Randomized Algorithms

The Monte Carlo Method

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University
2006/7/17

References

- Professor S. C. Tsai's slides.
- [MR95] Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan.
- [MU05] Probability and Computing Randomized Algorithms and Probabilistic Analysis, Michael Mitzenmacher and Eli Upfal.
- Wikipedia - The Free Encyclopedia

Outline

- Introduction

- The Monte Carlo Method
- PRAS and FPRAS
- The DNF Counting Problem
- DNF counting algorithms
- A Naïve Approach
- A FPRAS
- Approximate Counting from FPAUS

I ntroduction

- The Monte Carlo method refers to a collection of tools for estimating values through sampling and simulation.
- Monte Carlo techniques are used extensively in almost all areas of physical sciences and engineering.

Introduction (cont'd)

- Let us first consider the following approach for estimating the value of the constant π.

Estimating π

Let (X, Y) be a point chosen uniformly at random in a 2×2 square centered at the origin $(0,0)$.

Estimating π (cont'd)

The probability that $Z=1$ is exactly the ratio of the area of the circle To the area of the square. Hence,

$$
\operatorname{Pr}[Z=1]=\pi / 4 .
$$

Estimating π (cont'd)

- Assume we run this experiment m times, with Z_{i} being the value of Z at the i th run.

If $W=\sum_{i=1}^{m} Z_{i}$, then

$$
\mathbf{E}[W]=\mathbf{E}\left[\sum_{i=1}^{m} Z_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Z_{i}\right]=\frac{m \pi}{4} .
$$

Hence $W^{\prime}=(4 / m) W$ is a natural estimate for π.

Estimating π (cont'd)

- Applying the Chernoff bound, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\left|W^{\prime}-\pi\right| \geq \varepsilon \pi\right] & =\operatorname{Pr}\left[\left|W-\frac{m \pi}{4}\right| \geq \frac{\varepsilon m \pi}{4}\right] \\
& =\operatorname{Pr}[|W-\mathbf{E}[W]| \geq \varepsilon \mathbf{E}[W]] \\
& \leq 2 e^{-m \pi \varepsilon^{2} / 12}
\end{aligned}
$$

- Therefore, by using a sufficiently large number of samples we can obtain, with high probability, as tight an approximation of π as we wish.

(ε, Δ)-approximation randomized algorithm

- Definition:

A randomized algorithm gives an (ε, Δ) approximation for the value V if the output X of the algorithm satisfies

$$
\operatorname{Pr}[|X-V| \leq \varepsilon V] \geq 1-\Delta .
$$

- The above method for estimating π gives an (ε, Δ)-approximation, as long as $\varepsilon<1$ and m large enough.

$$
2 e^{-m \pi \varepsilon^{2} / 12} \leq \Delta \Rightarrow m \geq \frac{12 \ln (2 / \Delta)}{\pi \varepsilon^{2}} .
$$

- We may generalize the idea behind our technique for estimating π to provide a relation between the number of samples and the quality of the approximation.
- We use the following simple application of the Chernoff bound throughout our discussing.

Theorem 1

Let X_{1}, \ldots, X_{m} be independent and identically distributed indicator random variables, with $\mu=\mathbf{E}\left[X_{i}\right]$. If $m \geq(3 \ln (2 / \Delta)) / \varepsilon^{2} \mu$, then

$$
\operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \geq \varepsilon \mu\right] \leq \Delta .
$$

That is, m samples provide an (ε, Δ)-approximation for μ.

Proof: Exercise!

Approximation Schemes

- There are problems for which the existence of an efficient (polynomial time) algorithm that gives an exact answer would imply that $\mathbf{P}=\mathbf{N P}$.
- Hence it is unlikely that such an algorithm will be found.
- So we eye on approximation algorithms instead.

Approximation Schemes (cont'd)

- For approximation algorithms, there are some important approximation schemes as follows.
- Polynomial time approximation schemes (PTAS)
- Fully polynomial time approximation schemes (FPTAS)
- Polynomial randomized approximation schemes (PRAS)
- Fully polynomial randomized approximation schemes (FPRAS)

We will focus on this scheme in this talk.

Notes...

- Here we are considering couting problems that map inputs x to values $V(x)$.
- For example, given an graph, we might want to know an approximation to the number of independent sets in the graph.

PRAS

A PRAS for a problem is a randomized algorithm for which, given an input x and any parameters ε and Δ with $0<\varepsilon, \Delta<1$, the algorithm outputs an (ε, Δ)-approximation to $V(x)$ in time poly $(|x|)$.

So, what is FPRAS?

FPRAS

A FPRAS for a problem is a randomized algorithm for which, given an input x and any parameters ε and Δ with $0<\varepsilon, \Delta<1$, the algorithm outputs an (ε, Δ) approximation to $V(x)$ in time poly $(|x|, 1 / \varepsilon, \ln (1 / \Delta))$.

The DNF Counting Problem

- Let us consider the problem of counting the number of satisfying assignments of a Boolean formula in disjunctive normal form (DNF).

The DNF Counting Problem (cont'd)

- Definition: a DNF formula is a disjunction of clauses $C_{1} \vee C_{2} \vee \ldots \vee C_{t}$, where each clause is a conjunction of literals.
- For example, the following is a DNF formula:

$$
\left(X_{1} \wedge \bar{X}_{2} \wedge X_{3}\right) \vee\left(X_{2} \wedge X_{4}\right) \vee\left(\bar{X}_{1} \wedge X_{3} \wedge X_{4}\right)
$$

The DNF Counting Problem (cont'd)

- Counting the number of satisfying assignments of a DNF formula is actually \#P-complete (pronounced "sharp-P").

What is \#P?

\#P

- A problem is in the class \#P if there is a polynomial time, nondeterministic Turing machine such that, for any input I, the number of accepting computations equals the number of different solutions associated with the input I.
- Clearly, a \#P problem must be at least hard as the corresponding NP problem.

\#P-complete

- A problem is \#P-complete if and only if it is in \#P, and every problem in \#P can be reduced to it in polynomial time.
- Counting the number of Hamiltonian cycles in a graph and counting the number of perfect matching in a bipartite graph are examples of \#P-complete problems.

How Hard Is the DNF Counting Problem?

* Given any CNF formula H, we can apply de Morgans law to obtain a DNF formula for \bar{H}, the negation of the formula H, with the same number of variables and clauses.

$$
\begin{array}{cl}
\text { Negation } & \left(\bar{X}_{1} \vee X_{2} \vee \bar{X}_{3}\right) \wedge\left(\bar{X}_{2} \vee \bar{X}_{4}\right) \wedge\left(X_{1} \vee \bar{X}_{3} \vee \bar{X}_{4}\right) \\
\Rightarrow & \left(X_{1} \wedge \bar{X}_{2} \wedge X_{3}\right) \vee\left(X_{2} \wedge X_{4}\right) \vee\left(\bar{X}_{1} \wedge X_{3} \wedge X_{4}\right)
\end{array}
$$

\star The formula H has a satisfying assignment \Leftrightarrow the number of satisfying assignments of \bar{H} is less than 2^{n}. (assume that H has n variables)

How Hard Is the DNF Counting Problem? (cont'd)
 - So the DNF counting problem is at least hard as solving the NP-complete problem SAT.

- Thus the DNF counting problem is actually a \#P-complete problem.
- Why?

How Hard Is the DNF Counting Problem? (cont'd)

- It is unlikely that there is a polynomial time algorithm that computes the exact number of solutions of a \#P-complete problem.
- Such an algorithm would imply that $\mathbf{P}=\mathbf{N P}$.
- It is therefore interesting to find an approximation scheme, such as FPRAS, for the number of satisfying assignments of a DNF formula.

A Naïve Algorithm

- Let $c(F)$ be the number of satisfying assignments of a DNF formula F.
- Here we assume that $c(F)>0$, since it is easy to check whether $c(F)=0$ before running our sampling algorithm.

DNF counting algorithm I

Input: A DNF formula F with n variables
Output: $Y=$ an approximation of $c(F)$
$\star X \leftarrow 0$.
\star For $k=1$ to m, do:
\star Generate a random assignment for the n variables, chosen uniformly at random from all 2^{n} possible assignments.
\star If the random assignment satisfies F, then $X \leftarrow X+1$.
\star Return $Y \leftarrow(X / m) 2^{n}$.

Analysis

\star Let $X_{k}=\left\{\begin{array}{l}1 \quad \begin{array}{l}\text { If the } k \text { th iteration in the algorithm } \\ \text { generated a satisfying assignment; } \\ 0 \\ \text { otherwise }\end{array}\end{array}\right.$
\star Thus $\operatorname{Pr}\left[X_{k}=1\right]=c(F) / 2^{n}$.
\star Let $X=\sum_{k=1}^{m} X_{k}$, then $\mathbf{E}[X]=m \cdot c(F) / 2^{n}$.
\star Hence,

$$
\mathbf{E}[Y]=\frac{\mathbf{E}[X] \cdot 2^{n}}{m}=c(F)
$$

Analysis (cont'd)

ネ By Theorem $1, X / m$ gives an (ε, Δ)-approximation of $c(F) / 2^{n}$, and hence Y gives an (ε, Δ)-approximation of $c(F)$, when

$$
m \geq \frac{\left.3 \cdot 2^{n} \ln (2 / \Delta)\right)}{\varepsilon^{2} c(F)}
$$

\star If $c(F) \geq 2^{n} / \alpha(n)$ for some polynomial α, then we will obtain that m is polynomial in $n, 1 / \varepsilon$, and $\ln (1 / \Delta)$.
\star But, if $c(F)=\operatorname{poly}(n)$, then $m=O\left(2^{n} / c(F)\right)$, which is not (always) polynomial!

Analysis (cont'd)

- What is the problem?
- The problem with this sampling approach is that the set of satisfying assignments might not be sufficiently dense in the set of all assignments.

Revising Algorithm I

■ We now revise the naïve algorithm to obtain a FPRAS.

- Let a DNF formula $\mathrm{F}=C_{1} \vee C_{2} \vee \ldots \vee C_{t}$.
- Assume WLOG that no clause includes a variable and its negation.
- If clause C_{i} has l_{i} literals, then there are exactly $2^{n-l_{i}}$ satisfying assignments for C_{i}.

Revising Algorithm I (cont'd)

- Let $S C_{i}$ denote the set of assignments that satisfy clause i and let $U=\left\{(i, a): 1 \leq i \leq t\right.$ and $\left.a \in S C_{i}\right\}$.
- Notice that $|U|=\sum_{i=1}^{t}\left|S C_{i}\right|$.
- The value that we want to estimate is $c(F)=$ $\left|\bigcup_{i=1}^{t} S C_{i}\right|$. Hence $c(F) \leq|U|$, since an assignment can satisfy more than one clause and thus appear in more than one pair in U.

Revising Algorithm I (cont'd)

- To estimate $c(F)$, we define a subset of U with size $c(F)$.
- We construct this set by selecting, for each satisfying assignment of F, exactly one pair of U that has this assignment.
- Specifically, we consider the following set S :

$$
S=\left\{(i, a) \mid 1 \leq i \leq t \text { and } a \in S C_{i}, a \notin S C_{j} \text { for } j<i\right\}
$$

$|S|=c(F)$

- Then let us consider the second DNF counting algorithm.

DNF counting algorithm II:

Input: A DNF formula F with n variables
Output: $Y=$ an approximation of $c(F)$

$$
\text { 1. } X \leftarrow 0 \text {. }
$$

2. For $k=1$ to m, do:

$$
\begin{aligned}
& \text { (a). With probability }\left|S C_{i}\right| / \sum_{i=1}^{t}\left|S C_{i}\right| \text { choose, } \\
& \text { uniformly at random, an assignment } a \in S C_{i} \text {. } \\
& \text { (b). If } a \text { is not in any } S C_{j}, j<i \text {, then } X \leftarrow \\
& X+1 .
\end{aligned}
$$

3. Return $Y \leftarrow(X / m) \sum_{i=1}^{t}\left|S C_{i}\right|$.

Analysis

$$
\begin{aligned}
& \text { Remark: }|U|=\sum_{i=1}^{t}\left|S C_{i}\right| \text { and } \\
& |S|=c(F)
\end{aligned}
$$

－Note that $|S| /|U| \geq 1 / t$ ．
－Since each assignment can satisfy at most t different clauses．
－Now our S is relatively dense in U ．
－Because the ith clause has $\left|S C_{i}\right|$ satisfying assignments，we have

$$
\operatorname{Pr}[i \text { is chosen }]=\frac{\left|S C_{i}\right|}{\sum_{i=1}^{t}\left|S C_{i}\right|}=\frac{\left|S C_{i}\right|}{|U|} .
$$

或者用 $|U| \leq t|S|$ 來想

Analysis (cont'd)

- Thus the probability that we choose the pair (i, a) is
$\operatorname{Pr}[(i, a)$ is chosen $]=\operatorname{Pr}[i$ is chosen $] \cdot \operatorname{Pr}[a$ is chosen $\mid i$ is chosen $]$

$$
\begin{aligned}
& =\frac{\left|S C_{i}\right|}{|U|} \cdot \frac{1}{\left|S C_{i}\right|} \\
& =\frac{1}{|U|} .
\end{aligned}
$$

Theorem 2

DNF counting algorithm II is a FPRAS for the DNF counting problem when $m=\left\lceil\left(3 t / \varepsilon^{2}\right) \ln (2 / \Delta)\right\rceil$.

Proof of Theorem 2

- Step 2(a) chooses an element of U uniformly at random.
- The probability that this element belongs to S is at least 1/t. (by the previous analysis)
- Fix any $\varepsilon, \Delta>0$, and let $m=\left\lceil\left(3 t / \varepsilon^{2}\right) \ln (2 / \Delta)\right\rceil$.

So m is polynomial in t, ε, and $\ln (1 / \Delta)$.

Proof of Theorem 2

- Besides, the processing time of each sample is polynomial in t.
- You can check this by observing 2(a) and 2(b).
- By Theorem 1, with m samples, X / m gives an (ε, Δ)-approximation of $c(F) /|U|$ and hence Y gives an (ε, Δ)-approximation of $c(F)$.

Approximate uniform sampling

- Now, we are going to present the outline of a general reduction
- This general reduction shows that, if we can sample almost uniformly a solution to a selfreducible combinatorial problem, then we can construct a randomized algorithm that approximately counts the number of solutions to the problem.

Approximate uniform sampling (cont'd)

- We will demonstrate this technique for the problem of counting the number of independent sets in a graph.
- We first need to formulate the concept of approximate uniform sampling.

Approximate uniform sampling (cont'd)

- In this setting, we are given a problem instance in the form of an input x, and there is an underlying finite sample space $\Omega(x)$ associated with the input.
- Let us see the following two definitions to make clear the concept of approximate uniform sampling.

ε - uniform Sample

Let w be the (random) output of a sampling algorithm for a finite sample space Ω. The sampling algorithm generates an ε-uniform sample of Ω if, for any subset S of Ω,

$$
\left|\operatorname{Pr}[w \in S]-\frac{|S|}{|\Omega|}\right| \leq \varepsilon .
$$

FPAUS

A sampling algorithm is a fully polynomial almost uniform sampler (FPAUS) for a problem if, given an input x and a parameter $\varepsilon>0$, it generates an ε-uniform sample of $\Omega(x)$ and runs in time poly $\left(\ln \frac{1}{\varepsilon},|x|\right)$.

FPRAS through FPAUS

- Consider an FPAUS for independent sets which would take as input a graph $G(V, E)$ and a parameter ε.
- The sample space:
- the set of all independent sets in G.

FPRAS through FPAUS (cont'd)
 - Goal:

- Given an FPAUS for independent sets, we construct an FPRAS for counting the number of independent sets.
- Assume G has m edges, and let e_{1}, \ldots, e_{m} be an arbitrary ordering of the edges.

FPRAS through FPAUS (cont'd)

- Let E_{i} be the set of the first i edges in E and let $G_{i}=\left(V, E_{i}\right)$.
- Note that $G=G_{m}$.
- G_{i-1} is obtained from G_{i} by removing a single edge e_{i}.
- Let $\Omega\left(G_{i}\right)$ denote the set of independent sets in G_{i}.

FPRAS through FPAUS （cont＇d）

The number of independent sets in G can then be expressed as

$$
\begin{aligned}
& |\Omega(G)|=\frac{\left|\Omega\left(G_{m}\right)\right|}{\left|\Omega\left(G_{m-1}\right)\right|} \times \frac{\left|\Omega\left(G_{m-1}\right)\right|}{\left|\Omega\left(G_{m-2}\right)\right|} \times \ldots \times \frac{\left|\Omega\left(G_{1}\right)\right|}{\left|\Omega\left(G_{0}\right)\right|} \times\left|\Omega\left(G_{0}\right)\right| . \\
& \text { ■ }\left|\Omega\left(G_{0}\right)\right|=2^{n} . \text { Why? }
\end{aligned}
$$

－To estimate $|\Omega(G)|$ ，we need good estimates for

$$
r_{i}=|\Omega(G)|=\frac{\left|\Omega\left(G_{m}\right)\right|}{\left|\Omega\left(G_{m-1}\right)\right|}, \text { for } i=1, \ldots, m
$$

Since $\$ G _0 \$$ has no edges，every subset of $\$ V \$$ is an independent set and $\$ \mid \backslash$ Omega（G＿0）｜$=2 \wedge n \$$ ．
\＄r＿i\＄就是前面所講的self－reducible的概念。

FPRAS through FPAUS (cont'd)

\star Let $\widetilde{r_{i}}$ be an estimate for the ratio r_{i}, then we have $|\Omega(G)| \sim 2^{n} \prod_{i=1}^{m} \widetilde{r_{i}}$.

* To evaluate the error in our esitmate, we need to bound the ratio $R=\prod_{i=1}^{m} \frac{\widetilde{r_{i}}}{r_{i}}$
* In order to have an (ε, Δ)-approximation, we want $\operatorname{Pr}[|R-1| \leq \varepsilon] \geq 1-\Delta$

Let us see the following lemma.

Lemma 1

Suppose that for all $i, 1 \leq i \leq m, \widetilde{r_{i}}$ is an $(\varepsilon / 2 m, \Delta / m)$-approximation for r_{i}. Then

$$
\operatorname{Pr}[|R-1| \leq \varepsilon] \geq 1-\Delta
$$

(By the definition of (ε, Δ)-approximation randomized algorithms.) \triangleright

Proof of Lemma 1

- By the assumption of Lemma 1, for each $1 \leq i \leq m$, we have

$$
\operatorname{Pr}\left[\left|\widetilde{r}_{i}-r_{i}\right| \leq \frac{\varepsilon}{2 m} r_{i}\right] \geq 1-\frac{\Delta}{m} .
$$

- Equivalently, for each $1 \leq i \leq m$,

$$
\operatorname{Pr}\left[\left|\widetilde{r_{i}}-r_{i}\right|>\frac{\varepsilon}{2 m} r_{i}\right]<\frac{\Delta}{m} .
$$

Proof of Lemma 1 (cont'd)

- By the union bound, we have

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{m}\left\{\left\{\widetilde{r}_{i}-r_{i} \left\lvert\,>\frac{\varepsilon}{2 m} r_{i}\right.\right\}\right]<\Delta .\right.
$$

- Then we obtain

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{m}\left\{\left|\widetilde{r}_{i}-r_{i}\right| \leq \frac{\varepsilon}{2 m} r_{i}\right\}\right] \geq 1-\Delta .
$$

- Equivalently,

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{m}\left\{1-\frac{\varepsilon}{2 m} \leq \frac{\widetilde{r}_{i}}{r_{i}} \leq 1+\frac{\varepsilon}{2 m}\right\}\right] \geq 1-\Delta .
$$

Proof of Lemma 1 (cont'd)

- Thus we have

$$
\operatorname{Pr}\left[\left(1-\frac{\varepsilon}{2 m}\right)^{m} \leq \prod_{i=1}^{m} \frac{\widetilde{r_{i}}}{r_{i}} \leq\left(1+\frac{\varepsilon}{2 m}\right)^{m}\right] \geq 1-\Delta .
$$

- Therefore,

$$
\operatorname{Pr}[1-\varepsilon \leq R \leq 1+\varepsilon] \geq 1-\Delta
$$

$$
\left(\text { since } 1-\varepsilon \leq\left(1-\frac{\varepsilon}{2 m}\right)^{m} \text { and }\left(1-\frac{\varepsilon}{2 m}\right)^{m} \leq 1+\varepsilon\right. \text {.) }
$$

Lemma 1

Suppose that for all $i, 1 \leq i \leq m, \widetilde{r_{i}}$ is an $(\varepsilon / 2 m, \Delta / m)$-approximation for r_{i}. Then

$$
\operatorname{Pr}[|R-1| \leq \varepsilon] \geq 1-\Delta .
$$

Estimating r_{i}

- Hence all we need is a method for obtaining an ($\varepsilon / 2 m, \Delta / m$)-approximation algorithm for the r_{i}.
- An algorithm estimating r_{i} is given as follows.

Estimating $\boldsymbol{r}_{\boldsymbol{i}}$

Input: Graphs $G_{i-1}=\left(V, E_{i-1}\right)$ and $G_{i}=\left(V, E_{i}\right)$
Output: $\widetilde{r}_{i}=$ an approximation of r_{i}.

1. $X \leftarrow 0$.
2. Repeat for $M=\left\lceil 1296 m^{2} \varepsilon^{-2} \ln (2 m / \Delta)\right\rceil$ independent trials:
(a) Generate an $(\varepsilon / 6 m)$-uniform sample from $\Omega\left(G_{i-1}\right)$.
(b) If the sample is an independent set in G_{i}, then $X \leftarrow X+1$.
3. Return $\widetilde{r_{i}} \leftarrow X / M$.

Estimating r_{i} (cont'd)

- The constants in the procedure were chosen to facilitate the proof of the following lemma, which justifies the algorithm's approximation .

Lemma 2

When $m \geq 1$ and $0<\varepsilon \leq 1$, the procedure for estimating r_{i} yields an $(\varepsilon / 2 m, \Delta / m)$-approximation for r_{i}.

Proof of Lemma 2

- First we will show that r_{i} is not too small,
- avoiding the problem we have introduced previously.
- Suppose G_{i-1} and G_{i} differ in that edge $\{u, v\}$ is in G_{i} but not in G_{i-1}.
- $\Omega\left(G_{i}\right) \subseteq \Omega\left(G_{i-1}\right)$.
- since an independent set in G_{i} is also an independent set in G_{i-1}.

Proof of Lemma 2 （cont＇d）

－Each independent set in $\Omega\left(G_{i-1}\right) \backslash \Omega\left(G_{i}\right)$ contains both u and v ．
－Why？
－Associate each $I \in \Omega\left(G_{i-1}\right) \backslash \Omega\left(G_{i}\right)$ with an independent set $I \backslash\{v\} \in \Omega\left(G_{i}\right)$ ．
－In this mapping，note that $I^{\prime} \in \Omega\left(G_{i}\right)$ is associated with no more than one independent set $I^{\prime} \cup\{v\} \in$ $\Omega\left(G_{i-1}\right) \backslash \Omega\left(G_{i}\right)$ ，thus $\left|\Omega\left(G_{i-1}\right) \backslash \Omega\left(G_{i}\right)\right| \leq\left|\Omega\left(G_{i}\right)\right|$ ．

第一點：

假設 \＄ $\operatorname{COmega}\left(G_{-}\{i-1\}\right)$ \setminus\Omega（G＿i）\＄中有一個independent set \＄I＿k\＄不同時包含u和 v ，則 $\$ \mathrm{~S}_{-}\{\mathrm{i}-1\}$ \＄加入 $\$(u, v)$ \＄變成 \＄G＿i\＄之後，
\＄I＿k\＄依然屬於 \＄ 1 Omega（G＿i）\＄，於是就矛盾了。

第三點：

因爲I＇頂多associated I＇\cup $\{v\}$ 或 $I^{\prime} \backslash c u p\{u\}$ 其中之一。若兩者都有，則違反第一點。

Proof of Lemma 2 (cont'd)

- It follows that

$$
r_{i}=\frac{\left|\Omega\left(G_{i}\right)\right|}{\left|\Omega\left(G_{i-1}\right)\right|}=\frac{\left|\Omega\left(G_{i}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|+\left|\Omega\left(G_{i-1}\right) \backslash \Omega\left(G_{i}\right)\right|} \geq \frac{1}{2} .
$$

- Now consider our M samples.
- Let a random variable $X_{k}=1$ if the k th sample is in $\Omega\left(G_{i}\right)$, and $X_{k}=0$ otherwise

Proof of Lemma 2 (cont'd)

- Because our samples are generated by an ($\varepsilon / 6 m$)uniform sampler, by definition,

$$
\begin{aligned}
&\left|\operatorname{Pr}\left[X_{k}=1\right]-\frac{\left|\Omega\left(G_{i}\right)\right|}{\mid \Omega\left(G_{i-1}\right)}\right| \leq \frac{\varepsilon}{6 m} . \\
& \Rightarrow \quad\left|\mathbf{E}\left[X_{k}\right]-\frac{\left|\Omega\left(G_{i}\right)\right|}{\left|\Omega\left(G_{i-1}\right)\right|}\right| \leq \frac{\varepsilon}{6 m} .
\end{aligned}
$$

Proof of Lemma 2 （cont＇d）

－By linearity of expectations，

－Therefore，we have

$$
\begin{aligned}
\left|\mathrm{E}\left[\widetilde{r_{i}}\right]-r_{i}\right| & =\left\lvert\, \mathrm{E}\left[\frac{\sum_{i=k}^{M} X_{k}}{M}\right]-\frac{\left|\Omega\left(G_{i}\right)\right|}{\left|\Omega\left(G_{i-1}\right)\right|}\right. \\
& \leq \frac{\varepsilon}{6 m} .
\end{aligned}
$$

因爲平均的期望値一定比最大X＿k之期望值小，比最小的X＿k之期望値大，
 E［X＿k］的與之的差距。

Proof of Lemma 2 (cont'd)

- Since $r_{i} \geq 1 / 2$, we have

$$
\mathbf{E}\left[\widetilde{r}_{i}\right] \geq r_{i}-\frac{\varepsilon}{6 m} \geq \frac{1}{2}-\frac{\varepsilon}{6 m} \geq \frac{1}{3}
$$

Proof of Lemma 2 (cont'd)

If $M \geq \frac{3 \ln (2 m / \Delta)}{(\varepsilon / 12 m)^{2}(1 / 3)}=1296 m^{2} \varepsilon^{-2} \ln \frac{2 m}{\Delta}$ (obtained from Theorem 1), then

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\frac{\widetilde{r_{i}}}{\mathbf{E}\left[\widetilde{r_{i}}\right]}-1\right| \geq \frac{\varepsilon}{12 m}\right] \\
= & \operatorname{Pr}\left[\left|r_{i}-\mathbf{E}\left[\widetilde{r_{i}}\right]\right| \geq \frac{\varepsilon}{12 m} \mathbf{E}\left[\widetilde{r_{i}}\right]\right. \\
\leq & \frac{\Delta}{m}
\end{aligned}
$$

Proof of Lemma 2 (cont'd)

- Equivalently, with probability $1-\Delta / m$,

$$
\begin{equation*}
1-\frac{\varepsilon}{12 m} \leq \frac{\widetilde{r_{i}}}{\mathbf{E}\left[\widetilde{r_{i}}\right]} \leq 1+\frac{\varepsilon}{12 m} \tag{1}
\end{equation*}
$$

- As $\left|\boldsymbol{E}\left[\widetilde{r}_{i}\right]-r_{i}\right| \leq \frac{\varepsilon}{6 m}$, we have

$$
1-\frac{\varepsilon}{6 m r_{i}} \leq \frac{\mathbf{E}\left[\widetilde{r}_{i}\right]}{r_{i}} \leq 1+\frac{\varepsilon}{6 m r_{i}}
$$

- Using that $r_{i} \geq 1 / 2$ then yields

$$
\begin{equation*}
1-\frac{\varepsilon}{3 m} \leq \frac{\mathbf{E}\left[\widetilde{r_{i}}\right]}{r_{i}} \leq 1+\frac{\varepsilon}{3 m} \tag{2}
\end{equation*}
$$

Proof of Lemma 2 (cont'd)

- Combining (1) and (2), with probability $1-\Delta / m$, we have

$$
\begin{aligned}
& \left(1-\frac{\varepsilon}{3 m}\right)\left(1-\frac{\varepsilon}{3 m}\right) \leq \frac{\widetilde{r}_{i}}{r_{i}} \leq\left(1+\frac{\varepsilon}{3 m}\right)\left(1+\frac{\varepsilon}{12 m}\right) . \\
& 1-\frac{\varepsilon}{2 m}
\end{aligned}
$$

- Thus this gives the desired $(\varepsilon / 2 m, \Delta / m)$ approximation.

Lemma 2

When $m \geq 1$ and $0<\varepsilon \leq 1$, the procedure for estimating r_{i} yields an $(\varepsilon / 2 m, \Delta / m)$-approximation for r_{i}.

Remark

- The number of samples M is polynomial in m, ε, and $\ln \Delta^{-1}$, and the time for each sample is polynomial in the size of the graph and $\ln 1 / \varepsilon$, we therefore have the following theorem.

Theorem 3

Given an FPAUS for independent sets in any graph, we can construct an FPRAS for the number of independent sets in a graph G.

However,...

- How to obtain an FPAUS for independent sets for graphs?
- See Chapter 11, Coupling of Markov Chains, page 286-289 in [MU05].
- Or consider the Markov chain Monte Carlo (MCMC) method.

The Markov Chain Monte Carlo Method

- The Markov Chain Monte Carlo method provides a very general approach to sampling from a desired probability distribution.
- Basic idea:
- Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

The Markov Chain Monte Carlo Method (cont'd)
 - Let $X_{0}, X_{1}, \ldots, X_{n}$ be a run of the chain.

- The Markov chain converges to the stationary distribution from any starting state X_{0}.
- After a sufficiently large number of steps r, the distribution of the state X_{r} will be close to the stationary distribution, so it can be used as a sample.

The Markov Chain Monte Carlo Method (cont'd)

- Similarly, repeating this argument with X_{r} as the starting point, we can use $X_{2 r}$ as another sample, and so on.
- We can therefore use the sequence of states X_{r}, $X_{2 r}, \ldots$ as almost independent samples from the stationary distribution of the Markov chain.

The Markov Chain Monte Carlo Method (cont'd)

- The efficiency of MCMC depends on
- how large r must be to ensure a suitable good sample
- how much computation is required for each step of the Markov chain
- Here we focus on finding efficient Markov chains with the appropriate stationary distribution.
- For simplicity, we consider constructing a Markov chain with a uniform stationary distribution over the state space Ω.

Revisiting the Independent Sets in a Graph

- Given a graph $G(V, E)$.
- Let the state space be all of the independent sets of G.
- Two independent states x and y are neighbors if they differ in just one vertex.

Revisiting the Independent Sets in a Graph (cont'd)

- The neighbor relationship guarantees that the state space is irreducible.
- Since all independent sets can reach (resp., can be reached from) the empty independent set by a sequence of vertex deletions (resp., vertex additions).

Revisiting the Independent Sets in a Graph (cont'd)

- Next we need to establish the transition probabilities.
- A naïve approach:
- Random walk on the graph of the state space.
- Yet the probability of a vertex is proportional to its degree, so this may not lead to a uniform distribution.
- Consider the following lemma.

Lemma 3

For a finite state space Ω and neighborhood structure $\{N(x) \mid x \in \Omega\}$, let $N=\max _{x \in \Omega}|N(x)|$. Let M be any number such that $M \geq N$. For all $x \in \Omega$, let $\pi_{x}=1 / \Omega$ be the desired probability of a state x in the stationary distribution. Consider a Markov chain where

$$
P_{x, y}= \begin{cases}1 / M & \text { if } x \neq y \text { and } y \in N(x) \\ 0 & \text { if } x \neq y \text { and } y \notin N(x) \\ 1-N(x) / M & \text { if } x=y\end{cases}
$$

If this chain is irreducile and aperiodic, then the stationary distribution is the uniform distribution.

That is, if we modify the random walk by giving each vertex an appropriate self-loop probability, then we can obtain a uniform stationary distribution.

Let us see the proof as follows.

Proof of Lemma 3

- For any $x \neq y$, since $\pi_{x}=\pi_{y}$ and $P_{x, y}=P_{y, x}$ ($=1 / M$), we have

$$
\pi_{x} P_{x, y}=\pi_{y} P_{y, x} .
$$

- Then apply the following theorem (Theorem 7.10 at [MU05]), it follows that the uniform distribution is the stationary distribution.

Theorem 4 (for the proof)

Consider a finite, irreducible, and ergodic Markov chain with transition matrix \mathbf{P}. If there are nonnegative numbers $\bar{\pi}=\left(\pi_{0}, \ldots, \pi_{n}\right)$ such that $\sum_{i=0}^{n} \pi_{i}=1$ and if, for any pair of states i, j,

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i}
$$

then $\bar{\pi}$ is the stationary distribution corresponding to P.

Proof: Pleae refer to page 172 in [MU05].

Example: Independent Sets in a Graph

- Consider the following simple Markov chain whose states are independent sets in $G(V, E)$.

1. X_{0} is an arbitrary independent set in G.
2. To compute X_{i+1} :
(a) choose a vertex v uniformly at random from V;
(b) if $v \in X_{i}$ then $X_{i+1}=X_{i} \backslash\{v\}$;
(c) if $v \notin X_{i}$ and if adding v to X_{i} still gives an independent set, then set $X_{i+1}=X_{i} \cup\{v\}$;
(d) otherwise, $X_{i+1}=X_{i}$.

Example: Independent Sets in a Graph (cont'd)

- The neighbors of a state X_{i} are independent sets that differ from X_{i} in just one vertex.
- Since every state is reachable from the empty set, the chain is irreducible.
- Assume G has at least one edge (u, v), then the state $\{v\}$ has a self-loop $\left(P_{\{v\},\{v\}}>0\right)$, thus aperiodic.
- When $X_{i} \neq X_{j}$, it follows that $P_{X_{i}, X_{j}}=1 /|V|$ or 0 , by the previous lemma, the stationary distribution is the uniform distribution.

How about the non-uniform

cases?

- However, in some other cases, we may want to sample from a chain with nonuniform stationary distribution.
- What should we do?
- Solution: the Metropolis Algorithm.

The Metropolis Algorithm

- Let us again assume that we have designed an irreducible state space for our Markov chain.
- Now we want to construct a Markov chain on this state space with a stationary distribution $\pi_{x}=b(x) /$ B, where for all $x \in \Omega$ we have $b(x)>0$ and such that $B=\sum_{x \in \Omega} b(x)$ is finite.

Lemma 4

For a finite state space Ω and neighborhood structure $\{N(x) \mid x \in \Omega\}$, let $N=\max _{x \in \Omega}|N(x)|$. Let M be any number such that $M \geq N$. For all $x \in \Omega$, let $\pi_{x}>0$ be the desired probability of a state x in the stationary distribution. Consider a Markov chain where

$$
P_{x, y}= \begin{cases}(1 / M) \min \left(1, \pi_{y} / \pi_{x}\right) & \text { if } x \neq y \text { and } y \in N(x) \\ 0 & \text { if } x \neq y \text { and } y \notin N(x) \\ 1-\sum_{y \neq x} P_{x, y} & \text { if } x=y\end{cases}
$$

If this chain is irreducile and aperiodic, then the stationary distribution is the uniform distribution π_{x}.

Proof of Lemma 4

- The proof is similar to the one of Lemma 3 as follows.
- For any $x \neq y$, if $\pi_{x} \leq \pi_{y}$, then $P_{x, y}=1 / M$ and $P_{y, x}=(1 / M)\left(\pi_{x} / \pi_{y}\right)$.
- It follows that $P_{x, y}=1 / M=\left(\pi_{y} / \pi_{x}\right) P_{y, x}$. $\Rightarrow \pi_{x} P_{x, y}=\pi_{y} P_{y, x}$.
- The case for $\pi_{x}>\pi_{y}$ is similar.
- Again, by the previous theorem, π_{x} 's form the stationary distribution.

Example: Independent Sets in a Graph

- Create a Markov chain, in the stationary distribution, each independent set I has probability proportional to $\lambda|I|$, for some $\lambda>0$.
- That is, $\pi_{x}=\lambda^{\left|I_{x}\right|} / B$, where I_{x} is the independent set corresponding to state x and $B=\sum_{x} \lambda\left|I_{x}\right|$.
- Note that, when $\lambda=1$, this is the uniform distribution.

Example: Independent Sets in a Graph (cont'd)

- Consider the following variation on the previous Markov chain for independent sets in a graph $G(V, E)$.

1. X_{0} is an arbitrary independent set in G.
2. To compute X_{i+1} :
(a) choose a vertex v uniformly at random from V;
(b) if $v \in X_{i}$ then $X_{i+1}=X_{i} \backslash\{v\}$ with probability $\min (1,1 / \lambda)$;
(c) if $v \notin X_{i}$ and if adding v to X_{i} still gives an independent set, then set $X_{i+1}=X_{i} \cup\{v\}$ with probability $\min (1, \lambda)$;
(d) otherwise, $X_{i+1}=X_{i}$.

Example: Independent Sets in a Graph (cont'd)

- First, we propose a move by choosing a vertex v to add or delete.
- Each vertex is chosen with probability $1 / M$, here $M=$ |V|.
- Second, this proposal is then accepted with probability $\min \left(1, \pi_{y} / \pi_{x}\right)$, where x is the current state and y is the proposed state where the chain will move.

Example: Independent Sets in a Graph (cont'd)

- π_{y} / π_{x}
- is " λ " if the chain attempts to add a vertex, and
- is " $1 / \lambda$ " if the chain attempts to delete a vertex.
- Then we obtain the transition probability $P_{x, y}$ is

$$
P_{x, y}=\frac{1}{M} \min \left(1, \frac{\pi_{y}}{\pi_{x}}\right) .
$$

- Thus Lemma 4 applies.

Example: Independent Sets in a Graph (cont'd)

- Comments:
- We never need to know $B=\sum_{x} \lambda^{I_{x} \mid}$

■ Calculating this sum would cost much time.

- Our Markov chains gives the correct stationary distribution by using the ratios π_{y} / π_{x}, which are much easier to deal with.

Thank you.

