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IntroductionIntroduction

The Monte Carlo method refers to a collection of 
tools for estimating values through sampling and 
simulation.
Monte Carlo techniques are used extensively in 
almost all areas of physical sciences and 
engineering.
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Introduction (contIntroduction (cont’’d)d)

Let us first consider the following approach for 
estimating the value of the constant π .
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EstimatingEstimating π

Let (X,Y ) be a point chosen uniformly at random
in a 2× 2 square centered at the origin (0,0).

(0,0)
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(0,0)

(1,1)

(-1,-1)

(-1,1)

(1,-1)

1

Estimating      (contEstimating      (cont’’d)d)π

If we let

Z =

½
1 if

√
X2 + Y 2 ≤ 1,

0 otherwise.

The probability that Z = 1 is exactly
the ratio of the area of the circle To the
area of the square. Hence,

Pr[Z = 1] = π/4.
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Assume we run this experiment m times, with Zi
being the value of Z at the ith run. 

Estimating      (contEstimating      (cont’’d)d)π

If W =
Pm
i=1Zi, then

E[W ] = E[
mX
i=1

Zi] =
mX
i=1

E[Zi] =
mπ

4
.

Hence W 0 = (4/m)W is a natural estimate for π.
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Applying the Chernoff bound, we have 

Therefore, by using a sufficiently large number 
of samples we can obtain, with high probability, 
as tight an approximation of π as we wish.

Estimating      (contEstimating      (cont’’d)d)π

Pr[|W 0 − π| ≥ επ] = Pr[|W − mπ
4
| ≥ εmπ

4
]

= Pr[|W −E[W ]| ≥ εE[W ]]

≤ 2e−mπε
2/12.
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Definition:
A randomized algorithm gives an (ε,∆)-
approximation for the value V if the output X
of the algorithm satisfies

Pr[|X − V | ≤ εV ] ≥ 1−∆.

(ε,∆)-approximation randomized algorithm
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The above method for estimating π gives an 
(ε,Δ)-approximation, as long as ε < 1 and m
large enough.

2e−mπε
2/12 ≤ ∆ ⇒ m ≥ 12 ln(2/∆)

πε2
.
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We may generalize the idea behind our technique 
for estimating π to provide a relation between the 
number of samples and the quality of the 
approximation.

We use the following simple application of the 
Chernoff bound throughout our discussing.
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Theorem 1Theorem 1

Let X1, . . . , Xm be independent and identically dis-
tributed indicator random variables, with μ = E[Xi].
If m ≥ (3 ln(2/∆))/ε2μ, then

Pr[| 1
m

mX
i=1

Xi − μ| ≥ εμ] ≤ ∆.

That is, m samples provide an (ε,∆)-approximation
for μ.

Proof: Exercise!
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Approximation SchemesApproximation Schemes

There are problems for which the existence of an 
efficient (polynomial time) algorithm that gives 
an exact answer would imply that P = NP.

Hence it is unlikely that such an algorithm will 
be found.

So we eye on approximation algorithms instead.
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Approximation Schemes Approximation Schemes 
(cont(cont’’d)d)

For approximation algorithms, there are some 
important approximation schemes as follows.
– Polynomial time approximation schemes (PTAS)
– Fully polynomial time approximation schemes 

(FPTAS)
– Polynomial randomized approximation schemes 

(PRAS)
– Fully polynomial randomized approximation schemes 

(FPRAS)
–

We will focus on this scheme in this talk.
. . .
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NotesNotes……

Here we are considering couting problems 
that map inputs x to values V(x).

For example, given an graph, we might 
want to know an approximation to the 
number of independent sets in the graph.
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PRASPRAS

A PRAS for a problem is a randomized algorithm
for which, given an input x and any parameters ε
and ∆ with 0 < ε,∆ < 1, the algorithm outputs an
(ε,∆)-approximation to V (x) in time poly(|x|).

So, what is FPRAS?
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FPRASFPRAS

A FPRAS for a problem is a randomized algorithm
for which, given an input x and any parameters ε and
∆ with 0 < ε,∆ < 1, the algorithm outputs an (ε,∆)-
approximation to V (x) in time poly(|x|, 1/ε, ln(1/∆)).
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The DNF Counting ProblemThe DNF Counting Problem

Let us consider the problem of counting 
the number of satisfying assignments of a 
Boolean formula in disjunctive normal 
form (DNF).
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The DNF Counting Problem The DNF Counting Problem 
(cont(cont’’d)d)

Definition: a DNF formula is a disjunction of 
clauses C1∨ C2∨…∨ Ct , where each clause is a 
conjunction of literals.

For example, the following is a DNF formula:

(X1 ∧X2 ∧X3) ∨ (X2 ∧X4) ∨ (X1 ∧X3 ∧X4)
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The DNF Counting Problem The DNF Counting Problem 
(cont(cont’’d)d)

Counting the number of satisfying assignments of a 
DNF formula is actually #P-complete (pronounced 
“sharp-P”).

What is #P?
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#P#P

A problem is in the class #P if there is a 
polynomial time, nondeterministic Turing 
machine such that, for any input I, the number 
of accepting computations equals the number of 
different solutions associated with the input I.

Clearly, a #P problem must be at least hard as 
the corresponding NP problem.
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#P#P--completecomplete

A problem is #P-complete if and only if it is in 
#P, and every problem in #P can be reduced to it 
in polynomial time.

Counting the number of Hamiltonian cycles in a 
graph and counting the number of perfect 
matching in a bipartite graph are examples of 
#P-complete problems.
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How Hard Is the DNF How Hard Is the DNF 
Counting Problem?Counting Problem?

Negation (X1 ∨X2 ∨X3) ∧ (X2 ∨X4) ∧ (X1 ∨X3 ∨X4)

⇒ (X1 ∧X2 ∧X3) ∨ (X2 ∧X4) ∨ (X1 ∧X3 ∧X4)

F Given any CNF formula H, we can apply de
Morgans law to obtain a DNF formula forH, the
negation of the formula H, with the same number
of variables and clauses.

F The formula H has a satisfying assignment ⇔ the
number of satisfying assignments ofH is less than
2n. (assume that H has n variables)
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How Hard Is the DNF How Hard Is the DNF 
Counting Problem? (contCounting Problem? (cont’’d)d)

So the DNF counting problem is at least hard as 
solving the NP-complete problem SAT.

Thus the DNF counting problem is actually a 
#P-complete problem.
– Why?
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How Hard Is the DNF How Hard Is the DNF 
Counting Problem? (contCounting Problem? (cont’’d)d)
It is unlikely that there is a polynomial time 
algorithm that computes the exact number of 
solutions of a #P-complete problem.
– Such an algorithm would imply that P = NP.

It is therefore interesting to find an approximation 
scheme, such as FPRAS, for the number of 
satisfying assignments of a DNF formula.
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A NaA Naïïve Algorithmve Algorithm

Let c(F) be the number of satisfying assignments 
of a DNF formula F.
– Here we assume that c(F) > 0, since it is easy to check 

whether c(F) = 0 before running our sampling 
algorithm.
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DNF counting algorithm IDNF counting algorithm I

Input: A DNF formula F with n variables
Output: Y = an approximation of c(F )

F X ← 0.
F For k = 1 to m, do:

? Generate a random assignment for the n vari-
ables, chosen uniformly at random from all 2n

possible assignments.

? If the random assignment satisfies F , then
X ← X + 1.

F Return Y ← (X/m)2n.
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AnalysisAnalysis

F LetXk =

⎧⎨⎩ 1 If the kth iteration in the algorithm
generated a satisfying assignment;

0 otherwise.

F Thus Pr[Xk = 1] = c(F )/2
n.

F Let X =
mP
k=1

Xk, then E[X] = m · c(F )/2n.

F Hence,

E[Y ] =
E[X] · 2n

m
= c(F ).
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Analysis (contAnalysis (cont’’d)d)

F By Theorem 1, X/m gives an (ε,∆)-approximation of
c(F )/2n, and hence Y gives an (ε,∆)-approximation of
c(F ), when

m ≥ 3 · 2
n ln(2/∆))

ε2c(F )
.

F If c(F ) ≥ 2n/α(n) for some polynomial α, then we will
obtain that m is polynomial in n, 1/ε, and ln(1/∆).

F But, if c(F ) = poly(n), then m = O(2n/c(F )), which is
not (always) polynomial!
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Analysis (contAnalysis (cont’’d)d)

What is the problem?

The problem with this sampling approach is that 
the set of satisfying assignments might not be 
sufficiently dense in the set of all assignments.
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Revising Algorithm IRevising Algorithm I

We now revise the naïve algorithm to obtain a 
FPRAS.

Let a DNF formula F = C1 ∨ C2 ∨ … ∨ Ct.
– Assume WLOG that no clause includes a variable and 

its negation.

If clause Ci has li literals, then there are exactly 
2n − li satisfying assignments for Ci.
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Revising Algorithm I (contRevising Algorithm I (cont’’d)d)

Let SCi denote the set of assignments that satisfy 
clause i and let U = {(i, a): 1≤ i ≤ t and a ∈ SCi}.

Notice that |U | =
tP
i=1

|SCi|.

The value that we want to estimate is c(F ) =

|
tS
i=1

SCi|. Hence c(F ) ≤ |U |, since an assignment
can satisfy more than one clause and thus appear
in more than one pair in U .
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Revising Algorithm I (contRevising Algorithm I (cont’’d)d)

To estimate c(F), we define a subset of U with 
size c(F).

We construct this set by selecting, for each 
satisfying assignment of F, exactly one pair of U
that has this assignment.

Specifically, we consider the following set S:
S = {(i, a)|1 ≤ i ≤ t and a ∈ SCi, a /∈ SCj for j < i}.

|S| = c(F)
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Then let us consider the second DNF 
counting algorithm.
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DNF counting algorithm II:DNF counting algorithm II:

Constructing S

Input: A DNF formula F with n variables
Output: Y = an approximation of c(F )

1. X ← 0.
2. For k = 1 to m, do:

(a). With probability |SCi|/
Pt

i=1 |SCi| choose,
uniformly at random, an assignment a ∈ SCi.
(b). If a is not in any SCj , j < i, then X ←
X + 1.

3. Return Y ← (X/m)
Pt

i=1 |SCi|.
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AnalysisAnalysis

Note that |S| / |U| ≥ 1/t. 
– Since each assignment can satisfy at most t different 

clauses.

Now our S is relatively dense in U.

Because the ith clause has |SCi| satisfying 
assignments, we have 

Pr[i is chosen] =
|SCi|Pt
i=1 |SCi|

=
|SCi|
|U | .

Remark: |U | =
tP
i=1

|SCi| and
|S| = c(F ).

或者用|U|≤t|S|來想
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Analysis (contAnalysis (cont’’d)d)

Thus the probability that we choose the pair (i, a) 
is 

Pr[(i, a) is chosen] = Pr[i is chosen] ·Pr[a is chosen | i is chosen]
=

|SCi|
|U | ·

1

|SCi|
=

1

|U | .
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Theorem 2Theorem 2

DNF counting algorithm II is a FPRAS for the DNF
counting problem when m = d(3t/ε2) ln(2/∆)e.
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Proof of Theorem 2Proof of Theorem 2

Step 2(a) chooses an element of U uniformly at 
random.

The probability that this element belongs to S is at 
least 1/t. (by the previous analysis)

Fix any ε,∆ > 0, and let m = d(3t/ε2) ln(2/∆)e.

So m is polynomial in t, ε, and ln(1/∆) .
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Proof of Theorem 2Proof of Theorem 2

Besides, the processing time of each sample is 
polynomial in t.
– You can check this by observing 2(a) and 2(b).

By Theorem 1, with m samples, X/m gives an 
(ε,Δ)-approximation of c(F)/|U| and hence Y
gives an (ε,Δ)-approximation of c(F).

¥
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Approximate uniform Approximate uniform 
samplingsampling
Now, we are going to present the outline of a 
general reduction

This general reduction shows that, if we can 
sample almost uniformly a solution to a self-
reducible combinatorial problem, then we can 
construct a randomized algorithm that 
approximately counts the number of solutions 
to the problem.
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Approximate uniform Approximate uniform 
sampling (contsampling (cont’’d)d)

We will demonstrate this technique for the 
problem of counting the number of independent 
sets in a graph.

We first need to formulate the concept of 
approximate uniform sampling.
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Approximate uniform Approximate uniform 
sampling (contsampling (cont’’d)d)

In this setting, we are given a problem instance in 
the form of an input x, and there is an underlying 
finite sample space Ω(x) associated with the input.

Let us see the following two definitions to make 
clear the concept of approximate uniform 
sampling.
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εε -- uniform Sampleuniform Sample

Let w be the (random) output of a sampling algo-
rithm for a finite sample space Ω. The sampling
algorithm generates an ε-uniform sample of Ω if, for
any subset S of Ω,

|Pr[w ∈ S]− |S||Ω| | ≤ ε.



46

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4646

FPAUSFPAUS

A sampling algorithm is a fully polynomial almost
uniform sampler (FPAUS) for a problem if, given
an input x and a parameter ε > 0, it gener-
ates an ε-uniform sample of Ω(x) and runs in time
poly(ln 1

ε , |x|).
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FPRAS through FPAUSFPRAS through FPAUS

Consider an FPAUS for independent sets 
which would take as input a graph G(V, E) 
and a parameter ε.

The sample space: 
– the set of all independent sets in G.
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FPRAS through FPAUS FPRAS through FPAUS 
(cont(cont’’d)d)

Goal:
– Given an FPAUS for independent sets, we 

construct an FPRAS for counting the number 
of independent sets.

Assume G has m edges, and let e1,…,em be an 
arbitrary ordering of the edges.
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FPRAS through FPAUS FPRAS through FPAUS 
(cont(cont’’d)d)

Let Ei be the set of the first i edges in E and let 
Gi = (V, Ei).
– Note that G = Gm .
– Gi−1 is obtained from Gi by removing a single edge ei.

Let Ω(Gi) denote the setset of independent sets in 
Gi.
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FPRAS through FPAUS FPRAS through FPAUS 
(cont(cont’’d)d)

|Ω(G0)| = 2n. Why?

To estimate |Ω(G)|, we need good estimates for 

The number of independent sets in G can then be
expressed as

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)|×

|Ω(Gm−1)|
|Ω(Gm−2)|×. . .×

|Ω(G1)|
|Ω(G0)|×|Ω(G0)|.

ri = |Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| , for i = 1, . . . ,m.

Since $G_0$ has no edges, every subset of $V$ is an independent set and 
$|\Omega(G_0)| =2^n$.
$r_i$ 就是前面所講的self-reducible的概念。
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FPRAS through FPAUS FPRAS through FPAUS 
(cont(cont’’d)d)

F Let eri be an estimate for the ratio ri, then we
have |Ω(G)| ∼ 2n

mQ
i=1

eri.
F To evaluate the error in our esitmate, we need

to bound the ratio R =
mQ
i=1

eri
ri

F In order to have an (ε,∆)-approximation, we
want Pr[|R− 1| ≤ ε] ≥ 1−∆

Let us see the following lemma.
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Lemma 1Lemma 1

Suppose that for all i, 1 ≤ i ≤ m, eri is an
(ε/2m,∆/m)-approximation for ri. Then

Pr[|R− 1| ≤ ε] ≥ 1−∆.

(By the definition of (ε, Δ)-approximation randomized 
algorithms.)
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Proof of Lemma 1Proof of Lemma 1

By the assumption of Lemma 1, for each 1 ≤ i ≤ m, 
we have

Equivalently, for each 1 ≤ i ≤ m,

Pr[|eri − ri| ≤ ε

2m
ri] ≥ 1− ∆

m
.

Pr[|eri − ri| > ε

2m
ri] <

∆

m
.



54

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5454

Proof of Lemma 1 (contProof of Lemma 1 (cont’’d)d)

By the union bound, we have

Then we obtain

Equivalently, 

Pr[
m\
i=1

{|eri − ri| ≤ ε

2m
ri}] ≥ 1−∆.

Pr[
m[
i=1

{|eri − ri| > ε

2m
ri}] < ∆.

Pr[
m\
i=1

{1− ε

2m
≤ eri
ri
≤ 1 + ε

2m
}] ≥ 1−∆.
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Proof of Lemma 1 (contProof of Lemma 1 (cont’’d)d)

Thus we have

Therefore, 

Pr[(1− ε

2m
)m ≤

mY
i=1

eri
ri
≤ (1 + ε

2m
)m] ≥ 1−∆.

Pr[1− ε ≤ R ≤ 1 + ε] ≥ 1−∆.

(since 1−ε ≤ (1− ε
2m )

m and (1− ε
2m )

m ≤ 1+ε.)
¥
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Lemma 1Lemma 1

Suppose that for all i, 1 ≤ i ≤ m, eri is an
(ε/2m,∆/m)-approximation for ri. Then

Pr[|R− 1| ≤ ε] ≥ 1−∆.
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Estimating Estimating rrii

Hence all we need is a method for obtaining an 
(ε/2m, Δ/m)-approximation algorithm for the ri. 

An algorithm estimating ri is given as follows. 
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Estimating Estimating rrii

Input: Graphs Gi−1 = (V,Ei−1) and Gi = (V,Ei)
Output: eri = an approximation of ri.

1. X ← 0.
2. Repeat for M = d1296m2ε−2 ln(2m/∆)e indepen-
dent trials:
(a) Generate an (ε/6m)-uniform sample from
Ω(Gi−1).
(b) If the sample is an independent set in Gi,
then X ← X + 1.

3. Return eri ← X/M .
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Estimating Estimating rrii (cont(cont’’d)d)

The constants in the procedure were chosen to 
facilitate the proof of the following lemma, 
which justifies the algorithm’s approximation .
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Lemma 2Lemma 2

When m ≥ 1 and 0 < ε ≤ 1, the procedure for
estimating ri yields an (ε/2m,∆/m)-approximation
for ri.
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Proof of Lemma 2Proof of Lemma 2

First we will show that ri is not too small, 
– avoiding the problem we have introduced previously.

Suppose Gi−1 and Gi differ in that edge {u, v} is 
in Gi but not in Gi−1.

Ω(Gi) ⊆ Ω(Gi−1).
– since an independent set in Gi is also an independent 

set in Gi−1.
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Each independent set in Ω(Gi−1)\Ω(Gi) contains 
both u and v.
– Why?

Associate each I ∈ Ω(Gi−1)\Ω(Gi) with an 
independent set I \{v} ∈ Ω(Gi).

In this mapping, note that I ′∈ Ω(Gi) is associated 
with no more than one independent set I ′ ∪{v}∈
Ω(Gi−1)\Ω(Gi), thus |Ω(Gi−1)\Ω(Gi)| ≤ |Ω(Gi)|.

第一點：

假設 $\Omega(G_{i-1})\setminus\Omega(G_i)$ 中有一個independent set $I_k$ 不同時包含u
和v，則$G_{i-1}$ 加入 $(u,v)$ 變成 $G_i$ 之後，

$I_k$依然屬於 $\Omega(G_i)$, 於是就矛盾了。

第三點：

因為I’ 頂多associated I’\cup {v} 或 I’\cup {u}其中之一。若兩者都有，則違反第一
點。
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

It follows that

Now consider our M samples.

Let a random variable Xk = 1 if the kth sample is 
in Ω(Gi), and Xk = 0 otherwise

ri =
|Ω(Gi)|
|Ω(Gi−1)| =

|Ω(Gi)|
|Ω(Gi)|+ |Ω(Gi−1) \ Ω(Gi)| ≥

1

2
.
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Because our samples are generated by an (ε/6m)-
uniform sampler, by definition,

| Pr[Xk = 1]− |Ω(Gi)|
|Ω(Gi−1) | ≤

ε

6m
.

⇒ | E[Xk]− |Ω(Gi)|
|Ω(Gi−1)| | ≤

ε

6m
.
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

By linearity of expectations,

Therefore, we have

| E[
PM

k=1Xk
M

]− |Ω(Gi)|
|Ω(Gi−1)| | ≤

ε

6m
.eri

ri

|E[eri]− ri| = |E[
PM

i=kXk
M

]− |Ω(Gi)|
|Ω(Gi−1)|

≤ ε

6m
.

因為平均的期望值一定比最大X_k之期望值小，比最小的X_k之期望值大，

因此平均的期望值與$|\Omega(G_i)| / |\Omega(G_{i-1})|$ 的差距必定也滿足任一
E[X_k]的與之的差距。
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Since ri ≥ ½, we have

E[eri] ≥ ri − ε

6m
≥ 1
2
− ε

6m
≥ 1
3
.
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

If M ≥ 3 ln(2m/∆)
(ε/12m)2(1/3) = 1296m2ε−2 ln 2m∆ (obtained

from Theorem 1), then

Pr[| eri
E[eri] − 1| ≥ ε

12m
]

= Pr[|ri −E[eri]| ≥ ε

12m
E[eri]

≤ ∆

m



68

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6868

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Equivalently, with probability 1 − Δ/m,

1− ε

12m
≤ eri
E[eri] ≤ 1+ ε

12m
. ------- (1)

1− ε

6mri
≤ E[eri]

ri
≤ 1 + ε

6mri
.

As |E[eri]− ri| ≤ ε
6m , we have

Using that ri ≥ 1/2 then yields
1− ε

3m
≤ E[eri]

ri
≤ 1 + ε

3m
. -------------------- (2)
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Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Combining (1) and (2), with probability 1 − Δ/m, 
we have

Thus this gives the desired (ε/2m, Δ/m)-
approximation. 

(1− ε

3m
)(1− ε

3m
) ≤ eri

ri
≤ (1 + ε

3m
)(1 +

ε

12m
).

≤ ≤
1 +

ε

2m
1− ε

2m

¥
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Lemma 2Lemma 2

When m ≥ 1 and 0 < ε ≤ 1, the procedure for
estimating ri yields an (ε/2m,∆/m)-approximation
for ri.
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RemarkRemark

The number of samples M is polynomial in m, ε, 
and ln Δ−1, and the time for each sample is 
polynomial in the size of the graph and ln 1/ε, 
we therefore have the following theorem.
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Theorem 3 Theorem 3 

Given an FPAUS for independent sets in any
graph, we can construct an FPRAS for the num-
ber of independent sets in a graph G.
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However,However,……

How to obtain an FPAUS for independent 
sets for graphs?
– See Chapter 11, Coupling of Markov Chains, 

page 286-289 in [MU05].
– Or consider the Markov chain Monte Carlo 

(MCMC) method.
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The Markov Chain Monte The Markov Chain Monte 
Carlo MethodCarlo Method

The Markov Chain Monte Carlo method provides 
a very general approach to sampling from a 
desired probability distribution.

Basic idea:
– Define an ergodic Markov chain whose set of states is 

the sample space and whose stationary distribution is 
the required sampling distribution.
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The Markov Chain Monte The Markov Chain Monte 
Carlo Method (contCarlo Method (cont’’d)d)

Let X0, X1, … , Xn be a run of the chain. 

The Markov chain converges to the stationary 
distribution from any starting state X0.

After a sufficiently large number of steps r, the 
distribution of the state Xr will be close to the 
stationary distribution, so it can be used as a 
sample.
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The Markov Chain Monte The Markov Chain Monte 
Carlo Method (contCarlo Method (cont’’d)d)

Similarly, repeating this argument with Xr as the 
starting point, we can use X2r as another sample, 
and so on.
We can therefore use the sequence of states Xr , 
X2r , … as almost independent samples from the 
stationary distribution of the Markov chain.
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The Markov Chain Monte The Markov Chain Monte 
Carlo Method (contCarlo Method (cont’’d)d)

The efficiency of MCMC depends on
– how large r must be to ensure a suitable good sample
– how much computation is required for each step of 

the Markov chain

Here we focus on finding efficient Markov 
chains with the appropriate stationary 
distribution. 
– For simplicity, we consider constructing a Markov 

chain with a uniform stationary distribution over the 
state space Ω.

“Coupling”, see 
Ch. 11 of [MU05]
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Revisiting the Independent Revisiting the Independent 
Sets in a GraphSets in a Graph

Given a graph G(V, E).

Let the state space be all of the independent sets 
of G.

Two independent states x and y are neighbors if 
they differ in just one vertex.
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Revisiting the Independent Revisiting the Independent 
Sets in a Graph (contSets in a Graph (cont’’d)d)

The neighbor relationship guarantees that the 
state space is irreducible.
– Since all independent sets can reach (resp., can be 

reached from) the empty independent set by a 
sequence of vertex deletions (resp., vertex additions).
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Revisiting the Independent Revisiting the Independent 
Sets in a Graph (contSets in a Graph (cont’’d)d)

Next we need to establish the transition 
probabilities.
A naïve approach:
– Random walk on the graph of the state space.
– Yet the probability of a vertex is proportional to its 

degree, so this may not lead to a uniform distribution.

Consider the following lemma.
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Lemma 3Lemma 3

For a finite state space Ω and neighborhood structure
{N(x) | x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any
number such that M ≥ N . For all x ∈ Ω, let πx = 1/Ω
be the desired probability of a state x in the stationary
distribution. Consider a Markov chain where

Px,y =

⎧⎨⎩ 1/M if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−N(x)/M if x = y.

If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution.
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That is, if we modify the random walk by giving
each vertex an appropriate self-loop probability,
then we can obtain a uniform stationary distribution.

Let us see the proof as follows.
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Proof of Lemma 3Proof of Lemma 3

For any x ≠ y, since πx = πy and Px,y = Py,x
(= 1 / M), we have 

Then apply the following theorem (Theorem 7.10 
at [MU05]), it follows that the uniform 
distribution is the stationary distribution.

πxPx,y = πyPy,x.

¥
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Theorem 4 (for the proof)Theorem 4 (for the proof)

Consider a finite, irreducible, and ergodic Markov chain
with transition matrix P. If there are nonnegative num-
bers π̄ = (π0, . . . ,πn) such that

Pn
i=0 πi = 1 and if, for

any pair of states i, j,

πiPi,j = πjPj,i,

then π̄ is the stationary distribution corresponding to
P.

Proof: Pleae refer to page 172 in [MU05].
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Example: Independent Sets Example: Independent Sets 
in a Graphin a Graph

Consider the following simple Markov chain 
whose states are independent sets in G(V, E).

1. X0 is an arbitrary independent set in G.
2. To compute Xi+1:

(a) choose a vertex v uniformly at random from V ;
(b) if v ∈ Xi then Xi+1 = Xi \ {v};
(c) if v /∈ Xi and if adding v to Xi still gives an
independent set, then set Xi+1 = Xi ∪ {v};
(d) otherwise, Xi+1 = Xi.
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Example: Independent Sets Example: Independent Sets 
in a Graph (contin a Graph (cont’’d)d)
The neighbors of a state Xi are independent sets 
that differ from Xi in just one vertex.
Since every state is reachable from the empty set, 
the chain is irreducible.
Assume G has at least one edge (u,v), then the 
state {v} has a self-loop (P{v},{v}> 0), thus 
aperiodic.
When Xi ≠ Xj , it follows that PXi, Xj = 1 / |V| or 0, by 
the previous lemma, the stationary distribution is 
the uniform distribution.
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How about the nonHow about the non--uniform uniform 
cases?  cases?  

However, in some other cases, we may 
want to sample from a chain with non-
uniform stationary distribution.

What should we do?

Solution: the Metropolis Algorithm.
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The Metropolis AlgorithmThe Metropolis Algorithm

Let us again assume that we have designed an 
irreducible state space for our Markov chain.

Now we want to construct a Markov chain on this 
state space with a stationary distribution πx = b(x) /
B, where for all x ∈ Ω we have b(x) > 0 and such 
that  B = ∑ x ∈ Ω b(x) is finite.
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Lemma 4Lemma 4

For a finite state space Ω and neighborhood structure
{N(x) | x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any
number such that M ≥ N . For all x ∈ Ω, let πx > 0 be the
desired probability of a state x in the stationary distribu-
tion. Consider a Markov chain where

Px,y =

⎧⎨⎩
(1/M)min(1,πy/πx) if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−Py 6=x Px,y if x = y.

If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution πx.
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Proof of Lemma 4Proof of Lemma 4

The proof is similar to the one of Lemma 3 as 
follows.
For any x ≠ y, if πx ≤ πy , then Px,y = 1 / M and 
Py,x= (1 / M)(πx /πy).
It follows that Px,y= 1 / M = (πy /πx) Py,x .
⇒ πx Px,y = πy Py,x.
The case for πx > πy is similar.
Again, by the previous theorem, πx’s form the 
stationary distribution. ¥
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Example: Independent Sets Example: Independent Sets 
in a Graphin a Graph
Create a Markov chain, in the stationary 
distribution, each independent set I has probability 
proportional to λ|I |, for some λ > 0.

That is, πx = λ|Ix|/B, where Ix is the independent set 
corresponding to state x and B = ∑xλ|Ix|.

Note that, when λ=1, this is the uniform 
distribution.
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Example: Independent Sets Example: Independent Sets 
in a Graph (contin a Graph (cont’’d)d)
Consider the following variation on the previous 
Markov chain for independent sets in a graph G(V, E).

1. X0 is an arbitrary independent set in G.
2. To compute Xi+1:

(a) choose a vertex v uniformly at random from V ;
(b) if v ∈ Xi then Xi+1 = Xi \ {v} with probability
min(1, 1/λ);
(c) if v /∈ Xi and if adding v to Xi still gives an in-
dependent set, then set Xi+1 = Xi ∪ {v} with prob-
ability min(1, λ);
(d) otherwise, Xi+1 = Xi.
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Example: Independent Sets Example: Independent Sets 
in a Graph (contin a Graph (cont’’d)d)

First, we propose a move by choosing a vertex v
to add or delete.
– Each vertex is chosen with probability 1/M, here M = 

|V|.

Second, this proposal is then accepted with 
probability min(1, πy /πx), where x is the current 
state and y is the proposed state where the chain 
will move.
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Example: Independent Example: Independent 
Sets in a Graph (contSets in a Graph (cont’’d)d)

πy /πx
– is “λ” if the chain attempts to add a vertex, and 
– is “1/λ” if the chain attempts to delete a vertex.

Then we obtain the transition probability Px,y is

Thus Lemma 4 applies.

Px,y =
1

M
min(1,

πy
πx
).

¥
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Example: Independent Sets Example: Independent Sets 
in a Graph (contin a Graph (cont’’d)d)

Comments:
– We never need to know B = ∑xλ

|Ix| 

Calculating this sum would cost much time.

– Our Markov chains gives the correct stationary 
distribution by using the ratios πy /πx , which are much 
easier to deal with.
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Thank you.


