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Introduction

m The Monte Carlo method refers to a collection of
tools for estimating values through sampling and
simulation.

m Monte Carlo techniques are used extensively in
almost all areas of physical sciences and
engineering.
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Introduction (cont’d)

m Let us first consider the following approach for
estimating the value of the constant .




Estimating 7

+

Let (X,Y) be a point chosen uniformly at random
in a 2 X 2 square centered at the origin (0,0).

(-1,1) (1.1)




Estimating 7 (cont’d)
+(-1,1) (1.1)
r 1 If we let
©0,0) 1

1 ifvX24Y2<1,
= )
i ‘ 0 otherwise.
(-11_1) (11_1)

The probability that Z = 1 is exactly
the ratio of the area of the circle To the
area of the square. Hence,

1] =n/4.




Estimating 7 (cont’d)

m Assume we run this experiment m times, with Z,
being the value of Z at the ith run.

It W =", Z, then

EW]=E[)_ 2] =) B[z] ="

Hence W/ = (4/m)W is a natural estimate for .
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Estimating 7 (cont’d)

m Applying the Chernoff bound, we have

mm emm

Pr[|[W' — x| >en] = Pr[|[W — T\ > 1 ]
— Pr[|W — E[W]| > cE[W]
< 26@“52/12,

\

m Therefore, by using a sufficiently large number
of samples we can obtain, with hib}k{probability,
as tight an approximation of 7 as we wish.
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(e, A)-approximation randomized algorithm

+

B Definition:
A randomized algorithm gives an (g,A)-
approximation for the value V if the output X
of the algorithm satisfies

Pr|X — V| <eV]>1-A.

10



m The above method for estimating « gives an
(&, A)-approximation, as long as < 1 and m
large enough.

121n(2/A)

e

26—771775"/12 < A = m >
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+

m We may generalize the idea behind our technique
for estimating 7 to provide a relation between the
number of samples and the quality of the
approximation.

m We use the following simple application of the
Chernoff bound throughout our discussing.

%
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Theorem 1

+

Let X1,...,X,, be independent and identically dis-
tributed indicator random variables, with u = E[X;].
If m > (3In(2/A))/e?u, then

That is, m samples provide an (¢, A)-approximation
for p.

% Proof: Exercise!
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+

Approximation Schemes

m There are problems for which the existence of an
efficient (polynomial time) algorithm that gives
an exact answer would imply that P = NP.

Hence it is unlikely that such an algorithm will
be found.

m SO we eye on approximation algorithms instead.
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Approximation Schemes
(cont’d)

m For approximation algorithms, there are some
important approximation schemes as follows.
— Polynomial time approximation schemes (PTAS)

— Fully polynomial time approximation schemes
(FVAS))

— Polynomial randomized approximation schemes
(PRAS)

— Fully polynomial randomized approximation schemes
(FPRAS)

We will focus on this scheme in this talk.
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Notes...

+

m Here we are considering couting problems
that map inputs x to values V(x).

m For example, given an graph, we might
want to know an approximation to the
number of independent sets in the graph.

%
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PRAS

A PRAS for a problem is a randomized algorithm
for which, given an input x and any parameters &
and A with 0 < ¢, A < 1, the algorithm outputs an
(e, A)-approximation to V() in time poly(|z|).

So, what is FPRAS?
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FPRAS

A FPRAS for a problem is a randomized algorithm
for which, given an input z and any parameters € and
A with 0 < e, A < 1, the algorithm outputs an (g, A)-
approximation to V' (z) in time
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The DNF Counting Problem

m Let us consider the problem of counting
the number of satisfying assignments of a
Boolean formula in disjunctive normal
form (DNF).
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The DNF Counting Problem
(cont’d)

m Definition: a DNF formula is a disjunction of
clauses C;v C,v...v C,, where each clause is a
conjunction of literals.

m For example, the following is a DNF formula:

(X1 AX2AX3)V (Xo AXy) V(X1 AX3AXy)
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The DNF Counting Problem
(cont’d)

m Counting the number of satisfying assignments of a
DNF formula is actually #P-complete (pronounced
“sharp-P™).

What is #P?
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#P
.

A problem is in the class #P if there is a
polynomial time, nondeterministic Turing
machine such that, for any input I, the number
of accepting computations equals the number of
different solutions associated with the input I.

m Clearly, a #P problem must be at least hard as
the corresponding NP problem.

%
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#P-complete

m A problem is #P-complete if and only if it is in
#P, and every problem in #P can be reduced to it

in polynomial time.

m Counting the number of Hamiltonian cycles in a
graph and counting the number of perfect
matching in a bipartite graph are examples of
#P-complete problems.

%
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How Hard Is the DNF
Counting Problem?

<|; Given any CNF formula H, we can apply de
Morgans law to obtain a DNF formula for H, the
negation of the formula H, with the same number
of variables and clauses.

. (X1 VX VX)) A X VXA (X1 VX3 VXY)
Negation _ —
= (X1 AX2AXs)V (XaAXy)VXLAXsAXy)

The formula H has a satisfying assignment < the
number of satisfying assignments of H is less than
2™. (assume that H has n variables)

24



How Hard Is the DNF
Counting Problem? (cont’d)

+

m So the DNF counting problem is at least hard as
solving the NP-complete problem SAT.

m Thus the DNF counting problem is actually a
#P-complete problem.

— Why?
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How Hard Is the DNF
Counting Problem? (cont’d)

+

m It is unlikely that there is a polynomial time
algorithm that computes the exact number of
solutions of a #P-complete problem.

— Such an algorithm would imply that P = NP.

m It is therefore interesting to find an approximation
scheme, such as FPRAS, for the number of
satisfying assignments of a DNF formula.

%
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A Naive Algorithm
+

m Let c(F) be the number of satisfying assignments
of a DNF formula F.

— Here we assume that c(F) > 0, since it is easy to check

whether ¢(F) = 0 before running our sampling
algorithm.

27



DNF counting algorithm |

Input: A DNF formula F' with n variables
Output: Y = an approximation of ¢(F)

* X 0.
* For k£ =1 to m, do:

Generate a random assignment for the n vari-
ables, chosen uniformly at random from all 2"
possible assignments.

If the random assignment satisfies F', then
X<+~ X+1

* Return Y + (X/m)2".

%
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Analysis

| 1 If the kth iteration in the algorithm
* Let Xi = generated a satisfying assignment;
0 otherwise.

% Thus Pr[X; = 1] = ¢(F)/2™.

* Let X = Y X, then E[X]| =m - c(F)/2™.
k=1

% Hence,

Ey) = 22X _ o p

% ¥
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Analysis (cont’d)

% By Theorem 1, X/m gives an (¢, A)-approximation of
c(F)/2™, and hence Y gives an (e, A)-approximation of
c(F), when

3-2"In(2/A))
e2c¢(F)

* If ¢(F) > 2™ /a(n) for some polynomial «, then we will
obtain that m is polynomial in n,1/e,and In(1/A).

m >

% But, if ¢(F) = poly(n), then m = O(2"/c(F')), which is
not (always) polynomiall
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Analysis (cont’d)

m What is the problem?

m The problem with this sampling approach is that
the set of satisfying assignments
in the set of all assignments.

31



Revising Algorithm |

+

m We now revise the naive algorithm to obtain a
FPRAS.

m Leta DNF formulaF=C, v C,v ... vC.

— Assume WLOG that no clause includes a variable and
its negation.

m If clause C, has [, literals, then there are exactly
2"~ i satisfying assignments for C;.

%
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Revising Algorithm | (cont’d)

4|: Let SC; denote the set of assignments that satisfy
clause i and let U = {(i, a): 1<i<tand a € SCj}.

¢
m Notice that |U| = > |SC;].
i=1

m The value that we want to estimate is ¢(F) =
¢

| IJ SC;|. Hence ¢(F') < |U|, since an assignment
i=1

can satisfy more than one clause and thus appear
in more than one pair in U.

%
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Revising Algorithm | (cont’d)

+

m To estimate c(F), we define a subset of U with
size c(F).

m We construct this set by selecting, for each
satisfying assignment of F, of U
that has this assignment.

m Specifically, we consider the following set S:
S={(,a)]1 <i<tand ac SC;,a¢ SC; for j < i}.

®

1S = c(F)

34



m Then let us consider the second DNF
counting algorithm.
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DNF counting algorithm I1:

T

nput: A DNF formula F' with n variables
Output: Y = an approximation of ¢(F')

1. X < 0.
2. For £k =1 to m, do:

§ (a). With probability [SC;|/ S ¢_; |SC;| choose,

' uniformly at random, an assignment a € SC;.

3. Return Y « (X/m)Y.'_, |SC;l.

Constructing S
% 36
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AnaIySiS Remark: |U| = Xj: |SC;| and
. S| =e(F).
m Note that |S|/|U| > 1.

— Since each assignment can satisfy at most t different
clauses.

m Now our S is relatively dense in U.

m Because the ith clause has |[SCj| satisfying
assignments, we have
|SCi| |8
Seilscil Ul

Pr[i is chosen| =

®

79 |Ul<tiS]
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Analysis (cont’d)

m Thus the probability that we choose the pair (i, a)
IS

Pr((i,a) is chosen] Pr[i is chosen| - Pr[a is chosen | i is chosen)]
SCi| 1

Ul 1SCil

%
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Theorem 2

+DNF counting algorithm II is a FPRAS for the DNF
counting problem when m = [(3t/2)In(2/A)].

39



Proof of Theorem 2

m Step 2(a) chooses an element of U uniformly at
random.

m The probability that this element belongs to S is at
least 1/t. (by the previous analysis)

m Fix any €, A > 0, and let m = [(3t/e?)In(2/A)].

So m is polynomial in ¢,e, and In(1/A) .

%
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Proof of Theorem 2

m Besides, the processing time of each sample is
polynomial in t.
— You can check this by observing 2(a) and 2(b).

m By Theorem 1, with m samples, X/m gives an
(&, A)-approximation of c(F)/|U| and hence Y
gives an (& A )-approximation of c(F).

%
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Approximate uniform
sampling

s

Now, we are going to present the outline of a
general reduction

m This general reduction shows that, if we can
sample almost uniformly a solution to a self-
reducible combinatorial problem, then we can
construct a randomized algorithm that
approximately counts the number of solutions
to the problem.

42
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Approximate uniform
sampling (cont’d)
m We will demonstrate this technique for the

problem of counting the number of independent
sets in a graph.

m We first need to formulate the concept of
approximate uniform sampling.
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Approximate uniform
sampling (cont’d)

m In this setting, we are given a problem instance in
the form of an input x, and there is an underlying
finite sample space Q(x) associated with the input.

m Let us see the following two definitions to make
clear the concept of approximate uniform
sampling.

44



g - uniform Sample

+

Let w be the (random) output of a sampling algo-
rithm for a finite sample space 2. The sampling
algorithm generates an s-uniform sample of € if, for
any subset S of (2,

45



FPAUS

+A sampling algorithm is a fully polynomial almost
uniform sampler (FPAUS) for a problem if, given
an input x and a parameter € > 0, it gener-
ates an of Q(x) and runs in time

poly(In <, |z|).
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FPRAS through FPAUS

m Consider an FPAUS for independent sets
which would take as input a graph G(V, E)
and a parameter &.

m The sample space:
— the set of all independent sets in G.
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FPRAS through FPAUS
(cont’d)

m Goal:

— Given an FPAUS for independent sets, we
construct an FPRAS for counting the number
of independent sets.

m Assume G has m edges, and lete,,...,e, be an
arbitrary ordering of the edges.

%
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FPRAS through FPAUS
(cont’d)

m Let E; be the set of the first i edges in E and let
G;= (V. E).
— Note that G =G, .
— G,_, is obtained from G; by removing a single edge e;.

m Let QO(G,) denote the set of independent sets in

49



FPRAS through FPAUS
(cont’d)

The number of independent sets in G can then be
expressed as

2Gm)|  JUCm-1)| | |G|

Q(G)| = X |(Go).

T 1GCm )] 2GCm) QUG
m |Q(Gy)| = 2". Why?

m To estimate [Q(G)|, we need good estimates for

= 19 = gy

Jore=1,...,m.

Since $G_0$ has no edges, every subset of $V$ is an independent set and
$/\Omega(G_0)| =2"n$.

$r_i$ fiEk Ly A puself-reduciblef g, ©



FPRAS through FPAUS
(cont’d)

% Let r; be an estimate for the ratio r;, then we
m
have |Q(G)| ~ 2" ] ;-
i=1

% To evaluate the error in our esitmate, we need

to bound the ratio R = [] &
i=1 "

% In order to have an (e, A)-approximation, we

want Pr[[R—1|<¢]|>1-A
Let us see the following lemma.

51
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Lemma 1

Suppose that for all 7, 1 < ¢ < m, 7; is an
(e/2m, A /m)-approximation for ;. Then

Pr|[R—1/<¢ >1-A.

(By the definition of (¢, A)-approximation randomized
algorithms.) |
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Proof of Lemma 1

m By the assumption of Lemma 1, foreach 1 <i<m,
we have

_ A
Pr[|f; — | < — ] >1- —.
2m m

m Equivalently, foreach 1 <i<m,

Pr(|7; — 1| > — 1] <

JAN
2m m

53



Proof of Lemma 1 (cont’d)

T

By the union bound, we have

m B c
PI‘[U{‘Tl = T’Z" > Q—mn}] < A.
1=1

m Then we obtain

m o )
Pr[lg{]ri —ri| < %ri}] >1-—A.
m Equivalently,

m

€ T €
P 1—- — < 2<14+4—YVY>1-A.
() <Z<1+ Y

. 2m — 7y

54
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Proof of Lemma 1 (cont’d)

m Thus we have

m Therefore,

Prll —e<R<1+4¢>1-A.

(since1—e < (1—5=)™ and (1—-5%)™ < 14¢.)

55



Lemma 1

Suppose that for all 7, 1 < ¢ < m, 7; is an
(e/2m, A /m)-approximation for ;. Then

Pr|[R—1/<¢ >1-A.
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Estimating 7;

m Hence all we need is a method for obtaining an
(e/2m, A/m)-approximation algorithm for the r;.

m An algorithm estimating r; is given as follows.
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Estimating 7;

AIEnput: Graphs G;_1 = (V,E;_1) and G; = (V, E;)

Output: 7; = an approximation of r;.

1. X < 0.
2. Repeat for M = [1296m?c~2?In(2m/A)] indepen-
dent trials:

(a) Generate an (¢/6m)-uniform sample from
QGi-1).
(b) If the sample is an independent set in Gj,
then X < X +1.

3. Return 7; «+ X/M.

%

58



Estimating r; (cont’d)

m The constants in the procedure were chosen to
facilitate the proof of the following lemma,
which justifies the algorithm’s approximation .
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Lemma 2

When m > 1 and 0 < ¢ < 1, the procedure for
estimating r; yields an (¢/2m, A/m)-approximation
for r;.

60



Proof of Lemma 2

T

First we will show that r; is not too small,
— avoiding the problem we have introduced previously.

m Suppose G;_; and G; differ in that edge {u, v} is
in G; but notin G;_,.

m Q(G) = QG y).
— since an independent set in G; is also an independent
setin G; ;.

%
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- Hr

Eists

s

Proof of Lemma 2 (cont’d)

+

uandv.
— Why?

m independent set in Q(G;_,)\Q(G;) contains

m Associate each | € Q(G;_,)\Q(G;) with an
independent set | \{v} € Q(G,)).

m In this mapping, note that I'e Q(G;) is associated
with independent set | U{v}e
Q(Gi_)\Q(G)), thus [Q(C;_)\Q(G))| < [QA(G))].

$\Omega(G_{i-1})\setminus\Omega(G_i)$ HI E J
HISG_{i-13$ v * $(u,v)$ @ny $G_is

$I_K${A IR $\Omega(G_i)$, HTRLi"F

’:)J#%![_:

[NERI T %associated I'cup {v} #Y I'cup {u}H 1V~ -

%![‘o

|ﬁ|ndependent set $1_k$ [l € E[J U

J o

:ﬁfﬂ J EUQFJJQ
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Proof of Lemma 2 (cont’d)

m |t follows that

_ €2(G)| N
QG| + 1QUGi—1) \ QG)| —
m Now consider our M samples.

m Letarandom variable X, = 1 if the kth sample is
in Q(G;), and X, = 0 otherwise

%
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Proof of Lemma 2 (cont’d)

+

m Because our samples are generated by an (e/6m)-
uniform sampler, by definition,

AR
TGy | S e
2G)| | e
1Q(Gi-1)| < 6m’

| Pr[X;, = 1]

= | E[X)] -

64



Proof of Lemma 2 (cont’d)

m By linearity of expectations,

(G| 2
) e -
ﬁ’ UGi-1)] 6m

m Therefore, we have

SM Xn, |G

Bf] - = M 9G]

a ,

PRIERT PR i~ P A X K il ] o P XKD P s

PPt SR = g\Omega(G_i)| / NOmega(G_{i-1})[$ v PR o4 iy L (= —

E[X_K]fv=s 1 pozs B
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Proof of Lemma 2 (cont’d)

+

m Since r; > %, we have

€

E[f]>r— — > -

> =

1
- om 2 om




Proof of Lemma 2 (cont’d)

3In(2m/A —_ m .
If M > SHEnSs = 1296m%e~2In 22 (obtained

from Theorem 1), then
7

E[r;]

Pr{|r; — E[ri]| >

Pr|| =

67



Proof of Lemma 2 (cont’d)

+

m Equivalently, with probability 1 — A/m,

£ i
1-— < —= .
12m ~ E[fy] — =1+ om 12m

m As ‘E[’F;] _Tz" S GLm’
£ E[r;] £
L= 6mr; = T4 s 1+ 6mr;

= Using that frz- > 1/2 then yields
1— = < Bl

% ¥

we have




%

Proof of Lemma 2 (cont’d)

m Combining (1) and (2), with probability 1 — A/m,
we have

~

15 I3 T; € I3
1——V)(1——)< =<1+ —7)(1+—7/).
( 3m)( 3m)_ri _( +3m>( +12 )
N\

€
1+5—
m Thus this gives the desired (e/2m, A/m)-
approximation.
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Lemma 2

When m > 1 and 0 < ¢ < 1, the procedure for
estimating r; yields an (¢/2m, A/m)-approximation
for r;.

70



Remark

m The number of samples M is polynomial in m, ¢,
and In A1, and the time for each sample is
polynomial in the size of the graph and In 1/,
we therefore have the following theorem.
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Theorem 3

Given an FPAUS for independent sets in any
graph, we can construct an FPRAS for the num-
ber of independent sets in a graph G.

72



+

However,...

How to obtain an FPAUS for independent
sets for graphs?

— See Chapter 11, Coupling of Markov Chains,
page 286-289 in [MUO05].

— Or consider the Markov chain Monte Carlo
(MCMC) method.
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The Markov Chain Monte
Carlo Method

m The Markov Chain Monte Carlo method provides
a very general approach to sampling from a
desired probability distribution.

m Basic idea:

— Define an ergodic Markov chain whose
the sample space and whose
the required sampling distribution.
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The Markov Chain Monte
Carlo Method (cont’d)

m Let X, Xy, ..., X, be a run of the chain.

m The Markov chain converges to the stationary
distribution from any starting state X,.

m After a sufficiently large number of steps r, the
distribution of the state X, will be close to the
stationary distribution, so it can be used as a
sample.
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The Markov Chain Monte
Carlo Method (cont’d)

m Similarly, repeating this argument with X, as the
starting point, we can use X,, as another sample,
and so on.

m We can therefore use the sequence of states X, ,
Xop, ... @S almost independent samples from the
stationary distribution of the Markov chain.

%
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The Markov Chain Monte
Carlo Method (cont’d)

m The efficiency of MCMC depends on
— how large r must be to ensure a suitable good sample

m Here we focus on finding efficient Markov
chains with the appropriate stationary
distribution.

— For simplicity, we consider constructing a Markov
chain with a uniform stationary distribution over the

% state space Q.
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Revisiting the Independent
Sets in a Graph

+

m Given a graph G(V, E).

m Let the state space be all of the independent sets
of G.

m Two independent states x and y are neighbors if
they differ in just one vertex.

%
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Revisiting the Independent
Sets in a Graph (cont’d)

m The neighbor relationship guarantees that the
state space is irreducible.

— Since all independent sets can reach (resp., can be
reached from) the empty independent set by a
sequence of vertex deletions (resp., vertex additions).
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Revisiting the Independent
Sets in a Graph (cont’d)

m Next we need to establish the transition
probabilities.

m A naive approach:
— Random walk on the graph of the state space.
— Yet the probability of a vertex is proportional to its
degree, so this

m Consider the following lemma.
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Lemma 3

AIE‘or a finite state space {2 and neighborhood structure
{N(z) | z € Q}, let N = max,cq |N(z)|. Let M be any
number such that M > N. For all z € Q, let m, = 1/
be the desired probability of a state x in the stationary
distribution. Consider a Markov chain where

1/M if x #y and y € N(x),
0 if x #y and y ¢ N(x),
1—N(z)/M ifzx=y.

If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution.
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That is, if we modify the random walk by giving
each vertex an appropriate self-loop probability,
then we can obtain a uniform stationary distribution.

Let us see the proof as follows.

82



Proof of Lemma 3

T

For any x #Y, since 7z, = 7z, and P, , =P
(=1/M), we have

Wl gy = T D e

yX

m Then apply the following theorem (Theorem 7.10
at [MUOQ5S]), it follows that the uniform
distribution is the stationary distribution.

%
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Theorem 4 (for the proof)

Consider a finite, irreducible, and ergodic Markov chain
with transition matrix P. If there are nonnegative num-
bers ™ = (mo, ..., my) such that Y . m; = 1 and if, for
any pair of states 1, 7,

milsj = T L,

then 7 is the stationary distribution corresponding to
P.

Proof: Pleae refer to page 172 in [MUO05].
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Example: Independent Sets

INn a Graph
+

m Consider the following simple Markov chain
whose states are independent sets in G(V, E).

1. Xy is an arbitrary independent set in G.

2. To compute X, ;:
(a) choose a vertex v uniformly at random from V;
(b) if v € X; then X;,; = X; \ {v};
(c) if v ¢ X; and if adding v to X; still gives an
independent set, then set X; 1 = X; U{v};
(d) otherwise, X;11 = Xj.

%
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Example: Independent Sets
In a Graph (cont’d)

4|: The neighbors of a state X; are independent sets
that differ from X; in just one vertex.

m Since every state is reachable from the empty set,
the chain is irreducible.

m Assume G has at least one edge (u,v), then the
state {v} has a self-loop (P 13> 0), thus
aperiodic.

m When X; = X;, it follows that Py; x,= 1/|V| or 0, by
the previous lemma, the stationary distribution is

% the uniform distribution.
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How about the non-uniform
cases?

+

m However, in some other cases, we may
want to sample from a chain with
stationary distribution.
m What should we do?

m Solution: the Metropolis Algorithm.

%
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The Metropolis Algorithm

m Let us again assume that we have designed an
irreducible state space for our Markov chain.

= Now we want to construct a Markov chain on this
state space with a stationary distribution 7, = b(x)/
B, where for all x € Q we have b(x) > 0 and such
that B =2, . o b(X) is finite.
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Lemma 4

AIE‘or a finite state space {2 and neighborhood structure
{N(z) | z € Q}, let N = max,cq |N(z)|. Let M be any
number such that M > N. For all z € €, let m, > 0 be the
desired probability of a state x in the stationary distribu-
tion. Consider a Markov chain where

(1/M)min(1, 7, /7;) if z #y and y € N(z),
0 if x #y and y ¢ N(x),
1—Zy7éum’y if x =y.
If this chain is irreducile and aperiodic, then the stationary
distribution is the uniform distribution =,.
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Proof of Lemma 4

+- The proof is similar to the one of Lemma 3 as
follows.
m Forany x=Y, if n,< x,, then P,,=1/M and
Py x= (1/M)(x/ ).
m [t follows that P, = 1/M = (z,/ 7) Py .
—> g Fhegy= Gy P

Xy
m The case for 7z, > 7, is similar.

m Again, by the previous theorem, z,’s form the
stationary distribution. n
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Example: Independent Sets

INn a Graph
+

m Create a Markov chain, in the stationary
distribution, each independent set | has probability
proportional to Al'l, for some A > 0.

m That is, 7, = AX/B, where |, is the independent set
corresponding to state x and B = X, A/,

m Note that, when A=1, this is the uniform
distribution.

%
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Example: Independent Sets
In a Graph (cont’d)

<|: Consider the following variation on the previous
Markov chain for independent sets in a graph G(V, E).

1. Xy is an arbitrary independent set in G.

2. To compute X;41:
(a) choose a vertex v uniformly at random from V;
(b) if v € X; then X;1; = X, \ {v} with probability
min(1,1/\);
(c) if v ¢ X; and if adding v to X still gives an in-
dependent set, then set X;11 = X; U {v} with prob-
ability min(1, \);
(d) otherwise, X;11 = X;.
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Example: Independent Sets
In a Graph (cont’d)

m First, we propose a move by choosing a vertex v
to add or delete.

— Each vertex is chosen with probability 1/M, here M =
V.

m Second, this proposal is then accepted with
probability min(1, 7,/ ), where X is the current
state and y is the proposed state where the chain
will move.
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Example: Independent
Sets in a Graph (cont’d)

m /7y
— is “A” if the chain attempts to add a vertex, and
— 1s “1/0” if the chain attempts to delete a vertex.

m Then we obtain the transition probability P, is

1 ,
By = = min(1, W—z)

m Thus Lemma 4 applies.

%



Example: Independent Sets
In a Graph (cont’d)

m Comments:

— We never need to know B = X Al
m Calculating this sum would cost much time.

— Our Markov chains gives the correct stationary
distribution by using the ratios 7,/ 7, which are much
easier to deal with.
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Thank you.




