Two-point Sampling

Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University
2006/6/29

References

- Professor S. C. Tsai’s lecture slides.
- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan.

Joint probability density function

- X, Y : discrete random variables defined over the same probability sample space.
- $p(x, y)=\operatorname{Pr}[\{X=x\} \cap\{Y=y\}]$: the joint probability density function (pdf) of X and Y.
- Thus, $\operatorname{Pr}[Y=y]=\sum_{x} p(x, y)$
and $\operatorname{Pr}[X=x \mid Y=y]=\frac{p(x, y)}{\operatorname{Pr}[Y=y]}$.
- A sequence of random variables is called pairwise independent if for all $i \neq j$, and $x, y \in \mathrm{R}$, $\operatorname{Pr}\left[X_{i}=x \mid X_{j}=y\right]=\operatorname{Pr}\left[X_{i}=x\right]$.

Randomized Polynomial time ($R P$)

- The class $\boldsymbol{R P}$ (for Randomized Polynomial time) consists of all languages \boldsymbol{L} that have a randomized algorithm \boldsymbol{A} running in worse-case polynomial time such that for any input x in \sum^{*} (\sum is the alphabet set),

$$
\begin{aligned}
& \star x \in L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq \frac{1}{2} \\
& \star x \notin L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }]=0
\end{aligned}
$$

Try to reduce the random bits...

- We now consider trying to reduce the number of random bits used by $\boldsymbol{R P}$ algorithms.
- Let \boldsymbol{L} be a language and \boldsymbol{A} be a randomized algorithm for deciding whether an input string x belongs to \boldsymbol{L} or not.
- Given x, A picks a random number r from the range $Z_{n}=\{0,1, \ldots, n-1\}$, with the following property:
- If $x \in \boldsymbol{L}$, then $\boldsymbol{A}(x, r)=1$ for at least half the possible values of r.
- If $x \notin \boldsymbol{L}$, then $\boldsymbol{A}(x, r)=0$ for all possible choices of r.
- Observe that for any $x \in L$, a random choice of r is a witness with probability at least $1 / 2$.
- Goal: We want to increase this probability, i.e., decrease the error probability.

A strategy for error-reduction

There is a strategy as follows:

- Pick $t>1$ values, $r_{1}, r_{2}, . . r_{t} \in Z_{n}$.
- Compute $A\left(x, r_{i}\right)$ for $i=1, \ldots, t$.
- If for any $i, \boldsymbol{A}\left(x, r_{i}\right)=1$, then declare $x \in L$.
- The error probability of this strategy is at most 2^{-t}.
- Yet it still uses $\Omega(t \log n)$ random bits.
- Why?

Strategy of two point sampling

Actually, we can use fewer random bits.

- Choose a, b randomly from Z_{n}.
- Let $r_{i}=a \cdot i+b \bmod n, i=1, \ldots, t$, then compute A(x, $\left.r_{i}\right)$.
- If for any $i, \boldsymbol{A}\left(x, r_{i}\right)=1$, then declare $x \in \boldsymbol{L}$.
- Now what is the error probability?

Suppose $\mathbf{E}\left[\boldsymbol{A}\left(x, r_{i}\right)\right]=\backslash$ mu $\operatorname{lgeq} 1 / 2$, we have $\operatorname{Var}\left[\boldsymbol{A}\left(x, r_{i}\right)\right]=\backslash m u$ * (1-mu). By simple calculus analysis, we have $\operatorname{Var}\left[A\left(x, r_{i}\right)\right] \backslash$ leq $1 / 4$, thus $\operatorname{Var}[Y]=\backslash$ sum_ $\{i=1\}^{\wedge}\{t\}$ $\operatorname{Var}\left[\boldsymbol{A}\left(x, r_{i}\right)\right]$ leq $t / 4$.

- What is the probability of the event $\{Y=0\}$?

$$
Y=0 \Rightarrow|Y-\mathbf{E}[Y]| \geq t / 2
$$

Thus $\operatorname{Pr}[Y=0] \leq \operatorname{Pr}[|Y-\mathbf{E}[Y]| \geq t / 2]$ $\leq \boldsymbol{P r}\left[|Y-\mathbf{E}[Y]| \geq \sqrt{t} \sigma_{Y}\right]$
$\leq 1 / t$.
Chebyshev's Inequality: $\operatorname{Pr}\left[\left|X-\mu_{x}\right| \geq t \sigma_{X}\right] \leq 1 / t^{2}$

Thankyou.

