
1

2006/7/172006/7/17

Randomized AlgorithmsRandomized Algorithms

The Monte Carlo MethodThe Monte Carlo Method

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang

National Chung Cheng University

2

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 22

ReferencesReferences

Professor S. C. Tsai’s slides.
[MR95][MR95] Randomized Algorithms, Rajeev
Motwani and Prabhakar Raghavan.
[MU05][MU05] Probability and Computing -
Randomized Algorithms and Probabilistic
Analysis, Michael Mitzenmacher and Eli Upfal.
Wikipedia – The Free Encyclopedia

3

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 33

OutlineOutline

Introduction
– The Monte Carlo Method
– PRAS and FPRAS

The DNF Counting Problem
DNF counting algorithms
– A Naïve Approach
– A FPRAS
– Approximate Counting from FPAUS

4

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 44

IntroductionIntroduction

The Monte Carlo method refers to a collection of
tools for estimating values through sampling and
simulation.
Monte Carlo techniques are used extensively in
almost all areas of physical sciences and
engineering.

5

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 55

Introduction (contIntroduction (cont’’d)d)

Let us first consider the following approach for
estimating the value of the constant π .

6

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 66

EstimatingEstimating π

Let (X,Y) be a point chosen uniformly at random
in a 2× 2 square centered at the origin (0,0).

(0,0)

(1,1)

(-1,-1)

(-1,1)

(1,-1)

(0,0)

7

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 77

(0,0)

(1,1)

(-1,-1)

(-1,1)

(1,-1)

1

Estimating (contEstimating (cont’’d)d)π

If we let

Z =

½
1 if

√
X2 + Y 2 ≤ 1,

0 otherwise.

The probability that Z = 1 is exactly
the ratio of the area of the circle To the
area of the square. Hence,

Pr[Z = 1] = π/4.

8

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 88

Assume we run this experiment m times, with Zi
being the value of Z at the ith run.

Estimating (contEstimating (cont’’d)d)π

If W =
Pm
i=1Zi, then

E[W] = E[
mX
i=1

Zi] =
mX
i=1

E[Zi] =
mπ

4
.

Hence W 0 = (4/m)W is a natural estimate for π.

9

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 99

Applying the Chernoff bound, we have

Therefore, by using a sufficiently large number
of samples we can obtain, with high probability,
as tight an approximation of π as we wish.

Estimating (contEstimating (cont’’d)d)π

Pr[|W 0 − π| ≥ επ] = Pr[|W − mπ
4
| ≥ εmπ

4
]

= Pr[|W −E[W]| ≥ εE[W]]

≤ 2e−mπε
2/12.

10

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1010

Definition:
A randomized algorithm gives an (ε,∆)-
approximation for the value V if the output X
of the algorithm satisfies

Pr[|X − V | ≤ εV] ≥ 1−∆.

(ε,∆)-approximation randomized algorithm

11

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1111

The above method for estimating π gives an
(ε,Δ)-approximation, as long as ε < 1 and m
large enough.

2e−mπε
2/12 ≤ ∆ ⇒ m ≥ 12 ln(2/∆)

πε2
.

12

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1212

We may generalize the idea behind our technique
for estimating π to provide a relation between the
number of samples and the quality of the
approximation.

We use the following simple application of the
Chernoff bound throughout our discussing.

13

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1313

Theorem 1Theorem 1

Let X1, . . . , Xm be independent and identically dis-
tributed indicator random variables, with μ = E[Xi].
If m ≥ (3 ln(2/∆))/ε2μ, then

Pr[| 1
m

mX
i=1

Xi − μ| ≥ εμ] ≤ ∆.

That is, m samples provide an (ε,∆)-approximation
for μ.

Proof: Exercise!

14

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1414

Approximation SchemesApproximation Schemes

There are problems for which the existence of an
efficient (polynomial time) algorithm that gives
an exact answer would imply that P = NP.

Hence it is unlikely that such an algorithm will
be found.

So we eye on approximation algorithms instead.

15

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1515

Approximation Schemes Approximation Schemes
(cont(cont’’d)d)

For approximation algorithms, there are some
important approximation schemes as follows.
– Polynomial time approximation schemes (PTAS)
– Fully polynomial time approximation schemes

(FPTAS)
– Polynomial randomized approximation schemes

(PRAS)
– Fully polynomial randomized approximation schemes

(FPRAS)
–

We will focus on this scheme in this talk.
. . .

16

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1616

NotesNotes……

Here we are considering couting problems
that map inputs x to values V(x).

For example, given an graph, we might
want to know an approximation to the
number of independent sets in the graph.

17

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1717

PRASPRAS

A PRAS for a problem is a randomized algorithm
for which, given an input x and any parameters ε
and ∆ with 0 < ε,∆ < 1, the algorithm outputs an
(ε,∆)-approximation to V (x) in time poly(|x|).

So, what is FPRAS?

18

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1818

FPRASFPRAS

A FPRAS for a problem is a randomized algorithm
for which, given an input x and any parameters ε and
∆ with 0 < ε,∆ < 1, the algorithm outputs an (ε,∆)-
approximation to V (x) in time poly(|x|, 1/ε, ln(1/∆)).

19

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 1919

The DNF Counting ProblemThe DNF Counting Problem

Let us consider the problem of counting
the number of satisfying assignments of a
Boolean formula in disjunctive normal
form (DNF).

20

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2020

The DNF Counting Problem The DNF Counting Problem
(cont(cont’’d)d)

Definition: a DNF formula is a disjunction of
clauses C1∨ C2∨…∨ Ct , where each clause is a
conjunction of literals.

For example, the following is a DNF formula:

(X1 ∧X2 ∧X3) ∨ (X2 ∧X4) ∨ (X1 ∧X3 ∧X4)

21

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2121

The DNF Counting Problem The DNF Counting Problem
(cont(cont’’d)d)

Counting the number of satisfying assignments of a
DNF formula is actually #P-complete (pronounced
“sharp-P”).

What is #P?

22

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2222

#P#P

A problem is in the class #P if there is a
polynomial time, nondeterministic Turing
machine such that, for any input I, the number
of accepting computations equals the number of
different solutions associated with the input I.

Clearly, a #P problem must be at least hard as
the corresponding NP problem.

23

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2323

#P#P--completecomplete

A problem is #P-complete if and only if it is in
#P, and every problem in #P can be reduced to it
in polynomial time.

Counting the number of Hamiltonian cycles in a
graph and counting the number of perfect
matching in a bipartite graph are examples of
#P-complete problems.

24

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2424

How Hard Is the DNF How Hard Is the DNF
Counting Problem?Counting Problem?

Negation (X1 ∨X2 ∨X3) ∧ (X2 ∨X4) ∧ (X1 ∨X3 ∨X4)

⇒ (X1 ∧X2 ∧X3) ∨ (X2 ∧X4) ∨ (X1 ∧X3 ∧X4)

F Given any CNF formula H, we can apply de
Morgans law to obtain a DNF formula forH, the
negation of the formula H, with the same number
of variables and clauses.

F The formula H has a satisfying assignment ⇔ the
number of satisfying assignments ofH is less than
2n. (assume that H has n variables)

25

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2525

How Hard Is the DNF How Hard Is the DNF
Counting Problem? (contCounting Problem? (cont’’d)d)

So the DNF counting problem is at least hard as
solving the NP-complete problem SAT.

Thus the DNF counting problem is actually a
#P-complete problem.
– Why?

26

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2626

How Hard Is the DNF How Hard Is the DNF
Counting Problem? (contCounting Problem? (cont’’d)d)
It is unlikely that there is a polynomial time
algorithm that computes the exact number of
solutions of a #P-complete problem.
– Such an algorithm would imply that P = NP.

It is therefore interesting to find an approximation
scheme, such as FPRAS, for the number of
satisfying assignments of a DNF formula.

27

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2727

A NaA Naïïve Algorithmve Algorithm

Let c(F) be the number of satisfying assignments
of a DNF formula F.
– Here we assume that c(F) > 0, since it is easy to check

whether c(F) = 0 before running our sampling
algorithm.

28

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2828

DNF counting algorithm IDNF counting algorithm I

Input: A DNF formula F with n variables
Output: Y = an approximation of c(F)

F X ← 0.
F For k = 1 to m, do:

? Generate a random assignment for the n vari-
ables, chosen uniformly at random from all 2n

possible assignments.

? If the random assignment satisfies F , then
X ← X + 1.

F Return Y ← (X/m)2n.

29

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 2929

AnalysisAnalysis

F LetXk =

⎧⎨⎩ 1 If the kth iteration in the algorithm
generated a satisfying assignment;

0 otherwise.

F Thus Pr[Xk = 1] = c(F)/2
n.

F Let X =
mP
k=1

Xk, then E[X] = m · c(F)/2n.

F Hence,

E[Y] =
E[X] · 2n

m
= c(F).

30

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3030

Analysis (contAnalysis (cont’’d)d)

F By Theorem 1, X/m gives an (ε,∆)-approximation of
c(F)/2n, and hence Y gives an (ε,∆)-approximation of
c(F), when

m ≥ 3 · 2
n ln(2/∆))

ε2c(F)
.

F If c(F) ≥ 2n/α(n) for some polynomial α, then we will
obtain that m is polynomial in n, 1/ε, and ln(1/∆).

F But, if c(F) = poly(n), then m = O(2n/c(F)), which is
not (always) polynomial!

31

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3131

Analysis (contAnalysis (cont’’d)d)

What is the problem?

The problem with this sampling approach is that
the set of satisfying assignments might not be
sufficiently dense in the set of all assignments.

32

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3232

Revising Algorithm IRevising Algorithm I

We now revise the naïve algorithm to obtain a
FPRAS.

Let a DNF formula F = C1 ∨ C2 ∨ … ∨ Ct.
– Assume WLOG that no clause includes a variable and

its negation.

If clause Ci has li literals, then there are exactly
2n − li satisfying assignments for Ci.

33

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3333

Revising Algorithm I (contRevising Algorithm I (cont’’d)d)

Let SCi denote the set of assignments that satisfy
clause i and let U = {(i, a): 1≤ i ≤ t and a ∈ SCi}.

Notice that |U | =
tP
i=1

|SCi|.

The value that we want to estimate is c(F) =

|
tS
i=1

SCi|. Hence c(F) ≤ |U |, since an assignment
can satisfy more than one clause and thus appear
in more than one pair in U .

34

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3434

Revising Algorithm I (contRevising Algorithm I (cont’’d)d)

To estimate c(F), we define a subset of U with
size c(F).

We construct this set by selecting, for each
satisfying assignment of F, exactly one pair of U
that has this assignment.

Specifically, we consider the following set S:
S = {(i, a)|1 ≤ i ≤ t and a ∈ SCi, a /∈ SCj for j < i}.

|S| = c(F)

35

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3535

Then let us consider the second DNF
counting algorithm.

36

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3636

DNF counting algorithm II:DNF counting algorithm II:

Constructing S

Input: A DNF formula F with n variables
Output: Y = an approximation of c(F)

1. X ← 0.
2. For k = 1 to m, do:

(a). With probability |SCi|/
Pt

i=1 |SCi| choose,
uniformly at random, an assignment a ∈ SCi.
(b). If a is not in any SCj , j < i, then X ←
X + 1.

3. Return Y ← (X/m)
Pt

i=1 |SCi|.

37

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3737

AnalysisAnalysis

Note that |S| / |U| ≥ 1/t.
– Since each assignment can satisfy at most t different

clauses.

Now our S is relatively dense in U.

Because the ith clause has |SCi| satisfying
assignments, we have

Pr[i is chosen] =
|SCi|Pt
i=1 |SCi|

=
|SCi|
|U | .

Remark: |U | =
tP
i=1

|SCi| and
|S| = c(F).

或者用|U|≤t|S|來想

38

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3838

Analysis (contAnalysis (cont’’d)d)

Thus the probability that we choose the pair (i, a)
is

Pr[(i, a) is chosen] = Pr[i is chosen] ·Pr[a is chosen | i is chosen]
=

|SCi|
|U | ·

1

|SCi|
=

1

|U | .

39

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 3939

Theorem 2Theorem 2

DNF counting algorithm II is a FPRAS for the DNF
counting problem when m = d(3t/ε2) ln(2/∆)e.

40

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4040

Proof of Theorem 2Proof of Theorem 2

Step 2(a) chooses an element of U uniformly at
random.

The probability that this element belongs to S is at
least 1/t. (by the previous analysis)

Fix any ε,∆ > 0, and let m = d(3t/ε2) ln(2/∆)e.

So m is polynomial in t, ε, and ln(1/∆) .

41

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4141

Proof of Theorem 2Proof of Theorem 2

Besides, the processing time of each sample is
polynomial in t.
– You can check this by observing 2(a) and 2(b).

By Theorem 1, with m samples, X/m gives an
(ε,Δ)-approximation of c(F)/|U| and hence Y
gives an (ε,Δ)-approximation of c(F).

¥

42

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4242

Approximate uniform Approximate uniform
samplingsampling
Now, we are going to present the outline of a
general reduction

This general reduction shows that, if we can
sample almost uniformly a solution to a self-
reducible combinatorial problem, then we can
construct a randomized algorithm that
approximately counts the number of solutions
to the problem.

43

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4343

Approximate uniform Approximate uniform
sampling (contsampling (cont’’d)d)

We will demonstrate this technique for the
problem of counting the number of independent
sets in a graph.

We first need to formulate the concept of
approximate uniform sampling.

44

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4444

Approximate uniform Approximate uniform
sampling (contsampling (cont’’d)d)

In this setting, we are given a problem instance in
the form of an input x, and there is an underlying
finite sample space Ω(x) associated with the input.

Let us see the following two definitions to make
clear the concept of approximate uniform
sampling.

45

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4545

εε -- uniform Sampleuniform Sample

Let w be the (random) output of a sampling algo-
rithm for a finite sample space Ω. The sampling
algorithm generates an ε-uniform sample of Ω if, for
any subset S of Ω,

|Pr[w ∈ S]− |S||Ω| | ≤ ε.

46

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4646

FPAUSFPAUS

A sampling algorithm is a fully polynomial almost
uniform sampler (FPAUS) for a problem if, given
an input x and a parameter ε > 0, it gener-
ates an ε-uniform sample of Ω(x) and runs in time
poly(ln 1

ε , |x|).

47

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4747

FPRAS through FPAUSFPRAS through FPAUS

Consider an FPAUS for independent sets
which would take as input a graph G(V, E)
and a parameter ε.

The sample space:
– the set of all independent sets in G.

48

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4848

FPRAS through FPAUS FPRAS through FPAUS
(cont(cont’’d)d)

Goal:
– Given an FPAUS for independent sets, we

construct an FPRAS for counting the number
of independent sets.

Assume G has m edges, and let e1,…,em be an
arbitrary ordering of the edges.

49

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 4949

FPRAS through FPAUS FPRAS through FPAUS
(cont(cont’’d)d)

Let Ei be the set of the first i edges in E and let
Gi = (V, Ei).
– Note that G = Gm .
– Gi−1 is obtained from Gi by removing a single edge ei.

Let Ω(Gi) denote the setset of independent sets in
Gi.

50

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5050

FPRAS through FPAUS FPRAS through FPAUS
(cont(cont’’d)d)

|Ω(G0)| = 2n. Why?

To estimate |Ω(G)|, we need good estimates for

The number of independent sets in G can then be
expressed as

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)|×

|Ω(Gm−1)|
|Ω(Gm−2)|×. . .×

|Ω(G1)|
|Ω(G0)|×|Ω(G0)|.

ri = |Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| , for i = 1, . . . ,m.

Since G_0 has no edges, every subset of V is an independent set and
$|\Omega(G_0)| =2^n$.
r_i 就是前面所講的self-reducible的概念。

51

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5151

FPRAS through FPAUS FPRAS through FPAUS
(cont(cont’’d)d)

F Let eri be an estimate for the ratio ri, then we
have |Ω(G)| ∼ 2n

mQ
i=1

eri.
F To evaluate the error in our esitmate, we need

to bound the ratio R =
mQ
i=1

eri
ri

F In order to have an (ε,∆)-approximation, we
want Pr[|R− 1| ≤ ε] ≥ 1−∆

Let us see the following lemma.

52

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5252

Lemma 1Lemma 1

Suppose that for all i, 1 ≤ i ≤ m, eri is an
(ε/2m,∆/m)-approximation for ri. Then

Pr[|R− 1| ≤ ε] ≥ 1−∆.

(By the definition of (ε, Δ)-approximation randomized
algorithms.)

53

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5353

Proof of Lemma 1Proof of Lemma 1

By the assumption of Lemma 1, for each 1 ≤ i ≤ m,
we have

Equivalently, for each 1 ≤ i ≤ m,

Pr[|eri − ri| ≤ ε

2m
ri] ≥ 1− ∆

m
.

Pr[|eri − ri| > ε

2m
ri] <

∆

m
.

54

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5454

Proof of Lemma 1 (contProof of Lemma 1 (cont’’d)d)

By the union bound, we have

Then we obtain

Equivalently,

Pr[
m\
i=1

{|eri − ri| ≤ ε

2m
ri}] ≥ 1−∆.

Pr[
m[
i=1

{|eri − ri| > ε

2m
ri}] < ∆.

Pr[
m\
i=1

{1− ε

2m
≤ eri
ri
≤ 1 + ε

2m
}] ≥ 1−∆.

55

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5555

Proof of Lemma 1 (contProof of Lemma 1 (cont’’d)d)

Thus we have

Therefore,

Pr[(1− ε

2m
)m ≤

mY
i=1

eri
ri
≤ (1 + ε

2m
)m] ≥ 1−∆.

Pr[1− ε ≤ R ≤ 1 + ε] ≥ 1−∆.

(since 1−ε ≤ (1− ε
2m)

m and (1− ε
2m)

m ≤ 1+ε.)
¥

56

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5656

Lemma 1Lemma 1

Suppose that for all i, 1 ≤ i ≤ m, eri is an
(ε/2m,∆/m)-approximation for ri. Then

Pr[|R− 1| ≤ ε] ≥ 1−∆.

57

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5757

Estimating Estimating rrii

Hence all we need is a method for obtaining an
(ε/2m, Δ/m)-approximation algorithm for the ri.

An algorithm estimating ri is given as follows.

58

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5858

Estimating Estimating rrii

Input: Graphs Gi−1 = (V,Ei−1) and Gi = (V,Ei)
Output: eri = an approximation of ri.

1. X ← 0.
2. Repeat for M = d1296m2ε−2 ln(2m/∆)e indepen-
dent trials:
(a) Generate an (ε/6m)-uniform sample from
Ω(Gi−1).
(b) If the sample is an independent set in Gi,
then X ← X + 1.

3. Return eri ← X/M .

59

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 5959

Estimating Estimating rrii (cont(cont’’d)d)

The constants in the procedure were chosen to
facilitate the proof of the following lemma,
which justifies the algorithm’s approximation .

60

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6060

Lemma 2Lemma 2

When m ≥ 1 and 0 < ε ≤ 1, the procedure for
estimating ri yields an (ε/2m,∆/m)-approximation
for ri.

61

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6161

Proof of Lemma 2Proof of Lemma 2

First we will show that ri is not too small,
– avoiding the problem we have introduced previously.

Suppose Gi−1 and Gi differ in that edge {u, v} is
in Gi but not in Gi−1.

Ω(Gi) ⊆ Ω(Gi−1).
– since an independent set in Gi is also an independent

set in Gi−1.

62

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6262

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Each independent set in Ω(Gi−1)\Ω(Gi) contains
both u and v.
– Why?

Associate each I ∈ Ω(Gi−1)\Ω(Gi) with an
independent set I \{v} ∈ Ω(Gi).

In this mapping, note that I ′∈ Ω(Gi) is associated
with no more than one independent set I ′ ∪{v}∈
Ω(Gi−1)\Ω(Gi), thus |Ω(Gi−1)\Ω(Gi)| ≤ |Ω(Gi)|.

第一點：

假設 $\Omega(G_{i-1})\setminus\Omega(G_i)$ 中有一個independent set I_k 不同時包含u
和v，則G_{i-1} 加入 (u,v) 變成 G_i 之後，

I_k依然屬於 $\Omega(G_i)$, 於是就矛盾了。

第三點：

因為I’ 頂多associated I’\cup {v} 或 I’\cup {u}其中之一。若兩者都有，則違反第一
點。

63

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6363

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

It follows that

Now consider our M samples.

Let a random variable Xk = 1 if the kth sample is
in Ω(Gi), and Xk = 0 otherwise

ri =
|Ω(Gi)|
|Ω(Gi−1)| =

|Ω(Gi)|
|Ω(Gi)|+ |Ω(Gi−1) \ Ω(Gi)| ≥

1

2
.

64

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6464

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Because our samples are generated by an (ε/6m)-
uniform sampler, by definition,

| Pr[Xk = 1]− |Ω(Gi)|
|Ω(Gi−1) | ≤

ε

6m
.

⇒ | E[Xk]− |Ω(Gi)|
|Ω(Gi−1)| | ≤

ε

6m
.

65

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6565

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

By linearity of expectations,

Therefore, we have

| E[
PM

k=1Xk
M

]− |Ω(Gi)|
|Ω(Gi−1)| | ≤

ε

6m
.eri

ri

|E[eri]− ri| = |E[
PM

i=kXk
M

]− |Ω(Gi)|
|Ω(Gi−1)|

≤ ε

6m
.

因為平均的期望值一定比最大X_k之期望值小，比最小的X_k之期望值大，

因此平均的期望值與$|\Omega(G_i)| / |\Omega(G_{i-1})|$ 的差距必定也滿足任一
E[X_k]的與之的差距。

66

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6666

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Since ri ≥ ½, we have

E[eri] ≥ ri − ε

6m
≥ 1
2
− ε

6m
≥ 1
3
.

67

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6767

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

If M ≥ 3 ln(2m/∆)
(ε/12m)2(1/3) = 1296m2ε−2 ln 2m∆ (obtained

from Theorem 1), then

Pr[| eri
E[eri] − 1| ≥ ε

12m
]

= Pr[|ri −E[eri]| ≥ ε

12m
E[eri]

≤ ∆

m

68

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6868

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Equivalently, with probability 1 − Δ/m,

1− ε

12m
≤ eri
E[eri] ≤ 1+ ε

12m
. ------- (1)

1− ε

6mri
≤ E[eri]

ri
≤ 1 + ε

6mri
.

As |E[eri]− ri| ≤ ε
6m , we have

Using that ri ≥ 1/2 then yields
1− ε

3m
≤ E[eri]

ri
≤ 1 + ε

3m
. -------------------- (2)

69

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 6969

Proof of Lemma 2 (contProof of Lemma 2 (cont’’d)d)

Combining (1) and (2), with probability 1 − Δ/m,
we have

Thus this gives the desired (ε/2m, Δ/m)-
approximation.

(1− ε

3m
)(1− ε

3m
) ≤ eri

ri
≤ (1 + ε

3m
)(1 +

ε

12m
).

≤ ≤
1 +

ε

2m
1− ε

2m

¥

70

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7070

Lemma 2Lemma 2

When m ≥ 1 and 0 < ε ≤ 1, the procedure for
estimating ri yields an (ε/2m,∆/m)-approximation
for ri.

71

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7171

RemarkRemark

The number of samples M is polynomial in m, ε,
and ln Δ−1, and the time for each sample is
polynomial in the size of the graph and ln 1/ε,
we therefore have the following theorem.

72

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7272

Theorem 3 Theorem 3

Given an FPAUS for independent sets in any
graph, we can construct an FPRAS for the num-
ber of independent sets in a graph G.

73

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7373

However,However,……

How to obtain an FPAUS for independent
sets for graphs?
– See Chapter 11, Coupling of Markov Chains,

page 286-289 in [MU05].
– Or consider the Markov chain Monte Carlo

(MCMC) method.

74

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7474

The Markov Chain Monte The Markov Chain Monte
Carlo MethodCarlo Method

The Markov Chain Monte Carlo method provides
a very general approach to sampling from a
desired probability distribution.

Basic idea:
– Define an ergodic Markov chain whose set of states is

the sample space and whose stationary distribution is
the required sampling distribution.

75

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7575

The Markov Chain Monte The Markov Chain Monte
Carlo Method (contCarlo Method (cont’’d)d)

Let X0, X1, … , Xn be a run of the chain.

The Markov chain converges to the stationary
distribution from any starting state X0.

After a sufficiently large number of steps r, the
distribution of the state Xr will be close to the
stationary distribution, so it can be used as a
sample.

76

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7676

The Markov Chain Monte The Markov Chain Monte
Carlo Method (contCarlo Method (cont’’d)d)

Similarly, repeating this argument with Xr as the
starting point, we can use X2r as another sample,
and so on.
We can therefore use the sequence of states Xr ,
X2r , … as almost independent samples from the
stationary distribution of the Markov chain.

77

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7777

The Markov Chain Monte The Markov Chain Monte
Carlo Method (contCarlo Method (cont’’d)d)

The efficiency of MCMC depends on
– how large r must be to ensure a suitable good sample
– how much computation is required for each step of

the Markov chain

Here we focus on finding efficient Markov
chains with the appropriate stationary
distribution.
– For simplicity, we consider constructing a Markov

chain with a uniform stationary distribution over the
state space Ω.

“Coupling”, see
Ch. 11 of [MU05]

78

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7878

Revisiting the Independent Revisiting the Independent
Sets in a GraphSets in a Graph

Given a graph G(V, E).

Let the state space be all of the independent sets
of G.

Two independent states x and y are neighbors if
they differ in just one vertex.

79

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 7979

Revisiting the Independent Revisiting the Independent
Sets in a Graph (contSets in a Graph (cont’’d)d)

The neighbor relationship guarantees that the
state space is irreducible.
– Since all independent sets can reach (resp., can be

reached from) the empty independent set by a
sequence of vertex deletions (resp., vertex additions).

80

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8080

Revisiting the Independent Revisiting the Independent
Sets in a Graph (contSets in a Graph (cont’’d)d)

Next we need to establish the transition
probabilities.
A naïve approach:
– Random walk on the graph of the state space.
– Yet the probability of a vertex is proportional to its

degree, so this may not lead to a uniform distribution.

Consider the following lemma.

81

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8181

Lemma 3Lemma 3

For a finite state space Ω and neighborhood structure
{N(x) | x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any
number such that M ≥ N . For all x ∈ Ω, let πx = 1/Ω
be the desired probability of a state x in the stationary
distribution. Consider a Markov chain where

Px,y =

⎧⎨⎩ 1/M if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−N(x)/M if x = y.

If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution.

82

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8282

That is, if we modify the random walk by giving
each vertex an appropriate self-loop probability,
then we can obtain a uniform stationary distribution.

Let us see the proof as follows.

83

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8383

Proof of Lemma 3Proof of Lemma 3

For any x ≠ y, since πx = πy and Px,y = Py,x
(= 1 / M), we have

Then apply the following theorem (Theorem 7.10
at [MU05]), it follows that the uniform
distribution is the stationary distribution.

πxPx,y = πyPy,x.

¥

84

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8484

Theorem 4 (for the proof)Theorem 4 (for the proof)

Consider a finite, irreducible, and ergodic Markov chain
with transition matrix P. If there are nonnegative num-
bers π̄ = (π0, . . . ,πn) such that

Pn
i=0 πi = 1 and if, for

any pair of states i, j,

πiPi,j = πjPj,i,

then π̄ is the stationary distribution corresponding to
P.

Proof: Pleae refer to page 172 in [MU05].

85

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8585

Example: Independent Sets Example: Independent Sets
in a Graphin a Graph

Consider the following simple Markov chain
whose states are independent sets in G(V, E).

1. X0 is an arbitrary independent set in G.
2. To compute Xi+1:

(a) choose a vertex v uniformly at random from V ;
(b) if v ∈ Xi then Xi+1 = Xi \ {v};
(c) if v /∈ Xi and if adding v to Xi still gives an
independent set, then set Xi+1 = Xi ∪ {v};
(d) otherwise, Xi+1 = Xi.

86

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8686

Example: Independent Sets Example: Independent Sets
in a Graph (contin a Graph (cont’’d)d)
The neighbors of a state Xi are independent sets
that differ from Xi in just one vertex.
Since every state is reachable from the empty set,
the chain is irreducible.
Assume G has at least one edge (u,v), then the
state {v} has a self-loop (P{v},{v}> 0), thus
aperiodic.
When Xi ≠ Xj , it follows that PXi, Xj = 1 / |V| or 0, by
the previous lemma, the stationary distribution is
the uniform distribution.

87

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8787

How about the nonHow about the non--uniform uniform
cases? cases?

However, in some other cases, we may
want to sample from a chain with non-
uniform stationary distribution.

What should we do?

Solution: the Metropolis Algorithm.

88

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8888

The Metropolis AlgorithmThe Metropolis Algorithm

Let us again assume that we have designed an
irreducible state space for our Markov chain.

Now we want to construct a Markov chain on this
state space with a stationary distribution πx = b(x) /
B, where for all x ∈ Ω we have b(x) > 0 and such
that B = ∑ x ∈ Ω b(x) is finite.

89

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 8989

Lemma 4Lemma 4

For a finite state space Ω and neighborhood structure
{N(x) | x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any
number such that M ≥ N . For all x ∈ Ω, let πx > 0 be the
desired probability of a state x in the stationary distribu-
tion. Consider a Markov chain where

Px,y =

⎧⎨⎩
(1/M)min(1,πy/πx) if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−Py 6=x Px,y if x = y.

If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution πx.

90

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9090

Proof of Lemma 4Proof of Lemma 4

The proof is similar to the one of Lemma 3 as
follows.
For any x ≠ y, if πx ≤ πy , then Px,y = 1 / M and
Py,x= (1 / M)(πx /πy).
It follows that Px,y= 1 / M = (πy /πx) Py,x .
⇒ πx Px,y = πy Py,x.
The case for πx > πy is similar.
Again, by the previous theorem, πx’s form the
stationary distribution. ¥

91

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9191

Example: Independent Sets Example: Independent Sets
in a Graphin a Graph
Create a Markov chain, in the stationary
distribution, each independent set I has probability
proportional to λ|I |, for some λ > 0.

That is, πx = λ|Ix|/B, where Ix is the independent set
corresponding to state x and B = ∑xλ|Ix|.

Note that, when λ=1, this is the uniform
distribution.

92

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9292

Example: Independent Sets Example: Independent Sets
in a Graph (contin a Graph (cont’’d)d)
Consider the following variation on the previous
Markov chain for independent sets in a graph G(V, E).

1. X0 is an arbitrary independent set in G.
2. To compute Xi+1:

(a) choose a vertex v uniformly at random from V ;
(b) if v ∈ Xi then Xi+1 = Xi \ {v} with probability
min(1, 1/λ);
(c) if v /∈ Xi and if adding v to Xi still gives an in-
dependent set, then set Xi+1 = Xi ∪ {v} with prob-
ability min(1, λ);
(d) otherwise, Xi+1 = Xi.

93

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9393

Example: Independent Sets Example: Independent Sets
in a Graph (contin a Graph (cont’’d)d)

First, we propose a move by choosing a vertex v
to add or delete.
– Each vertex is chosen with probability 1/M, here M =

|V|.

Second, this proposal is then accepted with
probability min(1, πy /πx), where x is the current
state and y is the proposed state where the chain
will move.

94

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9494

Example: Independent Example: Independent
Sets in a Graph (contSets in a Graph (cont’’d)d)

πy /πx
– is “λ” if the chain attempts to add a vertex, and
– is “1/λ” if the chain attempts to delete a vertex.

Then we obtain the transition probability Px,y is

Thus Lemma 4 applies.

Px,y =
1

M
min(1,

πy
πx
).

¥

95

Computation Theory Lab, CSIE, CCU, TaiwanComputation Theory Lab, CSIE, CCU, Taiwan2006/7/172006/7/17 9595

Example: Independent Sets Example: Independent Sets
in a Graph (contin a Graph (cont’’d)d)

Comments:
– We never need to know B = ∑xλ

|Ix|

Calculating this sum would cost much time.

– Our Markov chains gives the correct stationary
distribution by using the ratios πy /πx , which are much
easier to deal with.

96

Thank you.

