \le (1+\frac{\varepsilon}{2m})^m] \ge 1-\Delta.$$

■ Therefore,

 $\mathbf{Pr}[1-\varepsilon \leq R \leq 1+\varepsilon] \geq 1-\Delta.$

(since $1-\varepsilon \leq (1-\frac{\varepsilon}{2m})^m$ and $(1-\frac{\varepsilon}{2m})^m \leq 1+\varepsilon$.)

Computation Theory Lab, CSIE, CCU, Taiwa

55

Lemma 1

Suppose that for all $i, 1 \leq i \leq m, \tilde{r_i}$ is an $(\varepsilon/2m, \Delta/m)$ -approximation for r_i . Then

 $\mathbf{Pr}[|R-1| \le \varepsilon] \ge 1 - \Delta.$

Computation Theory Lab, CSIE, CCU, Taiwar

Estimating r_i

- Hence all we need is a method for obtaining an (ε/2m, Δ/m)-approximation algorithm for the r_i.
- An algorithm estimating r_i is given as follows.

Computation Theory Lab, CSIE, CCU, Taiwa

Estimating *r_i*

Input: Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$ **Output:** $\widetilde{r_i} =$ an approximation of r_i .

1. $X \leftarrow 0$.

2. Repeat for $M = \lceil 1296m^2 \varepsilon^{-2} \ln(2m/\Delta) \rceil$ independent trials:

(a) Generate an $(\varepsilon/6m)$ -uniform sample from $\Omega(G_{i-1})$.

(b) If the sample is an independent set in $\overline{G_i}$, then $X \leftarrow X + 1$.

3. Return $\widetilde{r_i} \leftarrow X/M$.

1/17 Computation Theory Lab, CSIE, CCU, Taiwa

Estimating r_i (cont'd)

 The constants in the procedure were chosen to facilitate the proof of the following lemma, which justifies the algorithm's approximation.

Computation Theory Lab, CSIE, CCU, Taiwa

Lemma 2

When $m \geq 1$ and $0 < \varepsilon \leq 1$, the procedure for estimating r_i yields an $(\varepsilon/2m, \Delta/m)$ -approximation for r_i .

17 Computation Theory Lab, CSIE, CCU, Taiwa

第一點:

假設 $Omega(G_{i-1})$ setminus $Omega(G_i)$ 中有一個 independent set I_k 不同時包含 nv, 則 G_{i-1} 加入 (u,v) 變成 G_i 之後,

\$I_k\$依然屬於 \$\Omega(G_i)\$, 於是就矛盾了。

第三點:

因為I' 頂多associated I'\cup {v} 或 I'\cup {u}其中之一。若兩者都有,則違反第一點。

Proof of Lemma 2 (cont'd)

 Because our samples are generated by an (ɛ/6m)uniform sampler, by definition,

$$| \mathbf{Pr}[X_k = 1] - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} | \le \frac{\varepsilon}{6m},$$

$$\Rightarrow | \mathbf{E}[X_k] - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} | \le \frac{\varepsilon}{6m}.$$

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

因為平均的期望值一定比最大 X_k 之期望值小,比最小的 X_k 之期望值大,因此平均的期望值與 $||Omega(G_i)| / ||Omega(G_{i-1})|$ \$的差距必定也滿足任一 $E[X_k]$ 的與之的差距。

Proof of Lemma 2 (cont'd)

• Since $r_i \ge \frac{1}{2}$, we have

$$\mathbf{E}[\widetilde{r_i}] \geq r_i - rac{arepsilon}{6m} \geq rac{1}{2} - rac{arepsilon}{6m} \geq rac{1}{3}.$$

Computation Theory Lab, CSIE, CCU, Taiwa

Proof of Lemma 2 (cont'd)

If $M \geq \frac{3\ln(2m/\Delta)}{(\varepsilon/12m)^2(1/3)} = 1296m^2\varepsilon^{-2}\ln\frac{2m}{\Delta}$ (obtained from Theorem 1), then

$$egin{aligned} & \mathbf{Pr}[|rac{\widetilde{r_i}}{\mathbf{E}[\widetilde{r_i}]}-1| \geq rac{arepsilon}{12m}] \ &= & \mathbf{Pr}[|r_i-\mathbf{E}[\widetilde{r_i}]| \geq rac{arepsilon}{12m}\mathbf{E}[\widetilde{r_i}] \ &\leq & rac{\Delta}{m} \end{aligned}$$

Lemma 2

When $m \geq 1$ and $0 < \varepsilon \leq 1$, the procedure for estimating r_i yields an $(\varepsilon/2m, \Delta/m)$ -approximation for r_i .

17 Computation Theory Lab, CSIE, CCU, Taiwa

Remark

The number of samples *M* is polynomial in *m*, *ε*, and ln ∆⁻¹, and the time for each sample is polynomial in the size of the graph and ln 1/*ε*, we therefore have the following theorem.

7 Computation Theory Lab, CSIE, CCU, Taiwa

Theorem 3

Given an FPAUS for independent sets in any graph, we can construct an FPRAS for the number of independent sets in a graph G.

7 Computation Theory Lab, CSIE, CCU, Taiwa
However,...

- How to obtain an FPAUS for independent sets for graphs?
 - See Chapter 11, *Coupling of Markov Chains*, page 286-289 in [MU05].
 - Or consider the Markov chain Monte Carlo (MCMC) method.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

The Markov Chain Monte Carlo Method

 The Markov Chain Monte Carlo method provides a very general approach to sampling from a desired probability distribution.

Basic idea:

 Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

/7/17 Computation Theory Lab, CSIE, CCU, Taiwar

The Markov Chain Monte Carlo Method (cont'd)

• Let X_0, X_1, \ldots, X_n be a run of the chain.

- The Markov chain converges to the stationary distribution from any starting state X₀.
- After a sufficiently large number of steps r, the distribution of the state X_r will be close to the stationary distribution, so it can be used as a sample.

7/17 Computation Theory Lab, CSIE, CCU, Taiwa

The Markov Chain Monte Carlo Method (cont'd)

- Similarly, repeating this argument with X_r as the starting point, we can use X_{2r} as another sample, and so on.
- We can therefore use the sequence of states X_r,
 X_{2r}, ... as almost independent samples from the stationary distribution of the Markov chain.

17 Computation Theory Lab, CSIE, CCU, Taiv

Revisiting the Independent Sets in a Graph

- Given a graph G(V, E).
- Let the state space be all of the independent sets of G.

 Two independent states x and y are neighbors if they differ in just one vertex.

7 *Computation Theory Lab, CSIE, CCU,*

Revisiting the Independent Sets in a Graph (cont'd)

- The neighbor relationship guarantees that the state space is *irreducible*.
 - Since all independent sets can reach (resp., can be reached from) the empty independent set by a sequence of vertex deletions (resp., vertex additions).

7 Computation Theory Lab, CSIE, CCU, Taiwar

Revisiting the Independent Sets in a Graph (cont'd)

- Next we need to establish the transition probabilities.
- A naïve approach:
 - Random walk on the graph of the state space.
 - Yet the probability of a vertex is proportional to its degree, so this may not lead to a uniform distribution.
- Consider the following lemma.

/17 Computation Theory Lab, CSIE, CCU, Taiwar

Lemma 3

For a finite state space Ω and neighborhood structure $\{N(x) \mid x \in \Omega\}$, let $N = \max_{x \in \Omega} |N(x)|$. Let M be any number such that $M \geq N$. For all $x \in \Omega$, let $\pi_x = 1/\Omega$ be the desired probability of a state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \left\{ egin{array}{ccc} 1/M & ext{if } x
eq y ext{ and } y \in N(x), \ 0 & ext{if } x
eq y ext{ and } y
eq N(x), \ 1-N(x)/M & ext{if } x = y. \end{array}
ight.$$

If this chain is **irreducile and aperiodic**, then the stationary distribution is the uniform distribution.

7 Computation Theory Lab, CSIE, CCU, Taiwa

That is, if we modify the random walk by giving each vertex an appropriate self-loop probability, then we can obtain a uniform stationary distribution.

Let us see the proof as follows.

7 Computation Theory Lab, CSIE, CCU, Taiwa

Proof of Lemma 3

• For any $x \neq y$, since $\pi_x = \pi_y$ and $P_{x,y} = P_{y,x}$ (= 1 / *M*), we have

$$\pi_x P_{x,y} = \pi_y P_{y,x}.$$

Then apply the following theorem (Theorem 7.10 at [MU05]), it follows that the uniform distribution is the stationary distribution.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Theorem 4 (for the proof)

Consider a finite, irreducible, and ergodic Markov chain with transition matrix **P**. If there are nonnegative numbers $\bar{\pi} = (\pi_0, \ldots, \pi_n)$ such that $\sum_{i=0}^n \pi_i = 1$ and if, for any pair of states i, j,

$$\pi_i P_{i,j} = \pi_j P_{j,i},$$

then $\bar{\pi}$ is the stationary distribution corresponding to **P**.

Proof: Pleae refer to page 172 in [MU05].

17 Computation Theory Lab, CSIE, CCU, Taiwan

Example: Independent Sets in a Graph

 Consider the following simple Markov chain whose states are independent sets in *G*(*V*, *E*).

- 1. X_0 is an arbitrary independent set in G.
- 2. To compute X_{i+1} :
 - (a) choose a vertex v uniformly at random from V;
 - (b) if $v \in X_i$ then $X_{i+1} = X_i \setminus \{v\}$;
 - (c) if $v \notin X_i$ and if adding v to X_i still gives an

independent set, then set $X_{i+1} = X_i \cup \{v\};$

(d) otherwise, $X_{i+1} = X_i$.

6/7/17 Computation Theory Lab, CSIE, CCU, Taiwan

Example: Independent Sets in a Graph (cont'd)

- The neighbors of a state X_i are independent sets that differ from X_i in just one vertex.
- Since every state is reachable from the empty set, the chain is irreducible.
- Assume *G* has at least one edge (*u*,*v*), then the state {*v*} has a self-loop (*P*_{{*v*},{*v*}}>0), thus aperiodic.
- When $X_i \neq X_j$, it follows that $P_{X_i, X_j} = 1/|V|$ or 0, by the previous lemma, the stationary distribution is the uniform distribution.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

How about the non-uniform cases?

- However, in some other cases, we may want to sample from a chain with nonuniform stationary distribution.
- What should we do?
- Solution: *the Metropolis Algorithm*.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

The Metropolis Algorithm

- Let us again assume that we have designed an irreducible state space for our Markov chain.
- Now we want to construct a Markov chain on this state space with a stationary distribution $\pi_x = b(x)/B$, where for all $x \in \Omega$ we have b(x) > 0 and such that $B = \sum_{x \in \Omega} b(x)$ is finite.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Lemma 4

For a finite state space Ω and neighborhood structure $\{N(x) \mid x \in \Omega\}$, let $N = \max_{x \in \Omega} |N(x)|$. Let M be any number such that $M \geq N$. For all $x \in \Omega$, let $\pi_x > 0$ be the desired probability of a state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \begin{cases} (1/M)\min(1, \pi_y/\pi_x) & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \sum_{y \neq x} P_{x,y} & \text{if } x = y. \end{cases}$$

If this chain is irreducile and aperiodic, then the stationary distribution is the uniform distribution π_x .

Computation Theory Lab, CSIE, CCU, Taiwan

Example: Independent Sets in a Graph

- Create a Markov chain, in the stationary distribution, each independent set I has probability proportional to λ^{|I|}, for some λ > 0.
- That is, $\pi_x = \lambda^{|I_x|}/B$, where I_x is the independent set corresponding to state x and $B = \sum_x \lambda^{|I_x|}$.
- Note that, when λ=1, this is the uniform distribution.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

Example: Independent Sets in a Graph (cont'd)

 Consider the following variation on the previous Markov chain for independent sets in a graph *G*(*V*, *E*).

- 1. X_0 is an arbitrary independent set in G.
- 2. To compute X_{i+1} :

(a) choose a vertex v uniformly at random from V; (b) if $v \in X_i$ then $X_{i+1} = X_i \setminus \{v\}$ with probability $\min(1, 1/\lambda)$;

(c) if $v \notin X_i$ and if adding v to X_i still gives an independent set, then set $X_{i+1} = X_i \cup \{v\}$ with probability min $(1, \lambda)$; (d) otherwise, $X_{i+1} = X_i$.

06/7/17 Computation Theory Lab, CSIE, CCU, Taiwan

Example: Independent Sets in a Graph (cont'd)

- First, we propose a move by choosing a vertex v to add or delete.
 - Each vertex is chosen with probability 1/M, here M = |V|.
- Second, this proposal is then accepted with probability $\min(1, \pi_y/\pi_x)$, where *x* is the current state and *y* is the proposed state where the chain will move.

7/17 Computation Theory Lab, CSIE, CCU, Taiwa

Example: Independent Sets in a Graph (cont'd)

- $= \pi_y / \pi_x$
 - is " λ " if the chain attempts to add a vertex, and
 - is " $1/\lambda$ " if the chain attempts to delete a vertex.
- Then we obtain the transition probability $P_{x,y}$ is

$$P_{x,y} = \frac{1}{M}\min(1, \frac{\pi_y}{\pi_x}).$$

Thus Lemma 4 applies.

2006/7/17

Computation Theory Lab, CSIE, CCU, Taiwan

94

Example: Independent Sets in a Graph (cont'd)

• Comments:

- We never need to know $B = \sum_{x} \lambda^{|I_x|}$
 - Calculating this sum would cost much time.
- Our Markov chains gives the correct stationary distribution by using the ratios π_y/π_x , which are much easier to deal with.

/17 Computation Theory Lab, CSIE, CCU, Taiwa

